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Abstract—In this paper, we present a low-latency direction as-
sisted channel estimation algorithm suitable for millimeter wave
(mm-Wave) systems. First, during the beam training procedure,
we perform angle of departure (AoD) and angle of arrival (AoA)
measurements with their corresponding variances and based on
them, we design both downlink and uplink beams. We then
perform signal measurements with these beams and accordingly
design the sensing matrix, while also iteratively refining the angle
estimation and the beams for the next measurements accordingly.
Finally, exploiting both the sparseness and the intrinsic geometric
nature of the mm-Wave channel, we apply compressive sensing
tools so as to complete the estimation procedure. Simulations
show that the corresponding estimation error decreases rapidly
in comparison with other conventional approaches.

I. INTRODUCTION

The millimeter wave (mm-Wave) technology has been

touted as a strong contender to accommodate the rapidly

burgeoning demands for both data traffic and throughput in the

new fifth generation (5G) of cellular systems [1]. The motive

behind this choice is clear: operating in the millimeter wave

(mm-Wave) band (typically, at a central frequency > 24 GHz)

offers a huge amount of unlicensed bandwidth, and hence, the

opportunity to multiplex high data rates among multiple users

at the same time. Moving up the mm-Wave spectrum does

not come without complications, however. The propagation

characteristics of radio signals at such high frequencies proves

to be a serious impediment to the advantages mentioned above.

These signals are indeed affected by severe power pathloss,

additional propagation losses due to specific environmental

conditions (e.g., rain, fog) and even more importantly, radio

blockages [2], [3].

On the other hand, transmitting signals of shorter wave-

lengths like in mm-Wave allows for smaller antenna sizes [4].

Exploiting this reduced size, instead of using only one antenna,

a large number of antenna elements can thus be integrated on

both sides of the radio link to concentrate the signal power in

specific directions of space and overcome signal attenuation,

what is also known as beamforming [5]. One major challenge

of mm-Wave beamforming (and beyond, of beam alignment)

is that the transmitter needs to have a fairly good knowledge

of channel information with respect to the receiver so as

to transmit the beam with the adequate width in the right

direction. In this demanding context, channel estimation is thus

of the highest importance.

In the literature, this mm-Wave channel estimation problem

has been addressed from the perspective of two distinct stages,

namely the beam training stage and the estimation algorithm

stage. Firstly, for the beam training stage, the most straight-

forward approach is to exhaustively search the best beams

in terms of received power, by testing all possible angular

directions on both transmitter’s and receiver’s sides [6]. In

contrast, [7] and [8] propose iterative multi-resolution beam

training procedures, where larger beams are used first, before

converging iteratively to a beam width corresponding to the

a priori required spatial resolution. Likewise [9] proposes a

similar iterative beam training process in presence of prior

location information fed by angle of departure (AoD) and

angle of arrival (AoA), significantly reducing the estimation la-

tency. In [10], the authors devise a channel estimation strategy

employing distinct beam patterns in different directions. The

latter two strategies reduce the channel estimation duration,

which is critical in case of 5G applications due to their both

low latency requirements and the necessity to operate at mm-

Wave, possibly under mobility. Secondly, in the estimation

stage, most of the contributions are based on compressive

sensing techniques, exploiting the aforementioned sparsity of

the channel, with algorithms such as orthogonal matching

pursuit (OMP) [11]–[13], simultaneous orthogonal matching

pursuit (SOMP) [14] and L1-norm minimization [15].

In this paper, we mainly consider the beam training stage

and study how directional information, in particular, angular

measurements can be used to further assist channel estimation.

Our main motivation is to minimize the number of searches

(and hence the duration) performed by the transmitter and the

receiver beam pair in the conventional methods. Due to the

sparse and geometric nature of the mm-Wave channel, the

exploitation of such angular information is indeed expected

to be beneficial to estimation, especially in terms of latency.

II. SYSTEM MODEL

A. Deployment scenario

Consider a mm-Wave downlink scenario with a base station

(BS) and a user, equipped respectively with Nt antennas and



Nr antennas and operating at the carrier frequency fc (and

the corresponding wavelength λc) with bandwidth B, and K
scatterers, as illustrated in Fig. 1. The BS, the user and the k-th

scatterer are located at positions q = [qx, qy]
T

, p = [px, py]
T

and sk = [sk,x, sk,y]
T

respectively. The position of the BS

is assumed to be known, whereas that of both user and the

scatterers are unknown a priori. The BS is assumed to have

a known orientation, whereas the user is arbitrarily oriented

towards an angle o ∈ (0, 2π] with respect to the reference

x-axis (as indicated in the figure).

B. Channel model

The Nr ×Nt complex channel matrix between the BS and

the user is denoted by H and is formulated as in [8].

H =

√

NrNt

ρ

K
∑

k=0

hke
−

j2πτk
Ts aRx(φk)a

H
Tx(θk), (1)

where ρ is the average path-loss term, hk, τk = dk/c (with

c, the speed of light), θk and φk are respectively the complex

channel coefficient, the time delay, the AoD and the AoA of

the k-th path between the BS and the user, Ts = 1/B is

the sampling period, aTx(θk) ∈ C
Nt and aRx(φk) ∈ C

Nr

are the antenna array response vectors at the BS and the user

respectively. Similarly to [14], we can define

θk =







arccos
(

px−qx
||p−q||2

)

k = 0

arccos
(

sk,x−qx
||sk−q||2

)

otherwise,
(2a)

φk =







π + arccos
(

px−qx
||p−q||2

)

− o k = 0

π − arccos
(

px−sk,x

||p−sk||2

)

− o otherwise,
(2b)

Considering a uniform linear array (ULA) model for the

antenna array, we can express aTx(θk) as

aTx(θk) =
1√
Nt

[1, ej
2π
λc

d cos(θk), · · · , ej(Nt−1) 2π
λ

d cos(θk)]T . (3)

where d is the distance between two antenna elements. Simi-

larly, we can formulate aRx(φk) by replacing Nt with Nr and

θk with φk in equation (3).

We can reformulate equation (1) similarly to [8] as

H =

√

NrNt

ρ
ARxΛAH

Tx, (4)

where,

ATx = [aTx(θ0), · · · ,aTx(θK)] , (5a)

ARx = [aRx(φ0), · · · ,aRx(φK)] , (5b)

Λ = diag
(

h0e
−

j2πτ0
Ts , · · · , hKe−

j2πτK
Ts

)

. (5c)

BS

User

Fig. 1: Illustration of the system model with a BS, a user and k-th scatterer
located at positions q, p and sk respectively. The orientation of the user is
indicated by an angle o with respect to the reference x-axis. The distance
between the BS and the user through direct path is d0 and through the k-th
scatterer is dk . The AoD and AoA for the k-th path are θk and φk respectively.

C. Communication model

Consider a downlink scenario between the BS and the user.

If the BS uses a beamforming vector fp and the mobile device

uses a combining vector wq , the resulting received signal can

be written as:

yq,p = wH
q Hfpsp + nq,p, (6)

where, sp is the transmitted symbol such that E [sp] = PTx,

where PTx is the average power used per transmission, and

nq,p is a Gaussian distributed noise with zero mean and

bilateral power spectrum density N0/2 per real dimension.

Considering MB and MU of such beamforming and combin-

ing vectors respectively, the received signal can be written as

Y = WHHFS +N , (7)

where W = [w1,w2, · · · ,wMU
] and F = [f1,f2, · · · ,fMB

].
Similarly to [8], for the channel estimation phase, we assume

all the transmitted symbols are equal i.e. S =
√
PTxIMB

,

where I is an identity matrix of size MB , and hence

Y =
√

PTxW
HHF +N . (8)

D. AoD and AoA estimation

We assume that the BS and the user have access to an

estimator of the AoD (θk) and AoA (φk) respectively for every

path1. Hence, for the k-th path, the estimated AoD and AoA

can be expressed as:

θ̂k = θk + eθk , (9a)

φ̂k = φk + eφk
, (9b)

where, eθk and eφk
are the estimation errors regarding θk and

φk respectively. It was shown in [18] that under conditions

such as a large number of transmit and receive antennas and a

1The angle estimations can be realized through well known subspace
based AoA estimators [16] such as Multiple Signal Classification (MUSIC)
or Estimation of Signal Parameters via Rotational Invariance Technique
(ESPRIT). The BS can estimate the AoA with downlink measurements.
Considering that for a given path, the AoD from the perspective of BS in
downlink is the same as the AoA from the perspective of the user in uplink,
the user can estimate θk with uplink AoA measurements. Hence, in this paper,
the term estimated AoD refers to the estimated uplink AoA. The sparse nature
of the mm-Wave channel means that there are few distinct paths and the angle
in each path can be estimated with high resolution due to the large number
of antenna elements [17]



large bandwidth, which is reasonable in mm-Wave, the error

for both AoD and AoA can be assumed as independent per

path. Moreover, we assume that the random measurement

noise terms are Gaussian distributed with zero mean and

known variances2 σ2
θ and σ2

φ [19].

III. DIRECTION AIDED CHANNEL ESTIMATION

The objective of channel estimation is to estimate the matrix

H in a multipath scenario. Equivalently, one can estimate the

channel coefficient and the three location dependent variables

(i.e., delay, AoD and AoA) for each path. In this section,

we firstly express the channel estimation problem as a sparse

problem. We then introduce the sectorized beamforming model

to simplify the previous channel estimation problem. Finally,

we propose the direction aided channel estimation algorithm.

A. Channel estimation problem

Vectorizing equation (8), we can write

yv = vec(Y ) =
√

Ptvec(WHHF ) + vec(N), (10a)

= ζ(F T ⊗WH)(A∗
Tx ⊗ARx)vec(Λ) + nv, (10b)

= ζ(F TA∗
Tx ⊗WHARx)x+ nv. (10c)

where ζ =
√

NrNtPTx/ρ, x = vec(Λ) and nv = vec(N).
In order to present a sparse formulation of the estimation

problem, consider a grid of NB discrete AoD and NU AoA

directions taken uniformly between 0 and 2π, with the i-th
grid direction represented by θ̃i and φ̃i for AoD and AoA

respectively. Mathematically, θ̃i = 2π(i − 1)/NB and φ̃i =
2π(i− 1)/NU . Assume,

ÃTx =
[

aTx(θ̃1), · · · ,aTx(θ̃NB
)
]

, (11a)

ÃRx =
[

aRx(φ̃1), · · · ,aRx(φ̃NU
)
]

. (11b)

Similarly to [8, equation (17)], we can now reformulate

equation (10c) as a sparse problem:

yv = ζ(F T Ã∗
Tx ⊗WHÃRx)x+ nv = ζMx+ nv, (12)

where M is the sensing matrix and the k-th element in yv is

yk = ζ(fT
p Ã∗

Tx ⊗wH
q ÃRx)x+ nk = ζM(k, :)x+ nk, (13)

where the k-th measurement is performed with the beamform-

ing vector fp and the combining vector wq , and M(k, :)
represents the k-th row of the sensing matrix. Likewise

fT
p Ã∗

Tx =
[

aH
Tx(θ̃1)fp, · · · ,aH

Tx(θ̃NB
)fp

]

, (14a)

wH
q ÃRx =

[

wH
q aRx(φ̃1), · · · ,wH

q aRx(φ̃NU
)
]

. (14b)

Equation (14a) (and equivalently, equation (14b)) represents

the gain due to the beamforming vector fp in all the grid

directions. Hence, fT
p Ã∗

Tx⊗wH
q ÃRx represents the gain due to

fp and wq in all the BS and user grid combinations (NB×NU

combinations).

2The variance of estimation depends on the estimator and factors such
as signal-to-noise ratio (SNR), bandwidth and number of antenna elements.
Such variances can be known a priori, by means of e.g., theoretical bounds
calculation, empirical statistics drawn over sequences of real measurements,
or even through simulations.

B. Sectorized beamforming model

We approximate the actual beamforming by a sectorized

model [20], where the transmitted and received beams are

divided into two sectors, a main lobe3 sector whose antenna

gain depends on the beamwidth ω and a side lobe sector with

a fixed gain. The beamwidth is inversely proportional to the

number of antenna elements.

Accordingly, in the sectorized model, the antenna gain

Gx(ωx), where x ∈ {Tx,Rx} at the BS side i.e. fHaTx(θk)
and user side i.e. wHaRx(φk) can be approximated similarly

to [8], [21]

Gx(ωx) =

{

γx(ωx) = G0
2π−(2π−ωx)ǫ

ωx
, in the main lobe,

g = G0ǫ, otherwise,
(15)

where G0 is the antenna gain of an equivalent omni-directional

beam (i.e., ωx = 2π) and ǫ is a small positive constant ≪ 1.

C. Sensing matrix design

From equations (13) and (15), each element of the

sensing matrix M in (12) can have four distinct values:

γTx(ωTx)γRx(ωRx), γTx(ωTx)g, gγRx(ωRx) and g2 depending on

the beam alignment and beamwidths.

Consider an example scenario as illustrated in Fig. 2 with

a BS, a user and two paths: a direct path and an indirect path

through s1. The complex channel coefficient of direct path h0

is indicated by α0 and that of indirect path h1 is α1. Consider

equi-spaced grids at both BS and user with NB = NU = 8
with θ̃i = φ̃i = 2π(i− 1)/8 for all natural numbers i ≤ 8.

We have beams from the BS and the user with widths ωTx

and ωRx respectively, both directed at a scatterer located at s1.

Let mBS = fT Ã∗
Tx and mMS = wHÃRx. As illustrated in

the figure, only the indirect path is covered by the main lobes

of both BS and user side beams. Then, the received signal

composed of two paths can be expressed as follows:

y = ζ

1
∑

k=0

GRx(ωRx,k)GTx(ωTx,k)αk + n, (16a)

= ζ
[

γTx(ωTx,1)γRx(ωRx,1)α1 + g2α0

]

+ n, (16b)

and each row of the sensing matrix for the given beam pair

can be calculated as

mTx = [g, γTx(ωTx), g, g, g, g, g, g], (17a)

mRx = [g, g, g, γRx(ωRx), g, g, g, g], (17b)

M(k, :) = mTx ⊗mRx. (17c)

D. Beam design

The key to efficiently solving the sparse problem in (12)

is to obtain the right measurements. In order to do so, based

on the angle estimates from equation (9), for each path, we

design the optimal beamwidth ωTx and ωRx at both BS and

user respectively in such a way as to minimize the beam

3Here, the term main lobe stands for the angular region of the antenna
pattern centered around the axis of maximum gain and aperture equal to the
half-power beamwidth of the pattern.



Fig. 2: Example scenario with NB = NU = 8 with both BS and user main
lobe directed towards s1.

Node 1

Node 2

Fig. 3: Illustration of beam misalignment error due to erroneous estimation

of φ̂k such that Node 1 is not within the transmitted beam. Node 1 might be
receiver or scatterer depending on whether it corresponds to the direct path
or not.

misalignment error per path. We define the misalignment error

as the event that the scatterer (or correspondingly the receiving

node in case of direct path transmission) doesn’t fall within

the main beam lobes of either transmitting or receiving nodes

due to estimation errors. This event is depicted in Fig. 3.

Based on this definition of the misalignment error, we

design the beamwidth4 ωTx,k with respect to the k-th path

such that the probability of misalignment error is a constant

ǫTx, i.e.,

P
(

θ̂k − ωTx,k

2
≤ θ ≤ θ̂k +

ωTx,k

2

)

= ǫTx. (18)

Accordingly,

ωTx,k = 2Φ−1

(

ǫTx + 1

2

)

σθ, (19)

where, Φ−1(x) is the inverse function of the cumulative

distribution function (CDF) of standard normal distribution.

Likewise,

ωRx,k = 2Φ−1

(

ǫRx + 1

2

)

σφ. (20)

In the above equations, we use the relations from equations

(9a) and (9b), where θ̂k and φ̂k are normally distributed around

the true AoD and AoA for each k-th path.

4In practice, the ability of an antenna to beamform with a certain width
depends on the number and the geometry of the antenna elements. In our
scenario, we assume that both BS and user have enough elements to support
a small beamwidth. In the context of ULA, the minimum number of antenna
elements required to achieve a beamwidth ω can be approximated [22,
Equation 1.9] as 1.8/ω. Then to achieve other larger beamwidths, we can
select the required number of antenna elements according to the optimization
problem formulated in [23], [24].

E. Direction aided channel estimation algorithm

The overall direction aided channel estimation algorithm can

be summarized by the following steps.

Output: Ĥ

Initialization:

1: Initial estimates of AoD θ̂
(1)
k and AoA φ̂

(1)
k at the BS

and user respectively for all the (K + 1) paths and their

corresponding variances σ2
θk

and σ2
φk

.

2: i = 1
Beam Training Phase:

3: while terminating condition5 is not satisfied do

4: for all θ̂
(i)
k1

and φ̂
(i)
k2

pair ∀k1, k2 ∈ {0, 1, · · ·K} do

5: Calculate the beamwidth ω
(i)
Tx,k1

and ω
(i)
Rx,k2

for BS

and user beams according to equations (19) and (20)

respectively.

6: Set the BS and user beams towards θ̂
(i)
k1

and φ̂
(i)
k2

respectively with widths ω
(i)
Tx,k1

and ω
(i)
Rx,k2

.

7: With these beams, generate the received signal yi,
according to equation (16a).

8: Calculate the corresponding row of the sensing ma-

trix M(i, :), as in equation (17c).

9: if |yi|2 ≥ γi then

10: With downlink transmission towards θ̂
(i)
k1

with

beamwidth ω
(i)
Tx,k1

, the BS estimates the refined

AoA φ̂
(i+1)
k .

11: With uplink transmission towards φ̂
(i)
k1

with

beamwidth ω
(i)
Tx,k1

, the user estimates the refined

AoD θ̂
(i+1)
k .

12: Update the estimation variances σ2
θk

and σ2
φk

.

13: end if

14: i = i+ 1
15: end for

16: end while

Estimation Algorithm Phase:

17: z = OMP(M ,y) and reshape z from NBNU × 1 vector

to a NB ×NU matrix.

Λ̂ = reshape (z, [NB , NU ]) . (21)

18: Ĥ = ÃRxΛ̂ÃH
Tx

19: return Ĥ

In summary, we firstly initialize the algorithm with coarse

estimates of the AoDs and AoAs along with their variances

for all the paths. For each AoD and AoA, we then calculate

the beamwidth such that we limit the misalignment error

probabilities to ǫTx and ǫRx at the transmitter and the receiver

respectively. We then sequentially transmit for every pair of

AoD and AoA, in total (K + 1)2 pairs, with the newly

calculated beamwidth and measure the received signal and

the corresponding row of the sensing matrix according to

equations (16a) and (17c) respectively. Following, we refine

5The terminating condition can be application dependent. It can be, for
e.g., the minimum beamwidth constraint, the total channel estimation duration
constraint, etc.



AoDs and AoAs, as well as their corresponding variances, for

each path with the new beamwidth. We only perform this step

if the BS and user beam pairs are corresponding to either

the direct path or the same scatterer, hence K + 1 times.

In order to decide when to perform this step, we threshold

the received signal power on γi, which is a function of

ω
(i)
Tx,k1

and ω
(i)
Rx,k2

, such that we only measure the angles when

both the main lobes are aligned towards either each another

or the same scatterer. This beam refining and measuring

process is iteratively repeated until some application dependent

terminating condition is fulfilled. The sparsity of mm-Wave

channel ensures that the sensing matrix is sparse, and hence

we use some compressive sensing algorithm such as OMP [13]

in this case to finally estimate the channel.

IV. NUMERICAL RESULTS

In our work, we assume an analog beamforming architecture

on both BS and user sides with only 1 radio-frequency (RF)

chain operating at fc = 28 GHz with bandwidth B = 500
MHz. We assume the transmit power Pt = 30 dBm and the

noise power density at the received signal N0 = −174 dBm.

We consider 1 BS with known position (q = [0, 0]T ) and

orientation (o = 0o), and K = 3 scatterers (and accordingly, 4
paths). Moreover, we assume the NB = NU = 360 grid points

at both the BS and the user respectively. For determining the

beamwidth, we consider ǫTx = ǫRx = 0.99.

We compare our proposed direction assisted channel esti-

mation method with that resulting from two well-known solu-

tions, namely exhaustive search and iterative multi-resolution

search [6], [8]. For the exhaustive search, we consider the

beamwidth of the BS and the user to be fixed and equal

to ωEx
Tx and ωEx

Rx. Thus, the BS and the user go through all

the possible combinations of beams throughout the search

area with the width in order to complete the beam training

process. On the other hand, for the case of iterative multi-

resolution based search, we implement the multipath channel

estimation algorithm in [8], where we start with an initial

beamwidth of π/2 rad and iteratively bisect the beamwidth

and sweep to converge to finer resolution. We assume that

each transmission can be completed within 14.3µs which

is equal to one orthogonal frequency division multiplexing

(OFDM) symbol length [25]. For the case of the proposed

direction aided method, we choose the minimum beamwidth

constraint at both BS and user’s end as terminating condition

for the algorithm i.e. the algorithm terminates when the refined

beamwidth reaches 1 degree at both the ends for all different

AoDss and AoAs. This minimum beamwidth requirement

corresponds to the minimum number of antenna requirement

of 104. With this consideration, we assume Nt = Nr = 128.

We characterize the error in channel estimation in terms of

normalized mean square error (NMSE), defined as NMSE =
||H − Ĥ||22/||H||22, where, ||.||2 represents the 2-norm.

In Fig. 4, we can see the minimum beamwidth that can

be achieved within a given duration. For instance, during

x µs, we can transmit n = ⌊x/14.3⌋ beam pairs. For the

case of exhaustive search based channel estimation, since we

Fig. 4: Beamwidth achieved for different channel estimation methods varied
with total channel estimation duration

Fig. 5: NMSE comparison for different channel estimation methods varied
with total channel estimation duration

need to search the entire π/2 space in x µs, the minimum

beamwidth that we can use is ωEx
Tx = ωEx

Rx = π/2n rad. In case

of iterative search, the minimum beamwidth we can achieve

during n steps is given by ωIt
Tx = ωIt

Rx = π/2 log2(n), since

the search sector grows to the power of 2 at each bisection.

For the direction based method, the minimum beamwidth with

n possible beam pairs depends on how fast the beamwidth

converges at each iteration and hence, on the variance of esti-

mated AoD and AoA. Since the previous variances, and thus

the beamwidths, vary for each path, for the proposed direction

aided method, we plot both the minimum and maximum

beamwidths allocated at each iteration. In our simulations, in

order to have a closed form expression, we assume Cramer

Rao Lower Bound (CRLB) as the angle estimation variance6

when estimating the AoD and AoA, as derived in [14]. In Fig.

4 we can see that the beamwidth in the proposed direction

assisted algorithm decreases much more quickly than in other

cases.

In Fig. 5, we also present the NMSE of channel estimation

for each method for different channel estimation duration and

6Although CRLB represents a lower bound on the variance of an unbiased
estimator and hence, the best case scenario, the authors in [14] show that it
is possible for an estimator to achieve the bound even at low SNR.



with different beamwidths corresponding to the estimation

duration, as shown in Fig. 4. In this figure, we can observe

that with the proposed direction aided method, the estimation

error, similar to the beamwidth, decreases more rapidly than

the other methods. The reason for this is that in the proposed

method, we use directly the relevant beams even though

there is a small probability of misalignment. However, in the

exhaustive and iterative search based methods, a lot of time

is spoilt while searching all the sectors including those which

do not provide any relevant information. This gain in latency

could be crucial especially in the context of low latency 5G

applications and in dynamic channel estimation scenarios, for

e.g., tracking a mobile user.

V. CONCLUSIONS

In this paper, we have presented a low latency solution

for channel estimation in the context of mm-Wave systems,

with the aid of direction information. Exploiting the in-

herently sparse properties of the mm-Wave channel, where

the number of multipath components is limited, as well as

AoD and AoA estimation for each path, we show that the

direction aided method outperforms other existing methods

such as the exhaustive and iterative multi-resolution search

based channel estimation approaches. Simulation results in a

canonical scenario illustrate some latency gains accordingly.

In future works, we will consider coupling the proposed mm-

Wave multipath channel estimation method with angle-based

simultaneous localization and mapping algorithms.
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