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Abstract—In this paper, we propose a novel index modulation
mechanism called permutation channel modulation (PCM) by
exploiting spatial resource of multiple input multiple output
(MIMO). A set of permutation matrices is treated as indices
to convey information bits by modulating a block of bits to a
permutation matrix. Assuming that channel state information
at transmitter (CSIT) is known, modulated permutation matrix
is multiplied to the singular values of MIMO channel matrix
obtained from decomposing the channel matrix using singular
values decomposition (SVD). Besides to a permutation matrix,
information bits are also modulated to constellation symbols.
Therefore, the transmitted signals contain two sources of in-
formation: a permutation matrix and constellation symbols. At
the receiver, transmitted symbols and a permutation matrix are
detected using our proposed detection scheme. We derive the
capacity expression and define the optimal capacity by finding
the optimal power allocation at each transmission. As performance
measure, capacity of PCM is compared with existing techniques.
Using 4 × 4, we find that the capacity of PCM is doubled
and remains superior with higher antenna settings. Our work
creates a new paradigm of index modulation for multiple antenna
transmissions by exploiting its spatial resource and significantly
improves the capacity and outage probability performances.

Index Terms—PCM, MIMO, permutation matrix, SVD

I. INTRODUCTION

T
He exploitation of multiple input multiple output (MIMO)

has broadened the alternatives for wireless system trans-

mission. Conventional MIMO scheme has been developed into

numerous scenarios and available in existing literature [1]–

[4]. Recently, many works is introduced since the presence

of MIMO especially to investigate the benefits of its spatial

resource, e.g. spatial modulation (SM) [5]–[8], quadrature spa-

tial modulation (QSM) [9]–[13], etc. The fundamental idea

of these new techniques is to discover alternative indices to

convey information bits other than the conventional way, i.e.,

constellation symbols. Many advantages are offered such as

high compatibility to existing MIMO scheme, high spectral

efficiency and free of inter-channel interference [14].

At the beginning, SM is proposed to modulate a single

antenna by treating the antenna as modulated index to convey

information bits along with a constellation symbol. The tech-

nique is effective to avoid inter-channel interference with low

complexity receiver [5]. On the other hand, SM decreases the

achievable rate of conventional MIMO since it only activates

one antenna per transmission. Furthermore, SM requires twice

number of transmit antennas to increase one bit since it is

bounded to have 2n transmit antennas. A new technique called

generalized spatial modulation (GSM) is then introduced to

overcome this issue. It relaxes SM’s limitation so that any

number of transmit antennas is applicable [15]. However, some

advantages of SM are no longer maintained such as its freedom

of inter-channel interference. One of the most recent works on

index modulation is QSM. The system independently transmits

the real and imaginary constellation symbol. Further, it also

modulates the activated transmit antennas as information bits

[9]. QSM was a breakthrough due to its ability to remove inter-

channel interference while conveying higher amount of bits

compared to conventional SM. Recently, QSM has also been

developed to work in millimeter wave (mmWave) channels [12].

Despite its benefits, receiver complexity grows exponentially

with the increase of number of antennas since it employs

maximum likelihood (ML) receiver. Furthermore, compared

to existing conventional MIMO in [16], number of possible

conveyed bits of QSM is lower. Recently, a research on spatial

permutation modulation (SPM) for MIMO systems has been

published in [7]. The idea is to modulate information bits

to a permutation vector and to activate the transmit antenna

at consecutive time instants. SPM disperses data along with

the time coordinate so that it achieves higher diversity, thus

lower error rate. The technique can be applied to various

index modulation scenarios such as SM, space-time block

coded spatial modulation (STBC-SM) and QSM. However,

its contribution to increase achievable rate is inferior [7]. In

this paper, we propose a novel index modulation mechanism

called permutation channel modulation (PCM) to exploit spatial

resource of MIMO by modulating a permutation matrix to

convey extra information bits. A permutation matrix is selected

and modulated based on the random incoming information bits

along with constellation symbols. The modulated permutation

matrix is employed to rearrange the singular values by multi-

plying the modulated permutation matrix to the singular values

matrix. A precoded vector resulted from multiplying unitary,

modulated permutation, singular values matrices and modulated

symbol vector is transmitted over MIMO channel. At the

receiver, inter-channel interference is canceled by performing

post-processing. The received signal contains two sources of

information to be decoded. At first, the permutation matrix

is detected. Then by using the detected permutation matrix,

transmitted symbols are also detected.

In this paper, our contributions are follows: we derive capac-

ity expression of PCM. Furthermore, optimal power allocation
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is also investigated. Capacity of PCM is evaluated and com-

pared with conventional MIMO and mmWave QSM studied in

[12]. It is shown that PCM’s performance is superior to the

others. The behavior of PCM’s capacity in antenna enhance-

ment is also studied. PCM obtains greater capacity gain as the

number of antennas is enhanced. Moreover, outage probability

of PCM is presented and compared with conventional MIMO

as well. We find that increasing either number of transmit or

receive antennas or both improves the outage probability greater

than MIMO. Lastly, simulation result of bit error rate (BER) is

discussed. We present various antenna settings and modulation

levels using the proposed detection scheme. The result indicates

that increasing channel rank or modulation level gives a poorer

performance where higher channel rank results worse BER.

The rest of the paper is organized as follows: section II

presents the proposed system. Capacity analysis is presented

in section III. Results and discussion is provided in section IV.

Finally, we conclude the paper in section V.

Notation: In the following, uppercase bold letters A denote

matrices and lowercase bold letters a denote column vectors

(unless specified otherwise). (.)T , (.)H , |.|, det(.), E[.] denote

transpose, Hermitian transpose, absolute value, determinant and

expectation of a random variable, respectively.

II. PROPOSED SYSTEM

Our proposed system model is depicted in Fig. 1. We propose

a novel modulation scheme by modulating a set of permutation

matrices to convey information bits along with phase shift

keying (PSK) symbols in MIMO system. Perfect channel state

information (CSI) at transceiver is assumed to be known so

that the MIMO channel matrix can be decomposed using

SVD. A precoder is constructed by employing the selected

permutation matrix and the property of SVD. At the receiver,

the permutation matrix and PSK symbols are detected. We

define set N ∈ {1, ...,N} of transmit antennas, M ∈ {1, ...,M}

of receive antennas, S ∈ {s1, ..., sQ} of Q-level PSK modulated

symbols where Q is the modulation level, and P ∈ {P1, ...,PR}

of permutation matrix.

A. Transmitter

First, input bits are divided into two blocks; a block of

length a = p log2(Q) is modulated and allocated to vector

s = (s1, ..., sp : si ∈ S ∀i)T where p = min(N,M). Element

in vector s indicates the position of modulated symbols that

corresponds to its transmit antenna. The second block of length

b =
⌊
log2(p!)

⌋
is utilized to select permutation matrix P ∈ P

of length p × p. Index R = 2b in set P is the number of

required unique permutation matrices to modulate input bits in

the second block. Pi = (eπ(1), ...,eπ(p) : eπ(j) ∈ {e1, ...,ep})
T

is the i-th permutation matrix in set P where ej is defined as

standard basis row vector of length p where the j-th element is

equal to 1 and 0 otherwise. As an example, set of permutation

matrices for N = 3 and M = 3 is shown in TABLE I. For

a particular 3 × 3 setting, a total of six possible combinations

of unique permutation matrices are there. However, for binary

transmission, only four matrices will be employed. By doing

Fig. 1: Proposed system model

so, the selection of modulated symbols and permutation matrix

are independent of each other. Thus, the total transmitted bits

at each transmission using the proposed system is

m = a + b. (1)

Next step is to formulate a precoder before sending the

signal through MIMO channel. Assume that the antenna array

is separated wide enough such that antennas are independent of

each other and therefore gives a rank p MIMO channel matrix

H and uncorrelated noise. Matrix

H = UΛV∗

=

⎡⎢⎢⎢⎢⎢⎢⎣

u1,1 ... u1,N

: . :

: . :

uM ,1 ... uM ,N

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

λ1 0 ... 0

0 λ2 ... 0

: : . :

0 0 ... λN

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

v1,1 ... v1,N

: . :

: . :

vN ,1 ... vN ,N

⎤⎥⎥⎥⎥⎥⎥⎦

∗

,

N ≤ M

=

⎡⎢⎢⎢⎢⎢⎢⎣

u1,1 ... u1,M

: . :

: . :

uM ,1 ... uM ,M

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

λ1 0 ... 0

0 λ2 ... 0

: : . :

0 0 ... λM

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

v1,1 ... v1,M

: . :

: . :

vN ,1 ... vN ,M

⎤⎥⎥⎥⎥⎥⎥⎦

∗

,

N > M

(2)

is decomposed using SVD resulting in three matrices where

U and V are unitary matrices and Λ is a diagonal matrix

containing singular values of H that represents the channel gain

of each antenna link. We assume that λ1 > λ2 > ... > λp > 0.

At the transmitter, the signal is precoded as

x = VPΛs. (3)

B. Receiver

Signal vector x is then transmitted and multiplied with

MIMO channel H and the received signal is given as

y = Hx + n = (UΛV∗)VPΛs + n = UΛPΛs + n (4)

where n ∼ CN(0,Kn) is i.i.d Gaussian noise vector and Kn is

noise covariance. Received signal vector y is normalized at the



TABLE I: bits to permutation matrix for 3 × 3 MIMO

input bits i Pi

00 1 P1 =

⎡⎢⎢⎢⎢⎣

e
π(1)

e
π(2)

e
π(3)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

e1

e2

e3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎦

01 2 P2 =

⎡⎢⎢⎢⎢⎣

e
π(1)

e
π(2)

e
π(3)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

e1

e3

e2

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

1 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎦

10 3 P3 =

⎡⎢⎢⎢⎢⎣

e
π(1)

e
π(2)

e
π(3)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

e2

e1

e3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0 1 0
1 0 0
0 0 1

⎤⎥⎥⎥⎥⎦

11 4 P4 =

⎡⎢⎢⎢⎢⎣

e
π(1)

e
π(2)

e
π(3)

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

e2

e3

e1

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0 1 0
0 0 1
1 0 0

⎤⎥⎥⎥⎥⎦

receiver by multiplying matrix U∗. Note that V∗V = U∗U = I

as the property of unitary matrices.

ỹ = U∗y = U∗UΛPΛs + U∗n = ΛPΛs + ñ. (5)

Multiplying U∗ to vector y does not change the noise statistics

since U is a unitary matrix. It also cancels inter-channel

interference between all antennas. Vector ỹ is utilized to detect

both permutation matrix and transmitted symbols. At first,

permutation matrix is detected as

î = arg max
i

[
(PiΛ1)T abs(Λ−1ỹ)

]
, i ∈ {1, ...,R} (6)

where 1 is a vector containing all 1 of length p and abs(.)

is component-wise absolute value operation. An error occurs

when Pî � P. î is used to detect transmitted symbols by

multiplying PT

î
to ỹ,

x̃ = PT

î
ỹ = PT

î
ΛPΛs + PT

î
ñ. (7)

Multiplying PT

î
to ỹ does not change the noise statistics since

Pî is a unitary matrix. Vector x̃ = (x̃j : j ∈ {1, ..., p})T contains

p elements to be demodulated as

ŝj = min
x

(

x̃j − x


2

2

)
, x ∈ S (8)

where ‖.‖2 is Euclidean norm. Finally, the detected î and

{ŝ1, ŝ2, ..., ŝp} are converted into bits.

C. Receiver Validity

Our receiver model shown in (6) can be verified using the

following

(PiΛ1)T abs(PΛs) ≤ (PΛ1)T abs(PΛs), Pi,P ∈ P (9)

where equality holds if and only if Pi = P, hence maximum is

achieved when Pi = P. In other words, (6) is maximized when

the input matrix Pi at receiver is equal to the selected P at the

transmitter.

Theorem 1: receiver model (6) is valid if and only if absolute

value of all elements in vector s are equal, |s1 | = ... = |sp |.

Proof: Let f,g ⊆ Cp , it dictates
��fTPfgT1

�� ≤
��fT IfgT1

�� , P ∈ P (10)

where I is identity matrix. When g = (g1, ...,gp : |g1 | = ... =

|gp |), equality holds when P = I. It implies that the upper bound

is achieved when every element of vector f is multiplied with

itself. This fact can be applied to (9) where the upper bound

is achieved by choosing a permutation matrix such that each

singular value is multiplied with itself. Therefore to comply

this condition, vector s should satisfy s = (s1, ..., sp : |s1 | =

... = |sp |), e.g., PSK modulation.

III. CAPACITY ANALYSIS

A. Formal Derivation

We derive the capacity expression of PCM in this section.

First, the mutual information of the proposed system is defined

as

I (x; ỹ) = H(ỹ) − H(ỹ|x) (11)

where H(.) denotes the differential entropy. Capacity is ob-

tained by choosing input distribution that maximize the mutual

information in (11), then

C = max
fx

I(x; ỹ) = max
fx

H(ỹ) − H(ỹ|x). (12)

It can be shown that

H(ỹ|x) = log2 det(πeKn) (13)

since perfect channel knowledge is known at transceiver and n

and x are independent. Thus, the capacity computation in (12)

is reduced to finding the input distribution on x to maximize

H(ỹ). The fact that Gaussian distribution is a differential

entropy maximizer. H(ỹ) is upper bounded by the entropy of

a complex Gaussian random variable, hence C is maximized

when ỹ ∼ CN(0,Kỹ). The entropy of ỹ is computed as

H(ỹ) = log2 det(πeKỹ) (14)

where Kỹ is determined as

Kỹ = E[ỹ2] = ΛPΛKxΛPTΛ +Kn (15)

where Kx = diag(γ1, ..., γp)
T is transmit symbol covariance

matrix and γi is the i-th antenna transmit power. Note that

due to uncorrelated noise, Kn = diag(σ2
n, ...,σ

2
n)

T is a diagonal

matrix containing noise variances. The channel is assumed to

be fixed during the symbol duration, therefore the channel

coefficient can be treated as constant. Substituting (13) and

(14) to (12), we obtain

C = log2 det
(
I + ΛPΛKxΛPTΛKn

−1
)
. (16)

Note that
(
I + ΛPΛKxΛPTΛK−1

n

)
results in a diagonal matrix

of size p where a pair of squared singular values are multiplied

depends on the selected P. It is convenient to define set of all

possible singular values multiplication as D ∈ {ζ1 = λ
2
1
λ2

1
, ζ2 =

λ2
1
λ2

2
, ..., ζp = λ

2
pλ

2
p}. Now, (16) can be treated as summation

over p channels as shown as below

C =

p∑

i=1

log2

(
1 +
ζiγi

σ2
n

)
(17)

where ζi ∈ D. Note that ζi > 0 ∀i since λi is strictly positive.



B. Optimal Capacity

In this part, we discuss about the optimal capacity of PCM at

each transmission. It is done by finding the optimal power allo-

cation assigned to each transmit antenna at each transmission.

The capacity is maximized by solving

maximize
γ1 ,...,γp

p∑

i=1

log2

(
1 +
ζiγi

σ2
n

)

subject to

p∑

i=1

γi ≤ Γ, γi ≥ 0 ∀i

(18)

where Γ is total transmit power at each transmission. The

objective function in (18) is concave since log(.) is concave.

Therefore the optimization problem in (18) belongs to convex

programming problems. Now, the proof relies on standard

convex analysis and the constraints satisfy Slater’s condition.

Thus, the Karush-Kuhn-Tucker (KKT) condition is sufficient

and necessary for optimality. By introducing dual variables ν

and μi , the Lagrangian is formed as

L(γi, ν, μi) = −

p∑

i=1

log2

(
1 +
ζiγi

σ2
n

)
+ ν

(
p∑

i=1

γi − Γ

)

−

p∑

i=1

μiγi .

(19)

We derive the Lagrangian and the problem can be solved using

the well-known water-filling (WF) algorithm. Optimal power

allocation is computed as

γi = max

(
1

ν
−
σ2
n

ζi
, 0

)
. (20)

IV. RESULTS AND DISCUSSION

In this section we present performance of PCM aiming to

study the:

• capacity behavior of PCM with various antenna settings

using equal and WF power allocation.

• capacity comparison to other existing techniques.

• outage probability in comparison to existing technique.

• BER of the detection scheme we proposed.

We conduct Monte Carlo simulation for all simulated results

presented in this section. Capacity, outage probability and BER

are all simulated in Rayleigh flat fading channel unless specified

otherwise. For the sake of clarity, we separate this section into

three subsections.

A. Capacity

We derive the capacity expression of PCM in (17). Monte

Carlo simulation is used to average out the singular values.

Further, standard Normal distribution is employed as the noise

input.

Fig. 2 shows capacity performance of PCM with various

antenna settings using equal power (EP) allocation and WF

power allocation given in (20). WF shows better performance

compared to EP for all antenna settings over all SNR range. It

also shows that maximum achievable capacity can be attained

via WF scenario. The same trends are shown by 4×4 and 7×7

settings as well as 4×7 and 7×4 settings. It implies that identical

Fig. 2: Capacity of PCM

Fig. 3: Capacity comparison between WF PCM, WF MIMO

and mmWave-QSM

antenna settings results identical capacity performances. Fig.

2 also represents that higher capacity can be obtained by

increasing the channel rank of the system. However, different

trend is shown by 10 × 4 setting. Although its channel rank is

lower than 7×7 setting, it outperforms 7×7 setting in low SNR

and declines in high SNR. This is due to the fact that 10 × 4

setting gains higher singular values than 7×7 setting. It can be

observed from (16). The capacity is increased as the singular

values ζi are increased. Furthermore, we can improve the

singular values by increasing either the number of transmit or



Fig. 4: Capacity improvement percentage of 4 × 4 to 7 × 7 of

WF PCM, mmWave QSM and WF MIMO

Fig. 5: Outage probability of WF PCM and WF MIMO with

R = 15 bps/Hz

receive antennas [1]. On the other hand, increasing the channel

rank p is also improving the capacity performance as shown

in (16). We can also observe that increasing p is linear while

increasing ζi is logarithmic to capacity C. Therefore, in the

function of SNR, 10×4 and 7×7 settings are intersect at a point.

In Fig. 2, we cover all possible antenna configuration scenarios.

Thus, different values will result the same performance trend.

We compare PCM with other existing techniques in Fig. 3.

WF power allocation is applied to both PCM and conventional

MIMO. Time-invariant MIMO capacity is computed as

CMIMO = log2 det
(
I +HKxHHKn

−1
)

(21)

Fig. 6: BER of PCM

where WF power allocation is employed over the diagonal

matrix Kx. We also compare PCM to QSM as one of the most

recently developed space modulation techniques. Furthermore,

QSM has been successfully extended to work in mmWave

channel as shown in [12]. The closed-form capacity expression

in 3D mmWave channel has also been derived and can be

computed as

CQSM = M log2

(
1 +

1

σ2
n

)
. (22)

As shown in Fig. 3, higher antenna setting gives more capacity

improvement for all techniques over whole SNR range. WF

MIMO lies below WF PCM at both 7 × 7 and 4 × 4 settings.

PCM attains 103% to 9% capacity gain using 4× 4 setting and

220% to 17% capacity gain using 7×7 setting compared to WF

MIMO over 0 to 30 dB. By increasing the channel rank from

p = 4 to p = 7, WF PCM doubles the percentage gap over

WF MIMO. It also implies that PCM is getting higher singular

values compared to MIMO as intuitively can be observed in

(16) and (21). On the other hand, PCM and mmWave QSM

curves are intersect at certain SNR values. PCM is superior to

mmWave QSM prior to the intersection and the opposite occurs

afterwards. Capacity of mmWave QSM is M times Gaussian

noise capacity due to the absence of channel gain.

In Fig. 4, we calculate the percentage of capacity improve-

ment of 4 × 4 to 7 × 7 setting by taking their ratio over the

whole SNR range. It shows that mmWave QSM and WF MIMO

improve around 78% over the whole SNR range. While WF

PCM varies from 176% to 87%. It implies that WF PCM can

improve higher capacity by increasing the antenna settings than

mmWave QSM and WF MIMO.

Findings: 1) Maximum achievable capacity of PCM can be

acquired using WF scenario. 2) Despite the same channel rank,



capacity can be increased by adding either transmit or receive

antenna in PCM. 3) PCM can improve the capacity better by

increasing the channel rank than MIMO and mmWave QSM.

B. Outage Probability

Outage probability is defined as the probability that informa-

tion rate being below the required threshold. In general, outage

probability is computed as

pout = P{C < R}, (23)

where R is information rate threshold. We present the outage

probability of WF PCM and WF MIMO in Fig. 5 with R = 15

bps/Hz. The results are different in different settings. PCM

with 4 × 4 setting lies above 10−4 at 25 dB while MIMO only

requires around 19.5 dB to achieve the same outage probability

with same antenna settings. However, the performance of PCM

improves more than MIMO for increased number of antennas.

An interesting fact is shown by 4 × 7 and 7 × 4 curves. The

performances are overlapped for both settings where PCM

outperforms MIMO over the SNR range. It implies that PCM

achieves more improvement than MIMO by either increasing

transmit or receive antennas or both. In other words, PCM is

able to reduce the outage probability better than MIMO. Finally,

we can observe that 9×9 setting of PCM obtains the best result

where at 0 dB the probability is close to 10−2 while MIMO

requires around 4.8 dB to achieve the same probability.

Findings: 1) PCM’s outage probability increases dramati-

cally by increasing either number of transmit or receive antenna

or both. 2) PCM is superior to MIMO in high number of

antenna setting.

C. BER

We present the BER of PCM in Fig. 6 with different

configurations. The 3×5 and 5×3 4-PSK settings are overlapped

over the SNR range. Despite the difference of number of

transmit and receive antennas, same channel rank and PSK level

deliver identical results. On the other hand, different channel

rank with same PSK level shows distinct performance as shown

by 3×5 and 4×4 4-PSK. Different PSK level with same antenna

setting is also presented. Higher level causes poorer BER. We

can also observe that increasing channel rank gives worse BER

than increasing PSK level.

Findings: 1) The higher the channel rank or PSK level, the

poorer the performance. 2) Enhancing channel rank affects the

BER worse than increasing PSK level.

V. CONCLUSIONS AND FUTURE WORK

We propose a novel index modulation mechanism called

PCM by exploiting the spatial resource of MIMO. Capacity

expression is derived and compared with MIMO and mmWave

QSM. The results show PCM has better performance over

the compared techniques. We also define optimal water-filling

power allocation for PCM to obtain maximum achievable ca-

pacity. Comparison of performance with WF MIMO represents

that WF PCM outperforms WF MIMO. We also evaluate

our work by providing outage probability in comparison with

WF MIMO. PCM is able to reduce the outage probability

better than MIMO by increasing either transmit or receive

antennas or both. Finally, we discuss BER of PCM with various

antenna settings and modulation levels to analyze our detection

scheme. It indicates the increase of channel rank gives worse

performance than the increase of modulation level.

We will expand the advantages offered by PCM in future

works as well as analyze system complexity and further develop

a detection scheme that works in general, i.e., QAM.
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