
Correlation-Based Device Energy-Efficient Dynamic
Multi-Task Offloading for Mobile Edge Computing

Siqi Zhang, Na Yi and Yi Ma
Institute for Communication Systems, University of Surrey, UK, GU2 7XH

e-mails: {s.zhang, n.yi, y.ma}@surrey.ac.uk

Abstract—Task offloading to mobile edge computing (MEC)
has emerged as a key technology to alleviate the computation
workloads of mobile devices and decrease service latency for the
computation-intensive applications. Device battery consumption
is one of the limiting factors needs to be considered during
task offloading. In this paper, multi-task offloading strategies
have been investigated to improve device energy efficiency.
Correlations among tasks in time domain as well as task domain
are proposed to be employed to reduce the number of tasks to be
transmitted to MEC. Furthermore, a binary decision tree based
algorithm is investigated to jointly optimize the mobile device
clock frequency, transmission power, structure and number of
tasks to be transmitted. MATLAB based simulation is employed
to demonstrate the performance of our proposed algorithm. It
is observed that the proposed dynamic multi-task offloading
strategies can reduce the total energy consumption at device along
various transmit power versus noise power point compared with
the conventional one.

Index Terms—Task offloading, device energy efficiency, MEC,
correlation, task splitting.

I. INTRODUCTION

With the continuous development of mobile communication
technology and the rapid development of mobile Internet,
mobile terminals represented by smart phones, tablet comput-
ers, laptop, and smart assistants have been widely used. But
the mobile terminal receives limiting factors such as volume,
weight, performance, power, etc. Its working ability is still in a
serious and tedious state, which cannot meet the increasing de-
mand of people. Although the mobile terminal has made great
progress in hardware technology (for example, the continuous
replacement of CPU/GPU, the continuous improvement of
chip manufacturing process from 28nm to 14nm to the current
7nm, 5nm [1], etc.), but it is still far from what people need.
Moreover, with the emergence of new concepts such as au-
tonomous driving, telemedicine, and Industry 4.0 which need
ultra reliability, low latency [2], ordinary equipment is even
more unable to support their operations. Meanwhile, with the
emergence of machine learning, artificial intelligence and other
emerging technologies [3], the rapid development of image
recognition, speech recognition and other applications, virtual
reality and augmented reality game applications are emerging
in endlessly. The operation of these applications requires a
large amount of computing resources and storage resources,
and they are all computationally intensive applications at a
time. Due to the limitation of mobile terminals or some other
devices, when computationally intensive applications [3] are
running on smart terminals, the endurance of the terminal

and the performance of the application are very problematic.
How to solve this problem of resource limitation and energy
consumption has become a huge challenge today.

Most of the literature suggests to change the task allocation
method, transmission power, clock frequency to optimize the
task offloading algorithm. In [4]– [5], authors proposed task
splitting, which is a way to change the task structure to reduce
the latency and improve the local device energy efficiency.
However, they only split the task, but did not consider the
redundancy of sources. In this paper, we propose to split task
to the smallest executable task, named as unit, and then select
the unit by using the correlation between them. Furthermore,
both time and task domain correlation is considered in our
work to selected the necessary tasks to be processed.

II. PROBLEM FORMULATION AND SYSTEM MODELS

In this section, the definition of task and unit will be intro-
duced first to help to understand the proposed models. Both
task and unit are the process of collecting data, processing
data, and sending instructions, but unit is the smallest section
that can form a task, and unit cannot be divided anymore. That
means task can be composed of one or more units, and a task
can be split into one or more units.

Consider N devices (users), denoted by a set of N =
{1, 2,, N}, and device i has Mi tasks at the same time,
i ∈ N, denoted by a set of M = {M1,M2,,MN}, each
task in the Mi tasks is composed of Ms different unit, denoted
by a set of K = {kM1

, kM2
,, kMs

}and i ∈ N. After some
tasks are split, some identical units may be generated, so the
correlation of task domain came into being. In our work, it
is proposed to use the correlation between units to improve
the energy-efficient of local device and reduce the latency.
Moreover, it is assumed here that devices communicate with
MEC server orthogonally. The main target here is to improve
the energy efficiency of local devices when fulfil the extremely
severe latency requirements of each unit and each device.

The energy cost minimization problem is formulated as:

OPT − 1 min
A, F, P

n=N∑
n=1

ELn (1)

ar
X

iv
:2

11
0.

00
42

4v
1

 [
cs

.N
I]

 2
1

A
ug

 2
02

1

Subject to

C1 : LTmn,j ≤ Tn,j max, j ∈ A,n ∈ N
C2 : LT ln,k ≤ Tn,k max, k ∈ B,n ∈ N
C3 : LTn ≤ Tn max, n ∈ N
C4 : fn,l ≤ fn,l max, n ∈ N
C5 : ptn ≤ ptn max, n ∈ N

(2)

ELn represents the local energy consumption of user n,
LTmn,j represents the latency of unit j of user n processed
on MEC, LT ln,k represents the latency of unit k of user n
processed on local device, Tn,j max represents the latency
requirement of unit j, A represents the collection of all tasks
processed on the MEC, and B represents the collection of all
units processed on the local device, LTn represents the latency
of user n, Tn max represents the latency requirement of user
n, fn,l represents the computation capability of user n, such
as the number of CPU cycles per second, ptn represents the
transmission power of user n, and fn,l max, ptn max indicate
the maximum value of fn,l and ptn respectively.
F = {fn,l|n ∈ N}, P = {ptn|n ∈ N}, A = {An,j |n ∈

N, j ∈ M2}, C1 and C2 are to limit the latency of each task
to not exceed the requirements, C3 is to limit the user’s overall
latency does not exceed the requirements, C4 is to limit the
processing power of the local device not to exceed its maxi-
mum processing power, C5 is to limit the transmission power
of the local device not to exceed its maximum transmission
power.

A. Transmission Model

When the interference is not considered, the signal-to-noise
ratio (SNR) of user n is

SNRn =
ptnh

2
n,m

BwN0
(3)

and then, the transmission rate (uplink) of user n is calculated
as:

rn = Blog2(1 + SNRn). (4)

In (3) and (4), Bw represents the bandwidth of this channel,
hn,m represent the channel gain of user n to MEC, and
N0 represents the noise spectral density, ptn represents the
transmission power of user n. Because the amount of data
that needs to be offloaded is much larger than the amount of
data that needs to be downloaded, so the downlink is ignored
in this paper [6], [7].

B. Computation Model

Let wn,j represent the CPU cycle required to calculate the
unit (unit j of user n), dn,j represents the computation input
data (in bits) of the j th unit of n th user of local devices.

Local Computing: when user chooses to process locally,
use fn,l to represent the CPU clock speed of user’s device, so
the latency in local for computing can be represented as:

tln,j =
wn,j
fn,l

. (5)

where tln,j denotes the time required to complete unit j of
user n in local device.

The energy required to complete unit j in local device can
be expressed by the following formula

Eln,j = κwn,jf
2
n,l (6)

In this case, κ is the effective switched capacitance depending
on the chip architecture [8].

1) MEC Computing: when a user decides to offload tasks
to MEC, and transmit a unit through a wireless network, the
corresponding transmission latency and energy consumption
will be generated. According to the communication model,
the uplink transmission latency when user n offload the task
is:

ttn,j =
dn,j
rn

, (7)

and the energy required to transmit unit j can be expressed
by the following formula:

Etn,j = P tn,jt
t
n,j . (8)

where ttn,j represents the time required to transmit the j th
unit of n th user. After the computing unit is offloaded to the
MEC, the MEC will allocate certain computing resources to
this unit, considering that the computing resources allocated
by the MEC to each user are fixed. Let fMEC denote the
computing resources allocated by the MEC, and the latency
for the MEC to perform the j th unit of n th user is

tmn,j =
wn,j
fMEC

. (9)

Because MEC has a constant energy supply, MEC’s energy
consumption need not be considered in this paper.

In this paper, it is assumed that MEC can only process
one unit at the same time, communication capacity can only
support the transmission of a unit simultaneously, as shown
in Fig. 1 and Fig. 2. Blue blocks represent transmission
time, green ones represent computing time, black ones and
yellow ones represent queuing for transmission, and queuing
for computing respectively At the beginning of this section, it
is introduced that each user generates multiple tasks and then
they are split into multiple units, and needs to be processed.
However, due to channel and processor limitations, these units
cannot be processed at the same time. There are two definitions
of waiting time for the units which will be processed in local
and waiting time for the units which will be processed in
MEC. Suppose A is the set of units which will be processed
in MEC, and A={1,2, ...,a}, B is the set of units which will
be processed in local device, and B={1,2, ...,b},

Definition 1 (waiting time for the units which will be
processed in local): The sum of all time, before the unit is

Fig. 1. Tasks which are processed in MEC

Fig. 2. Tasks which are processed in local

processed by local device. Use WT ln,k to present the waiting
time of unit k of device n, which will be processed in local.

Definition 2 (waiting time for the units which will be
processed in MEC): The sum of all time, before the unit is
processed in MEC. Use WTmn,j to present the waiting time of
unit j of device n, which will be processed in MEC.

According to the Definition 2, waiting time for the units
which will be processed in MEC is divided into two parts,
time of waiting for transmission plus time of transmission
(WT3mn,j), and time before processing in MEC and after MEC
receives the unit(WT4mn,j), that means WTmn,j can be divided
into WT3mn,j +WT4mn,j .

Assume that unitj ∈ A
when j = 1

WT3mn,j = ttn,j , WT4mn,j = 0 (10)

when j > 1

WT3mn,j =WT3mn,j−1 + ttn,j

WT4mn,j = max(WT3mn,j , LT
m
n,j−1)−WT3mn,j

(11)

In (11) , max means the maximum value between these two
value.

WTmn,j =WT3mn,j +WT4mn,j

LTmn,j =WTn,j + tmn,j
(12)

LTmn,j means the latency of unitj , unitj ∈ A
Assume that unitk ∈ B

so, in this case

WT ln,k =

c=j−1∑
c=1

tln,c (13)

so that, the latency of unit k can be expressed as (unitk ∈ B):

LT ln,k =

c=k−1∑
c=1

tln,c + tln,k =

c=k∑
c=1

tln,c (14)

So the latency of the whole system of user n can be represent
as:

Tsn = max(LT ln,b, LT
m
n,a) (15)

Use ELn to represent the total energy consumption of local
device n:

ELn =

a=j∑
a=1

Etn,a +

b=k∑
b=1

Eln,b (16)

III. PROPOSED TASK OFFLOADING ALGORITHM

In this section, first, several preprocessing methods will be
proposed, and perform some operations before task offloading,
without affecting the reliability of the task, reduce the amount
of task calculation and transmission, and then introduce the
algorithm proposed for task offloading.

A. Correlation in Time Domain of Tasks

With the change of time, the task constantly updates its
own information source to process the task. In the traditional
task offloading, only consider how to change the task allo-
cation mode, the processing frequency, transmission power to
reduce latency and improve the energy-efficient, but in their
algorithm, the data size does not change, which to a large
extent, restricts the development of task offloading, this paper
provide a new way to filter some unnecessary information to
reduce the data size, so as to further reduce the latency and
energy consumption. Correlation coefficient is a good way to
be considered.

The correlation coefficient introduced in [9] is defined as:

r(x, y) ,
cov(x, y)√
var(x)var(y)

, r(x, y) ∈ [−1, 1]. (17)

In this formula, x, y are the sources of information which need
to be compared. Suppose there is a task, denoted as Task A,
and denote the names of Task A at different moments as
Task A1, Task A2, Task A3, Task A4 in the order of time,
A1 is the first and A4 is the last one, to reduce the number
of processing, correlation coefficient should be used between
them to decide whether to process these tasks, or process part
of them. There are two ways to use the correlation coefficient.

The first way, set only one threshold to decide whether
to process this task: set a threshold α, and then process the
Task A1, and then calculate then correlation coefficient of
Task A1 and Task A2. If the correlation coefficient between
them is greater than α, the Task A2 will not be processed, and
keep the Task A1 in memory, and the correlation coefficient
between Task A1 and Task A3 should be calculated, if it
is greater than the α, Task A3 will not be processed too,
and continue to calculate the correlation coefficient between
Taks A1 and Task A4, if not, Task A3 will be processed,
and keep Task A3 in memory, and then calculate the corre-
lation coefficient between Task A3 and Task A4, and repeat
with following Tasks.

The second way, set multi-threshold to decide how to
process this task: two thresholds as an example. First of all, set
two thresholds, α and β, and α > β, and process the first task.
When the correlation coefficient between two adjacent tasks
is greater than β and smaller than α, just need to process the
different part of this two tasks, when the correlation coefficient

Fig. 3. Binary Tree

between two tasks is smaller than β, it can be considered the
information of these two tasks are totally different, so, the new
task need to be processed, when the correlation coefficient
between two tasks is greater than α, it can be considered the
information of these two tasks are totally same, the new task
need not to be processed again

B. Correlation in Task Domain of Tasks

The correlation coefficient is considered in time domain,
so as to reduce the amount of data, then the next step is to
do the task splitting to get the units of these necessary task.
As said before, different tasks may split into the same unit, so
the correlation of task domain came into being. How to use
these correlation to further optimize the algorithm is the main
content of this part, and use Co,p to represent the correlation
between unit o and unit p. Co,p ∈ {0, 0.5, 1}. when Co,p = 0,
that means that there is no relationship between unit o and unit
p, both units need to be processed, when Co,p = 1, that means
unit o and unit p are total same, and only need to process one
of them and share the result, when Co,p = 0.5, that means
unit o and unit p are different units, but use the same source
information.

C. Units Allocation

After arranging units in the order required by the latency,
determine whether this unit needs to be assigned to the MEC
for processing from the first unit. At this time, the tree diagram
needs to be drawn, as shown in Fig. 3, use four units as an
example. Starting from the vertex first unit, there are two paths,
one (unit will be processed in MEC Server) and zero (unit will
be processed in local device). If the unit latency caused by
the path meets the requirements of this unit, this path will be
maintained and the next level of judgment will be made. If the
latency does not meet the requirements, then drop this path.
Until finish the last task, and judgment whether the system
latency is meet the requirement, if the answer is YES, keep
this node, if not, drop this node, then all the feasible solutions
can be obtained. Then, for getting the optimal solution, some
other optimization to transmission power and clock frequency
need to be done, and they will be introduced in the next few
parts. In the above situation, there is no correlation between
units, the next section will introduce the situation with there
are correlation between units. when Co,p = 1, the duplicate
units should be deleted, and then allocate the remaining units

in the same way as said before. when Co,p = 0.5, these
units with a correlation degree of 0.5 need to be merged,
that means merge them into a large task to carry out the
process of task allocation(this allocation process is same as
said before). If this large task is allocated to MEC server for
processing, it will reduce the latency and energy consumption
caused by communication, that because they use the same
source information. If this large task is allocated to local device
for processing, the energy consumption and the latency will
not change.

D. Clock Frequency Allocation

According to (6), if wn,j (the CPU cycle required to
calculate the unit) not change, the smaller the value of f tn,
the lower energy consumption will take.

E. Transmission Power Allocation

According to (3), (4), and (8) and use D to represent
the total transmission volume of all units that need to be
transmitted to MEC, so the energy consumed for transmission
becomes E1

E1 =
D

Bw
× logη2p

t
n (18)

η = 1+
ptnh

2
n,m

BwN0
. So, the monotonic interval of E1 with respect

to ptn, and take the ptnvalue that minimizes E1 under conditions
C1 to C5.

F. Algorithm Flow

Use the maximum ptn of the local device and maximum
f tn of local device to find all combinations that satisfy the
conditions of C1-C5, and record them as V , and then use the
algorithms proposed before find the smallest value of energy
consumption that can be achieved after optimization in V , take
the combination with the least energy consumption as the final
result. Therefore, the optimal clock frequency, transmission
power, and unit allocation method can be obtained.

IV. SIMULATION RESULTS

In this section, we evaluate our proposed task-offloading
algorithm with three state-of-the-art baselines through MAT-
LAB based simulations. It is considered in our simulation,
that system contains four users and a single MEC. Each user
has different number of tasks, and different type of task has
different size. Each user has its dedicated orthogonal channel
to communicate to MEC.

The channel bandwidth is set to 20MHZ, and the channel
conforms to the Rayleigh distribution. The SNR of the user
terminal is set to 10dB, 20dB, 30dB, 40dB and 50dB in our
simulations. The maximum computing rate in user’s device
is 2 × 109cycles/s [10], and the maximum computing rate in
MEC server is 20× 109cycles/s [10], the size of each task is
between 1-3M, and the number of processing revolutions they
require is Between 1500-4500 cycles [10], and κ = 10−11

[8]. There are two latency requirements, which are 50ms and
100ms.

(a) SNR=20,30dB

(b) SNR=40,50dB
Fig. 4. Energy consumption of five different algorithms

In the experiment, two proposed approaches simulated
with the other three baselines. Method 1 (Baseline 1): the
most primitive task offloading algorithm, without considering
any transmission power and other optimizations. Method 2
(Baseline 2): Further optimize the processing frequency and
transmission power based on the Method 1 [6]. Method 3
(Baseline 3): Based on Method 1 and Method 2, consider
the impact of split tasks on task offloading [4]. Method 4:
Consider the relevance of task on time domain to reduce the
amount of data. method 5: Base on Method 3, consider the
correlation in time domain and in different tasks to reduce the
amount of data.

The Fig. 4(a) Fig. 4(b) show the energy consumption of
the five different algorithms on the local device when the
SNR on the user terminal are 20dB, 30dB, 40dB and 50dB
respectively. In the same SNR, our proposed algorithms have
better performs Fig. 5 shows the probability of task failure
under different methods and SNR. From Fig. 4, and Fig.
5, with the same SNR, our proposed algorithms have better
performs in energy saving and reliability, and as the increase
of SNR, with the same method, the energy cost may increase
too, this is because we record that the energy consumption of
the failed tasks that can be known in the stage of decision
making is zero. The larger the SNR, the more tasks that can
be processed, so it will also cause more energy consumption.

V. CONCLUSION

In this paper, it was studied how to improve the energy
efficiency of local devices and reduce the latency in the process

Fig. 5. Probability of task processing failure under different methods and
SNR

of task offloading. A novel task offloading algorithm has been
proposed with the consideration of task correlation in both
time domain and task domain to reduce the number of tasks to
be transmitted. Moreover, a joint optimization has been studied
for task allocation, transmission power and clock frequency.
MATLAB based simulation results have demonstrated that
the proposed task offloading algorithm can reduce the device
energy consumption along various transmit power versus noise
variance setup compare with the conventional one.

ACKNOWLEDGMENT

The work was supported in part by European Com- mission
under the framework of the Horizon2020 5G-Drive project,
and in part by 5G Innovation Centre (5GIC) HEFEC grant.

REFERENCES

[1] K. Choi et al., “Enhanced reliability of 7nm process technology featuring
euv,” in Proc. 2019 Symposium on VLSI Technology, 2019, pp. T16–T17.

[2] S. Wang, M. Zafer, and K. K. Leung, “Online placement of multi-
component applications in edge computing environments,” IEEE Access,
vol. 5, pp. 2514–2533, Feb. 2017.

[3] L. K. Nandhini and S. Udhayakumar, “Service offloading of compu-
tationally intensive processes using hadoop image processing interface
in private cloud,” in Proc. 8th International Conference on Advanced
Computing (ICoAC), 2017, pp. 201–205.

[4] J. Liu and Q. Zhang, “Offloading schemes in mobile edge computing
for ultra-reliable low latency communications,” IEEE Access, vol. 6, pp.
12 825–12 837, Feb. 2018.

[5] C. Liu et al., “Dynamic task offloading and resource allocation for ultra-
reliable low-latency edge computing,” IEEE Trans. Commun., vol. 67,
no. 6, pp. 4132–4150, Feb. 2019.

[6] S. Guo et al., “Energy-efficient dynamic offloading and resource schedul-
ing in mobile cloud computing,” in Proc. IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communica-
tions, 2016, pp. 1–9.

[7] K. Zhang et al., “Energy-efficient offloading for mobile edge computing
in 5G heterogeneous networks,” IEEE Access, vol. 4, pp. 5896–5907,
Aug. 2016.

[8] A. P. Miettinen and J. K. Nurminen, “Energy efficiency of mobile clients
in cloud computing,” HotCloud, vol. 10, no. 4-4, p. 19, Jun. 2010.

[9] K. M. Bisheh, B. Zakeri, and S. M. H. Andargoli, “Correlation coeffi-
cient estimation for stochastic FDTD method,” in Proc. 7th International
Symposium on Telecommunications (IST), 2014, pp. 234–238.

[10] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, Apr. 2017.

	I Introduction
	II Problem Formulation and System Models
	II-A Transmission Model
	II-B Computation Model
	II-B1 MEC Computing

	III Proposed task offloading algorithm
	III-A Correlation in Time Domain of Tasks
	III-B Correlation in Task Domain of Tasks
	III-C Units Allocation
	III-D Clock Frequency Allocation
	III-E Transmission Power Allocation
	III-F Algorithm Flow

	IV Simulation results
	V Conclusion
	References

