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Abstract-Modem vehicles become increasingly digital­
ized with advanced information technology-based solutions 
like advanced driving assistance systems and vehicle-to-x 
communications. These systems are complex and intercon­
nected. Rising complexity and increasing outside exposure 
has created a steadily rising demand for more cyber-secure 
systems. Thus, also standardization bodies and regulators 
issued standards and regulations to prescribe more secure 
development processes. This security, however, also has to 
be validated and verified. In order to keep pace with the need 
for more thorough, quicker and comparable testing, today's 
generally manual testing processes have to be structured 
and optimized. Based on existing and emerging standards 
for cybersecurity engineering, this paper therefore outlines 
a structured testing process for verifying and validating 
automotive cybersecurity, for which there is no standardized 
method so far. Despite presenting a commonly structured 
framework, the process is flexible in order to allow imple­
menters to utilize their own, accustomed toolsets. 

Index Terms-Security, Cybersecurity, Testing, Automotive, 
Validation, Verification, Process 

1. INTRODUCTION

The rising complexity of modern automotive systems 
make it increasingly difficult to assure their cyberse­
curity. This is especially true due to the utilization of 
advanced driving assistance systems (ADAS) and au­
tonomous driving (AD) and the exposure to the outside 
by to vehicle-to-x (V2X) functions. This usage of new 
technology is likely to accelerate even more; also market­
leading manufacturers are beginning to equip their most­
selling model with V2X off-the-shelf [1]. These devel­
opments facilitate cybersecurity incidents (e.g. [2], [3]). 
Furthermore, an exponential rise of events and an accel­
eratingly adverse ratio between criminal activities versus 
benevolent security research results can be observed 
[4]. This has also been recognized by standardization 
bodies - currently, the most important standardization 

effort is ISO/SAE DIS 21434 [5]. Also, regulators be­
gin to take cybersecurity considerations into account; 
the most prominent example being a recent regulation 
by the United Nations [6]. The rising incidents and 
the regulators' requirements demand a substantially 
higher amount of cybersecurity engineering and testing 
of automotive systems. This also creates the need for 
higher efficiency which makes a standardized method 
of automotive cybersecurity testing necessary. Currently, 
automotive cybersecurity testing is mostly not holistic, 
unstructured, non-reproducible and more art than crafts. 
An approach to giving a standardized and industrial­
grade testing process is therefore necessary to cope 
with these upcoming challenges and will also be a 
prerequisite to automate steps of testing in this domain. 
This paper therefore presents an approach to such a 
standardized testing process. 

This paper structures as follows: Section II contains 
related work, Section III definitions, while Section IV 
describes some process-intemal relations. Section V de­
scribes the proposed automotive security testing process 
and, finally, Section VI concludes this paper. 

II. RELATED WORK

The importance of creating generic testing frameworks 
or security testbeds to conduct automated security tests 
in automotive has already been highlighted in the past. 
More specifically, fuzz testing methods in accordance 
to industry-specific technologies such as the Controller 
Area Network (CAN bus) and the vehicle's electronic 
control unit (ECU) [7], [8], [9], [10] have been created. 

Similarly, there are frameworks that address system­
atic methods of security testing for automotive Blue­
tooth, Vehicular Ad Hoc Networks (VANETS) in Intelli­
gent Transportation Systems (ITS) and road services [11], 
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[12], [13]. Finally there are integrated security testing 
frameworks that improve the standardized methods [9], 
[14], [15], [16], [17]. All of these works, however, do 
not encompass a defined process for automated security 
testing of complete automotive systems in a holistic 
manner. This work therefore complements the standards 
with a structured testing approach and underpins the 
technical testing solutions with a structured workflow 
method. As the upcoming ISO/SAE 21434 [5] is regarded 
to become the most important guideline, the process 
aligns to it (see V). There is a supplement to the ISO 
standard regarding testing (ISO/WO PAS 5112), which, 
however, is in a larval state. 

III. DEFINITIONS 

Testing in the context of this paper means verification 
and validation in the sense of ISO/SAE DIS 21434 (Sec­
tions 10.4.2 and 11) [5]. An Item, according to the ISO 
standard mentioned above, is a system or combination 
thereof to implement a function at the vehicle level. In 
the sense of this process, an item is understood as a 
technical concept that defines such a system. A security 
goal is a desired, security-related property of an item, 
which is analyzed for threats and risks that lead to security 
requirements that are collected in a security concept. A 
System-under-test (SUT) is a concrete technology unit, 
e.g. a vehicle, a single Electronic Control Unit (ECU) 
or a software, that concretely instantiates an item that 
is an examination subject in this process. Therefore, an 
item can address multiple SUTs(e.g. different cars of the 
same type). A fest system is the active unit that carries 
out the test on an SUT. The proprietor of an SUT or 
item, respectively, is an item owner. The user of a test 
system is a fest operator. The compound of SUTs and 
test system(s) including interfaces and surroundings (e.g. 
an automotive testbed) constitute a fest environment. Test 
scenarios in the context of this paper are abstract test 
descriptions that define what to test by which means, 
consisting of fest patterns as their atomic elements that 
describe single scenario stages. They are derived from 
a security analysis and requirements definition of the 
respective item. Test cases are the concretization of sce­
narios for a specific SUT, consisting of fest scripts, which 
are executable tests that run on a test system and target 
an item. 

IV. RELATION BETWEEN TEST SCENARIOS AND TEST 
CASES 

The reason to provide abstract test descriptions, that 
preempt some test case generation (tcg) operations, is 
portability to other items. Although test scenarios derive 
from threat assessments, they are described generic, con­
veniently in a domain specific language (DSL - e.g. [18]). 
Test patterns are, consequently, generic means to test a 
part of the system - e.g. sending a CAN message with a 
break signal (e.g. SEND CAN_MSG()) - that constitute 

a scenario. These means concretized with test scripts 
(attack steps - e.g . ./ cansend canO 7df#02010d) that even­
tually form test cases (concretizations of test scenarios -
see Sections V-E and V-F). The difference is that scenarios 
and pattems only generically describe what to do, while 
the cases and scripts are concrete elaborations how to do 
it. The test cases therefore augment scenarios during the 
tcg with information (e.g. CAN messages) from a specific 
SUT in order to test it. The purpose of the test cases 
is to allow for automated testing using an appropriate 
framework. Figure 1 illustrates the coherence between 
the test scenarios with their pattems and the cases with 
their scripts: scenarios consist of abstract pattems and 
cases consist of concrete scripts. 

Figure 1. Relation between generic test scenarios/patterns and con­
crete test cases / scripts 

V. AUTOMOTIVE SECURITY PROCESS 

This section outlines the security testing process which 
consists of the following activities: 

1) Define Item; 
2) Perform Risk and Threat Analysis; 
3) Define Security Concept (testing requirements); 
4) Plan Test and Develop Scenarios; 

a) Define Penetration Test Scenarios; 
b) Define Functional and Interface Test Scenarios; 
c) Define Fuzz Testing Scenarios; 
d) Define Vulnerability Scanning Scenarios; 

5) Select Test Scripts; 

a) Develop Test Scripts; 
b) Validate Test Scripts; 

6) Generate Test Cases; 
7) Perform Test; 

a) Prepare Test Environment; 
b) Execute Test Cases 

8) Generate Test Reports. 

The process is based on the security testing sections 
of ISO/SAE (DIS) 21434 [5]. The first three activities 
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requirements are the input for the test planning, as they 
should be verified with regard to the consistency with 
the security goals and the item's functionality [5]. The 
following steps derive such requirements [25] 

1) Collect the results from the threat analysis; 
2) Define threat countermeasures; 
3) Map the resulting threats to countermeasures. 

This method allows for using different attack mitigation 
techniques as building blocks that can later be referred 
by multiple requirements. The security requirements de­
rive the relevant scenarios for the tests and give direction 
on what needs to be tested. 

D. Plan Test and Develop Scenarios 

A security test plan should organize the security test-
ing process and contain the following elements [26]: 

• Purpose/Objectives; 
• SuT overview and Test scope; 
• Risk analysis; 
• Test strategy and requirements; 
• Test environment (Hardware- or Software-in-the­

Loop, actual vehicle, etc.); 
• Test case specifications; 
• Test execution and termination criteria. 

This also corresponds to a verification and a validation 
specification according to ISO/SAE DIS 21434 (10.5 and 
11.5, respectively) [5]. The output of this activity is a set 
of defined test scenarios which, dependent on the risk 
level and attack feasibility, apply different techniques. 
Test scenarios are between system requirements and test 
cases [27] and are abstract test descriptions (consisting 
of test patterns) that define which vulnerabilities and 
requirements are specifically tested with which meth­
ods. Testing methods, based on the identified risks and 
threats, are [5]: 

• Functional testing 
• Interface testing 
• Static code analysis; 
• Penetration testing; 
• Vulnerability scanning; 
• Fuzz testing. 

A Test pattern is the generic description of a single 
step inside a test (normally an action during an attack) 
including potentially used tools, but not specific to an 
SuT. These methods should be made concrete with test 
scripts (containing e.g. an exploit) that eventually form 
test cases (see Section IV for the coherence between test 
scenarios and test cases). Scenarios are derived by re­
quirements analysis, equivalences classes, boundary val­
ues analysis and error guessing [5].Furthermore, attack 
patterns are derived from generalizing existing attacks 
that may be derived from open databases (for well­
known attacks) or intrusion detection signatures as well 
as actual attack analyses. For an automated test system 
implementing the process, the availability of attacks for 

the derived models ( or constituting components, respec­
tively) determines the used test patterns and, thus, the 
test plan, including the test methods. 

1) Define Penetration Test Scenarios: Penetration testing 
is the legal and authorized process of exploiting systems 
in order to retrieve information which is important 
for enhancing security of the system. Penetration tests 
focus on specific aspects of security and are deployed 
manually or semi-automatic. To extend the capabilities, 
global-based adversarial activities must be deployed to 
maintain a holistic view of the system and deploy se­
curity tests from the adversary's perspective. The above 
methods are called red team assessments which usually 
include penetration tests; however, such methods extend 
the whole process [28]. A successful penetration testing 
methodology will discover functional weaknesses, de­
sign flaws and provide recommendations for security 
improvement [29]. To deploy penetration test scenarios, 
the scope and the context for deployment of appropriate 
attack strategies with respect to the system's potential 
weaknesses must be defined. In penetration testing, it is 
possible to attack vehicles without in-depth knowledge 
(black box) or from the inside (white box - meaning that 
some or full information is available to the red team). 
The process suggests cyber kill chain [30] and attack trees 
[31], where the latter approach allows for automated 
decision making for generating attack vectors. 

2) Define Functional and Interface Security Testing Sce­
narios: Functional tests assess the system's adherence to 
its functional requirements (correctness)and take place 
throughout the whole process and at different levels of 
abstraction. Testing security functions focuses on test­
ing the security requirements. Typical security require­
ments may include specific elements of confidentiality, 
integrity, authentication, availability, authorization and 
non-repudiation. There are two possibilities of formulat­
ing security requirements: 1. positive requirements and 
2. negative requirements. Positive formulated require­
ments describe how a security function should work. 
Negative requirements state behaviour that the soft­
ware should not exhibit. The mapping of requirements 
to specific software artifacts could be problematic for 
such requirements, since this kind of requirement is 
not implemented in a specific place[26]. When negative 
requirements are tested, security testers look for common 
mistakes and test assumed weaknesses in the applica­
tion. The emphasis is on finding vulnerabilities, often 
by executing misuse tests. To derive the test cases, the 
following steps need to be carried out: 

1) Identify functions expected to perform. 
2) Create test cases based on the function methods. 
3) Determine the output based on the function speci­

fications. 

3) Define Fuzzing Scenarios: Fuzzing is a technique 
to use random input in order to put an SUT into a 
non-intended state to uncover errors, which could be 



more efficient than structured testing [32]. However, 
randomness of fuzz testing does not have to be complete 
but adapted to an SUT using passive listening [33]. A 
fuzzer consists of a generator (combining valid and ran­
dom parts), a delivery mechanism, a monitoring system 
and a test oracle [34]. The oracle, that determines the 
test result (i. e. pass/fail), is obtained by monitoring 
communications or using specific protocols (like XCP) 
as well [35]. Using fuzzing techniques, it is possible 
to attack automobiles without any in-depth knowledge 
[36]. In principle, any component that shows an external 
interface can be fuzzed. 

Fuzz testing can [37]: 

• be used to reverse engineer vehicle messages; 
• be used to disrupt vehicle' s communication net­

work; 
• be a form of cyber attack; 
• lead to vehicle component damage. 

For a significantly large test space, fuzzing should be 
combined with combinatorics to select test cases and be 
run in parallel as long as a test series runs and the space 
is not covered. 

4) Vulnerability Scanning Scenarios: Vulnerability scan­
ning uses tools, called vulnerability scanners, that com­
pare a vulnerability database with the information ob­
tained from a network scan to find possible vulnerabili­
ties in the network [38]. 

A scanner typically enumerates known software vul­
nerabilities and provide a comprehensive baseline of 
existing vulnerabilities. To perform effective vulnerabil­
ity scanning, the tools should be selected based on the 
scanning scope. This scope is needed to define and create 
the vulnerability scanning scenarios. A typical scenario 
for using vulnerability scanning is: 

• Define which system to scan (i.e. the SUT or com-
ponents thereof); 

• Define the tool that should be used for the scanning; 
• Perform the scan; 
• Analyze the resulting report (i.e. identify relevant 

vulnerabilities); 
• Specify further analysis/testing tasks. 

For automation, the results (in machine readable form) 
serve as an input for other scenarios. 

E. Select Test Scripts 

This section concerns the transition of generic test 
descriptions (from the test scenarios) addressing vulner­
abilities (found in the threat assessment) into concrete 
test scripts to be executed onto a specific SUT. Test scripts 
are selected from a database, if available, or otherwise 
developed. 

1) Develop Test Scripts: The purpose of this activity, in 
general, is to populate a test script database with relevant 
tests, particularly attacks. The scripts correspond to the 
plan and implement defined test patterns. This activity 

is optional and carried out if no appropriate test script is 
present beforehand. The scripts are concrete implemen­
tations of test patterns, making use of the tools outlined 
in the scenario description targeting towards a specific 
SUT. A test script is an executable script that contains: 

• The testing tool(s) to be used (parameters, interfaces, 
oracle may be derived from the test scenario; 

• Needed parameters and information specific to the 
SUT; 

• Specifics of the test system (e.g. using Linux, avail-
ability of a certain compiler/interpreter, etc.). 

Similar to test scenarios, attack scripts are derived from 
open sources by observing actual attacks. Test scripts are 
created by analysing an SUT or they are derived from 
various structured approaches like attack trees [39]. To 
ensure that the case generation step (Section V-F) can re­
use scripts from the database, the current step should: 

1) Either match an existing script; 
2) Or develop a test script to the specifications of the 

test scenario. 

In the latter case, extensive technical knowledge about 
the SUT or further specifics might be needed (e.g., an 
interpretation file for particular CAN messages). 

2) Validate Test Scripts: This optional activity applies 
to newly developed test scripts to validate them before 
actual tests. New test scripts are tried out on simulated 
or actual SUTs in a simulated or actual test environment. 
Expected outcomes (derived from the test oracle) are 
compared to actually acquired results. SUTs should be 
chosen in a way that both positive and negative results 
can be obtained in specific well-defined conditions. In 
order to validate a test script, the environment should 
fulfill any prerequisite set in the test script (similar to an 
actual test). Similar to test cases, the validation of the test 
script should contain different SUTs or configurations 
thereof that include: 

1) an SUT configuration with a successful attack (pos­
itive validation); 

2) an SUT configuration with an unsuccessful attack 
(negative validation); 

3) several edge cases. 

The validation test coverage should be comparable to 
coverages in actual tests (see Section V-F). 

F. Generate Test Cases 

A test case includes multiple items from this non­
exhaustive list derived and extended from [40], [41], [42]: 

• Test purpose and objectives; 
• SUT /Function description (including 

software /hardware / firmware configurations ); 
• Environmental needs including dependencies; 
• Procedural requirements, test setup and condition; 
• Test activities and input data; 
• Expected results, completion, stopping and resump­

tion criteria (Pass/Fail criteria including metrics); 



• Traceability to related requirements and threats; 
• Variability and quality attributes. 

In the context of this process, the test case generation 
(tcg) is the fusion of a generic test scenario (Section 
V-D) and the test scripts (Section V-E) that are specific to 
a distinct SUT. Augmenting the scenarios with specific 
information from an SUT database translates the test 
scenarios into executable test cases. With both parts 
available in machine-readable form, this activity is easy 
to automate. Combinatorial testing [43] allows for an 
efficient coverage/ effort ratio. The tcg can re-use the 
threat modelling outcomes in conjunction with a test 
script database, giving the opportunity of automating 
the process using a framework (e.g. [44]) If a clear model 
is lacking completely, test coverage is most important. 

G. Perform Testing 

To execute the test, a test environment shall be estab­
lished using an description from the scenarios. The envi­
ronment description contains all required prerequisites, 
while the test cases contain the performed operations 

1) Prepare Test Environment: Two inputs are needed to 
prepare a test environment: (a) an environment config­
uration and (b) interface descriptions. The resulting test 
environment template is then used to execute tests. A 
configuration consists primarily of the system under test 
(SUT) and applicable test categories, including system 
and service preconditions. Interface descriptions contain 
their stimulation and provisions, as well as verification 
procedures for their claimed properties. For automation, 
they are organized in an object-oriented, serializable 
manner. The resulting combination of the environment 
and the interface description form a test environment 
template to applied with different test cases from diverse 
categories, ideally in a microservices-based, container­
ized style. This activity also includes saving a pre-attack 
state of the SUT and a clean-up procedure after the 
conducted test (e.g. if a test involves flashing ECUs). 

2) Execute Test Cases: Each test case consists of a 
sequence of test scripts (as minimum verifiable actions 
- MVAs) that can be combined to form more complex 
sequences. Resulting sequences can be combined again. 
The combinations can also contain permutations and re­
organizations of scripts. For automation, final commands 
take a shell-executable form. Test cases create specific 
outputs on defined interfaces. This output is consumed 
by an interface module that transforms the output into 
a correct call for the associated physical interface and 
the retumed response. A completed test case output is 
subsequently converted into a standardized test result. 
Test results are stored and used as input for other test 
cases, further analysis, and reporting (see V-H), includ­
ing relevant meta data in a standardized format. 

H. Generate Test Report 

A test report is a presentation of the combined results 
of the process, it should contain: 

• A management summary; 
• An SUT description; 
• start time and duration; 
• An aggregated overview (dashboard); 
• The approach/method used; 
• Findings (passed and failed tests); 

For the executed tests, pass and fail information (and in 
case of failed tests: sufficient information to understand 
the problem) must be given. In both cases, reference links 
to goals, requirements, used tools, the raw data, the test 
results (including risk levels and severity categorization 
and conflicts with regulations, policies or best practices) 
and information about aspects that were not tested (not 
planned, technical problems, lack of time, funds or tools, 
etc.) need to be included. The testing report should 
also correspond to a verification and a validation report 
according to ISO/SAE DIS 21434 (10.5 and 11.5) [5]. 

VI. CONCL US ION AND ÜUTLOOK 

This paper outlined a process for testing the cyber­
security of (particularly automotive) systems to fill the 
gap between existing standards for automotive security 
engineering and their hands-on, actual-system testing. 
The process provides a comprehensive, automatable ap­
proach for system testing based on ISO/SAE DIS 21343. 
Due to rising complexity and regulators' requirements 
this is necessary as it facilitates a conceivable need 
for industrializing automotive cybersecurity testing. The 
process itself is arranged generically in order to allow 
for using already existing procedures (e.g. a present 
risk assessment process) not mandating any specific 
method. Future work will therefore involve a reference 
implementation on both processual and technical level. 
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