
A Process to Facilitate Automated Automotive
Cybersecurity Testing

Stefan Marksteiner
AVL List

Email: stefan.marksteiner@avl.com

Nadja Marko
Virtual Vehicle Resarch

Email: nadja.marko@v2c2.at

Andre Smulders
TNO

Email: andre.smulders@tno.nl

Stelios Karagiannis
Beyond Vision

Florian Stahl Hayk Hamazaryan

Email: stelios.karagiannis@beyond-vision.pt
AVL Software & Functions

Email: florian.stahl@avl.com

ZF Friedrichshafen

Email: hayk.hamazaryan@zf.com

Rupert Schlick
Austrian Institute of Technology
Email: rupert.schlick@ait.ac.at

Stefan Kraxberger
Seclnto

Alexandr Vasenev
Joint Innovation Centre ESI (TNO)

Email: alexandr.vasenev@tno.nl Email: stefan.kraxberger@secinto.com

Abstract-Modem vehicles become increasingly digital­
ized with advanced information technology-based solutions
like advanced driving assistance systems and vehicle-to-x
communications. These systems are complex and intercon­
nected. Rising complexity and increasing outside exposure
has created a steadily rising demand for more cyber-secure
systems. Thus, also standardization bodies and regulators
issued standards and regulations to prescribe more secure
development processes. This security, however, also has to
be validated and verified. In order to keep pace with the need
for more thorough, quicker and comparable testing, today's
generally manual testing processes have to be structured
and optimized. Based on existing and emerging standards
for cybersecurity engineering, this paper therefore outlines
a structured testing process for verifying and validating
automotive cybersecurity, for which there is no standardized
method so far. Despite presenting a commonly structured
framework, the process is flexible in order to allow imple­
menters to utilize their own, accustomed toolsets.

Index Terms-Security, Cybersecurity, Testing, Automotive,
Validation, Verification, Process

1. INTRODUCTION

The rising complexity of modern automotive systems
make it increasingly difficult to assure their cyberse­
curity. This is especially true due to the utilization of
advanced driving assistance systems (ADAS) and au­
tonomous driving (AD) and the exposure to the outside
by to vehicle-to-x (V2X) functions. This usage of new
technology is likely to accelerate even more; also market­
leading manufacturers are beginning to equip their most­
selling model with V2X off-the-shelf [1]. These devel­
opments facilitate cybersecurity incidents (e.g. [2], [3]).
Furthermore, an exponential rise of events and an accel­
eratingly adverse ratio between criminal activities versus
benevolent security research results can be observed
[4]. This has also been recognized by standardization
bodies - currently, the most important standardization

effort is ISO/SAE DIS 21434 [5]. Also, regulators be­
gin to take cybersecurity considerations into account;
the most prominent example being a recent regulation
by the United Nations [6]. The rising incidents and
the regulators' requirements demand a substantially
higher amount of cybersecurity engineering and testing
of automotive systems. This also creates the need for
higher efficiency which makes a standardized method
of automotive cybersecurity testing necessary. Currently,
automotive cybersecurity testing is mostly not holistic,
unstructured, non-reproducible and more art than crafts.
An approach to giving a standardized and industrial­
grade testing process is therefore necessary to cope
with these upcoming challenges and will also be a
prerequisite to automate steps of testing in this domain.
This paper therefore presents an approach to such a
standardized testing process.

This paper structures as follows: Section II contains
related work, Section III definitions, while Section IV
describes some process-intemal relations. Section V de­
scribes the proposed automotive security testing process
and, finally, Section VI concludes this paper.

II. RELATED WORK

The importance of creating generic testing frameworks
or security testbeds to conduct automated security tests
in automotive has already been highlighted in the past.
More specifically, fuzz testing methods in accordance
to industry-specific technologies such as the Controller
Area Network (CAN bus) and the vehicle's electronic
control unit (ECU) [7], [8], [9], [10] have been created.

Similarly, there are frameworks that address system­
atic methods of security testing for automotive Blue­
tooth, Vehicular Ad Hoc Networks (VANETS) in Intelli­
gent Transportation Systems (ITS) and road services [11],

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional
purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

[12], [13]. Finally there are integrated security testing
frameworks that improve the standardized methods [9],
[14], [15], [16], [17]. All of these works, however, do
not encompass a defined process for automated security
testing of complete automotive systems in a holistic
manner. This work therefore complements the standards
with a structured testing approach and underpins the
technical testing solutions with a structured workflow
method. As the upcoming ISO/SAE 21434 [5] is regarded
to become the most important guideline, the process
aligns to it (see V). There is a supplement to the ISO
standard regarding testing (ISO/WO PAS 5112), which,
however, is in a larval state.

III. DEFINITIONS

Testing in the context of this paper means verification
and validation in the sense of ISO/SAE DIS 21434 (Sec­
tions 10.4.2 and 11) [5]. An Item, according to the ISO
standard mentioned above, is a system or combination
thereof to implement a function at the vehicle level. In
the sense of this process, an item is understood as a
technical concept that defines such a system. A security
goal is a desired, security-related property of an item,
which is analyzed for threats and risks that lead to security
requirements that are collected in a security concept. A
System-under-test (SUT) is a concrete technology unit,
e.g. a vehicle, a single Electronic Control Unit (ECU)
or a software, that concretely instantiates an item that
is an examination subject in this process. Therefore, an
item can address multiple SUTs(e.g. different cars of the
same type). A fest system is the active unit that carries
out the test on an SUT. The proprietor of an SUT or
item, respectively, is an item owner. The user of a test
system is a fest operator. The compound of SUTs and
test system(s) including interfaces and surroundings (e.g.
an automotive testbed) constitute a fest environment. Test
scenarios in the context of this paper are abstract test
descriptions that define what to test by which means,
consisting of fest patterns as their atomic elements that
describe single scenario stages. They are derived from
a security analysis and requirements definition of the
respective item. Test cases are the concretization of sce­
narios for a specific SUT, consisting of fest scripts, which
are executable tests that run on a test system and target
an item.

IV. RELATION BETWEEN TEST SCENARIOS AND TEST
CASES

The reason to provide abstract test descriptions, that
preempt some test case generation (tcg) operations, is
portability to other items. Although test scenarios derive
from threat assessments, they are described generic, con­
veniently in a domain specific language (DSL - e.g. [18]).
Test patterns are, consequently, generic means to test a
part of the system - e.g. sending a CAN message with a
break signal (e.g. SEND CAN_MSG()) - that constitute

a scenario. These means concretized with test scripts
(attack steps - e.g . ./ cansend canO 7df#02010d) that even­
tually form test cases (concretizations of test scenarios -
see Sections V-E and V-F). The difference is that scenarios
and pattems only generically describe what to do, while
the cases and scripts are concrete elaborations how to do
it. The test cases therefore augment scenarios during the
tcg with information (e.g. CAN messages) from a specific
SUT in order to test it. The purpose of the test cases
is to allow for automated testing using an appropriate
framework. Figure 1 illustrates the coherence between
the test scenarios with their pattems and the cases with
their scripts: scenarios consist of abstract pattems and
cases consist of concrete scripts.

Figure 1. Relation between generic test scenarios/patterns and con­
crete test cases / scripts

V. AUTOMOTIVE SECURITY PROCESS

This section outlines the security testing process which
consists of the following activities:

1) Define Item;
2) Perform Risk and Threat Analysis;
3) Define Security Concept (testing requirements);
4) Plan Test and Develop Scenarios;

a) Define Penetration Test Scenarios;
b) Define Functional and Interface Test Scenarios;
c) Define Fuzz Testing Scenarios;
d) Define Vulnerability Scanning Scenarios;

5) Select Test Scripts;

a) Develop Test Scripts;
b) Validate Test Scripts;

6) Generate Test Cases;
7) Perform Test;

a) Prepare Test Environment;
b) Execute Test Cases

8) Generate Test Reports.

The process is based on the security testing sections
of ISO/SAE (DIS) 21434 [5]. The first three activities

7. Perform Test

5. Select test scripts

Start

1. Define item 2. Perform Risk and
Threat Analysis

3. Define security
concept

4. Plan test and develop scenarios

5a. Develop test
scr ipts

6. Generate test
cases

7b.Execute Test
Cases

8. Generate test
report

4a. Define
Penetration test

scenarios

4b. Define functional
and interface test

scenarios

4c. Define fuzz
testing scenarios

4d. Define
vulnerability

scanning scenarios

Known
Threats

Test

scripts

Test

sce nario s

Test

rep orts

End

Test

cases

5b. Validate test
scr ipts

7a. Prepare test
environment

Vu lnerabili ties

Test Results (RAW)

SUT Database

Test scripts

Test results

Test results

Fe atures,
pre limin ary

architecture o f
SUT

threats, Risk
me tric

security
req uirem ents

threats,
risk metric

test
scenarios

Test reports

item de finitio n, security
go als

test
scenarios

SUT-spe cific informatio n

exe cutable te st
cases

test
results

test
scripts

val idatio n
result

interface dete rmin ation ,
cal ibrati on

Test scripts

Test scripts

Test cases

Test cases en vironm ent
descript ion

fou nd
vul nerab il i tie s

requirements are the input for the test planning, as they
should be verified with regard to the consistency with
the security goals and the item's functionality [5]. The
following steps derive such requirements [25]

1) Collect the results from the threat analysis;
2) Define threat countermeasures;
3) Map the resulting threats to countermeasures.

This method allows for using different attack mitigation
techniques as building blocks that can later be referred
by multiple requirements. The security requirements de­
rive the relevant scenarios for the tests and give direction
on what needs to be tested.

D. Plan Test and Develop Scenarios

A security test plan should organize the security test-
ing process and contain the following elements [26]:

• Purpose/Objectives;
• SuT overview and Test scope;
• Risk analysis;
• Test strategy and requirements;
• Test environment (Hardware- or Software-in-the­

Loop, actual vehicle, etc.);
• Test case specifications;
• Test execution and termination criteria.

This also corresponds to a verification and a validation
specification according to ISO/SAE DIS 21434 (10.5 and
11.5, respectively) [5]. The output of this activity is a set
of defined test scenarios which, dependent on the risk
level and attack feasibility, apply different techniques.
Test scenarios are between system requirements and test
cases [27] and are abstract test descriptions (consisting
of test patterns) that define which vulnerabilities and
requirements are specifically tested with which meth­
ods. Testing methods, based on the identified risks and
threats, are [5]:

• Functional testing
• Interface testing
• Static code analysis;
• Penetration testing;
• Vulnerability scanning;
• Fuzz testing.

A Test pattern is the generic description of a single
step inside a test (normally an action during an attack)
including potentially used tools, but not specific to an
SuT. These methods should be made concrete with test
scripts (containing e.g. an exploit) that eventually form
test cases (see Section IV for the coherence between test
scenarios and test cases). Scenarios are derived by re­
quirements analysis, equivalences classes, boundary val­
ues analysis and error guessing [5].Furthermore, attack
patterns are derived from generalizing existing attacks
that may be derived from open databases (for well­
known attacks) or intrusion detection signatures as well
as actual attack analyses. For an automated test system
implementing the process, the availability of attacks for

the derived models (or constituting components, respec­
tively) determines the used test patterns and, thus, the
test plan, including the test methods.

1) Define Penetration Test Scenarios: Penetration testing
is the legal and authorized process of exploiting systems
in order to retrieve information which is important
for enhancing security of the system. Penetration tests
focus on specific aspects of security and are deployed
manually or semi-automatic. To extend the capabilities,
global-based adversarial activities must be deployed to
maintain a holistic view of the system and deploy se­
curity tests from the adversary's perspective. The above
methods are called red team assessments which usually
include penetration tests; however, such methods extend
the whole process [28]. A successful penetration testing
methodology will discover functional weaknesses, de­
sign flaws and provide recommendations for security
improvement [29]. To deploy penetration test scenarios,
the scope and the context for deployment of appropriate
attack strategies with respect to the system's potential
weaknesses must be defined. In penetration testing, it is
possible to attack vehicles without in-depth knowledge
(black box) or from the inside (white box - meaning that
some or full information is available to the red team).
The process suggests cyber kill chain [30] and attack trees
[31], where the latter approach allows for automated
decision making for generating attack vectors.

2) Define Functional and Interface Security Testing Sce­
narios: Functional tests assess the system's adherence to
its functional requirements (correctness)and take place
throughout the whole process and at different levels of
abstraction. Testing security functions focuses on test­
ing the security requirements. Typical security require­
ments may include specific elements of confidentiality,
integrity, authentication, availability, authorization and
non-repudiation. There are two possibilities of formulat­
ing security requirements: 1. positive requirements and
2. negative requirements. Positive formulated require­
ments describe how a security function should work.
Negative requirements state behaviour that the soft­
ware should not exhibit. The mapping of requirements
to specific software artifacts could be problematic for
such requirements, since this kind of requirement is
not implemented in a specific place[26]. When negative
requirements are tested, security testers look for common
mistakes and test assumed weaknesses in the applica­
tion. The emphasis is on finding vulnerabilities, often
by executing misuse tests. To derive the test cases, the
following steps need to be carried out:

1) Identify functions expected to perform.
2) Create test cases based on the function methods.
3) Determine the output based on the function speci­

fications.

3) Define Fuzzing Scenarios: Fuzzing is a technique
to use random input in order to put an SUT into a
non-intended state to uncover errors, which could be

more efficient than structured testing [32]. However,
randomness of fuzz testing does not have to be complete
but adapted to an SUT using passive listening [33]. A
fuzzer consists of a generator (combining valid and ran­
dom parts), a delivery mechanism, a monitoring system
and a test oracle [34]. The oracle, that determines the
test result (i. e. pass/fail), is obtained by monitoring
communications or using specific protocols (like XCP)
as well [35]. Using fuzzing techniques, it is possible
to attack automobiles without any in-depth knowledge
[36]. In principle, any component that shows an external
interface can be fuzzed.

Fuzz testing can [37]:

• be used to reverse engineer vehicle messages;
• be used to disrupt vehicle' s communication net­

work;
• be a form of cyber attack;
• lead to vehicle component damage.

For a significantly large test space, fuzzing should be
combined with combinatorics to select test cases and be
run in parallel as long as a test series runs and the space
is not covered.

4) Vulnerability Scanning Scenarios: Vulnerability scan­
ning uses tools, called vulnerability scanners, that com­
pare a vulnerability database with the information ob­
tained from a network scan to find possible vulnerabili­
ties in the network [38].

A scanner typically enumerates known software vul­
nerabilities and provide a comprehensive baseline of
existing vulnerabilities. To perform effective vulnerabil­
ity scanning, the tools should be selected based on the
scanning scope. This scope is needed to define and create
the vulnerability scanning scenarios. A typical scenario
for using vulnerability scanning is:

• Define which system to scan (i.e. the SUT or com-
ponents thereof);

• Define the tool that should be used for the scanning;
• Perform the scan;
• Analyze the resulting report (i.e. identify relevant

vulnerabilities);
• Specify further analysis/testing tasks.

For automation, the results (in machine readable form)
serve as an input for other scenarios.

E. Select Test Scripts

This section concerns the transition of generic test
descriptions (from the test scenarios) addressing vulner­
abilities (found in the threat assessment) into concrete
test scripts to be executed onto a specific SUT. Test scripts
are selected from a database, if available, or otherwise
developed.

1) Develop Test Scripts: The purpose of this activity, in
general, is to populate a test script database with relevant
tests, particularly attacks. The scripts correspond to the
plan and implement defined test patterns. This activity

is optional and carried out if no appropriate test script is
present beforehand. The scripts are concrete implemen­
tations of test patterns, making use of the tools outlined
in the scenario description targeting towards a specific
SUT. A test script is an executable script that contains:

• The testing tool(s) to be used (parameters, interfaces,
oracle may be derived from the test scenario;

• Needed parameters and information specific to the
SUT;

• Specifics of the test system (e.g. using Linux, avail-
ability of a certain compiler/interpreter, etc.).

Similar to test scenarios, attack scripts are derived from
open sources by observing actual attacks. Test scripts are
created by analysing an SUT or they are derived from
various structured approaches like attack trees [39]. To
ensure that the case generation step (Section V-F) can re­
use scripts from the database, the current step should:

1) Either match an existing script;
2) Or develop a test script to the specifications of the

test scenario.

In the latter case, extensive technical knowledge about
the SUT or further specifics might be needed (e.g., an
interpretation file for particular CAN messages).

2) Validate Test Scripts: This optional activity applies
to newly developed test scripts to validate them before
actual tests. New test scripts are tried out on simulated
or actual SUTs in a simulated or actual test environment.
Expected outcomes (derived from the test oracle) are
compared to actually acquired results. SUTs should be
chosen in a way that both positive and negative results
can be obtained in specific well-defined conditions. In
order to validate a test script, the environment should
fulfill any prerequisite set in the test script (similar to an
actual test). Similar to test cases, the validation of the test
script should contain different SUTs or configurations
thereof that include:

1) an SUT configuration with a successful attack (pos­
itive validation);

2) an SUT configuration with an unsuccessful attack
(negative validation);

3) several edge cases.

The validation test coverage should be comparable to
coverages in actual tests (see Section V-F).

F. Generate Test Cases

A test case includes multiple items from this non­
exhaustive list derived and extended from [40], [41], [42]:

• Test purpose and objectives;
• SUT /Function description (including

software /hardware / firmware configurations);
• Environmental needs including dependencies;
• Procedural requirements, test setup and condition;
• Test activities and input data;
• Expected results, completion, stopping and resump­

tion criteria (Pass/Fail criteria including metrics);

• Traceability to related requirements and threats;
• Variability and quality attributes.

In the context of this process, the test case generation
(tcg) is the fusion of a generic test scenario (Section
V-D) and the test scripts (Section V-E) that are specific to
a distinct SUT. Augmenting the scenarios with specific
information from an SUT database translates the test
scenarios into executable test cases. With both parts
available in machine-readable form, this activity is easy
to automate. Combinatorial testing [43] allows for an
efficient coverage/ effort ratio. The tcg can re-use the
threat modelling outcomes in conjunction with a test
script database, giving the opportunity of automating
the process using a framework (e.g. [44]) If a clear model
is lacking completely, test coverage is most important.

G. Perform Testing

To execute the test, a test environment shall be estab­
lished using an description from the scenarios. The envi­
ronment description contains all required prerequisites,
while the test cases contain the performed operations

1) Prepare Test Environment: Two inputs are needed to
prepare a test environment: (a) an environment config­
uration and (b) interface descriptions. The resulting test
environment template is then used to execute tests. A
configuration consists primarily of the system under test
(SUT) and applicable test categories, including system
and service preconditions. Interface descriptions contain
their stimulation and provisions, as well as verification
procedures for their claimed properties. For automation,
they are organized in an object-oriented, serializable
manner. The resulting combination of the environment
and the interface description form a test environment
template to applied with different test cases from diverse
categories, ideally in a microservices-based, container­
ized style. This activity also includes saving a pre-attack
state of the SUT and a clean-up procedure after the
conducted test (e.g. if a test involves flashing ECUs).

2) Execute Test Cases: Each test case consists of a
sequence of test scripts (as minimum verifiable actions
- MVAs) that can be combined to form more complex
sequences. Resulting sequences can be combined again.
The combinations can also contain permutations and re­
organizations of scripts. For automation, final commands
take a shell-executable form. Test cases create specific
outputs on defined interfaces. This output is consumed
by an interface module that transforms the output into
a correct call for the associated physical interface and
the retumed response. A completed test case output is
subsequently converted into a standardized test result.
Test results are stored and used as input for other test
cases, further analysis, and reporting (see V-H), includ­
ing relevant meta data in a standardized format.

H. Generate Test Report

A test report is a presentation of the combined results
of the process, it should contain:

• A management summary;
• An SUT description;
• start time and duration;
• An aggregated overview (dashboard);
• The approach/method used;
• Findings (passed and failed tests);

For the executed tests, pass and fail information (and in
case of failed tests: sufficient information to understand
the problem) must be given. In both cases, reference links
to goals, requirements, used tools, the raw data, the test
results (including risk levels and severity categorization
and conflicts with regulations, policies or best practices)
and information about aspects that were not tested (not
planned, technical problems, lack of time, funds or tools,
etc.) need to be included. The testing report should
also correspond to a verification and a validation report
according to ISO/SAE DIS 21434 (10.5 and 11.5) [5].

VI. CONCL US ION AND ÜUTLOOK

This paper outlined a process for testing the cyber­
security of (particularly automotive) systems to fill the
gap between existing standards for automotive security
engineering and their hands-on, actual-system testing.
The process provides a comprehensive, automatable ap­
proach for system testing based on ISO/SAE DIS 21343.
Due to rising complexity and regulators' requirements
this is necessary as it facilitates a conceivable need
for industrializing automotive cybersecurity testing. The
process itself is arranged generically in order to allow
for using already existing procedures (e.g. a present
risk assessment process) not mandating any specific
method. Future work will therefore involve a reference
implementation on both processual and technical level.

ACKNOWLEDGEMENT

This work was supported by the H2020-ECSEL pro­
gram of the European Commission; grant no. 783119, SE­
CREDAS project. Special thanks to Rosita Jupri, Behrooz
Sangcholie and Rauli Kaksonen for their help.

REFERENCES

[1] Vokswagen, "Eighth-generation Volkswagen Golf GTI makes
global debut at the Geneva Motor Show," 2020, [Online
press release; retrieved 2020-07-16]. [Online]. Available:
https:/ / www.media.vw.com/ releases / 1261

[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Check­
oway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Sav­
age, "Experimental security analysis of a modern automobile," in
2010 IEEE Symposium an Security and Privacy, 2010, pp. 447-462.

[3] C. Miller and C. Valasek, "Remote exploitation of an unaltered
passenger vehicle," Black Hat USA, 2015.

[4] Upstream Security, "Upstream Security Global Automotive Cy­
bersecurity Report," Upstream Security, Tech. Rep., 2020.

[5] International Organization for Standardization and Society of
Automotive Engineers, "Road Vehicles - Cybersecurity Engi­
neering," International Standard, International Organization for
Standardization, ISO/IEC Standard "21434", 2019.

[6] United Nations Economic and Social Council - Economic Com­
mission for Europe, "UN Regulation on uniform provisions con­
cerning the approval of vehicles with regard to cyber security
and of their cybersecurity management systems," UNECE, UN
Regulation ECE/TRANS/WP.29/2020/79, 2020.

[7] D. S. Fowler, M. Cheah, S. A. Shaikh, and J. Bryans, "Towards a
testbed for automotive cybersecurity," in 2017 IEEE International
Conference on Software Testing, Verification and Validation (ICST),
2017, pp. 540-541.

[8] R. Kurachi and T. Fujikura, "Proposal of hils-based in-vehicle net­
work security verification environment," in WCX World Congress
Experience. SAE International, apr 2018.

[9] E. dos Santos, A. Simpson, and D. Schoop, "A formal
model to facilitate security testing in modern automotive
systems," Electronic Proceedings in Theoretical Computer Science,
vol. 271, pp. 95-104, May 2018. [Online]. Available:
http://dx.doi.org/10.4204/EPTCS.271.7

[10] T. Huang, J. Zhou, and A. Bytes, "Atg: An attack traffic generation
tool for security testing of in-vehicle can bus," in Proceedings of the
13th International Conference on Availability, Reliability and Security,
ser. ARES 2018. New York, NY, USA: ACM, 2018.

[11] M. Cheah, S. A. Shaikh, 0. Haas, and A. Ruddle, "Towards
a systematic security evaluation of the automotive bluetooth
interface," Vehicular Communications, vol. 9, pp. 8 - 18, 2017.

[12] M. R. Friesen and R. D. McLeod, "Bluetooth in intelligent trans­
portation systems: a survey," International Journal of Intelligent
Transportation Systems Research, vol. 13, no. 3, pp. 143-153, 2015.

[13] M. Cheah, S. A. Shaikh, J. Bryans, and H. N. Nguyen, "Combining
third party components securely in automotive systems," in IFIP
International Conference on Information Security Theory and Practice.
Springer, 2016, pp. 262-269.

[14] J.-P. Monteuuis, A. Boudguiga, J. Zhang, H. Labiod, A. Servel,
and P. Urien, "Sara: Security automotive risk analysis method,"
in Proceedings of the 4th ACM Workshop on Cyber-Physical System
Security. New York, NY, USA: ACM, 2018, pp. 3-14.

[15] L. Ming, G. Zhao, M. Huang, X. Kuang, J. Zhang, H. Cao,
and F. Xu, "A general testing framework based on veins for
securing vanet applications," in 2018 IEEE SmartWorld, Ubiquitous
Intelligence Computing, Advanced Trusted Computing, Scalable Com­
puting Communications, Cloud Big Data Computing, Internet of People
and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBD­
Com/IOP/SCI), 2018, pp. 2068--2073.

[16] H. Srinivasan and K. Sarac, "A sip security testing framework,"
in 2009 6th IEEE Consumer Communications and Networking Confer­
ence, 2009, pp. 1-5.

[17] S. Hagerman, A. Andrews, and S. Oakes, "Security testing of an
unmanned aerial vehicle (uav)," in 2016 Cybersecurity Symposium
(CYBERSEC), 2016, pp. 26-31.

[18] C. Michel and L. Me, "Adele: An attack description language
for knowledge-based intrusion detection," in Trusted Information,
M. Dupuy and P. Paradinas, Eds. Springer US, 2001, pp. 353-368.

[19] D. R. Crow, S. R. Graham, and B. J. Borghetti, "Fingerprinting
vehicles with can bus data samples," in ICCWS 2020 15th In­
ternational Conference on Cyber Warfare and Security. Academic
Conferences and publishing limited, 2020, p. 110.

[20] B. K. Aichernig, R. Bloem, M. Ebrahimi, M. Tappler, and J. Win­
ter, "Automata learning for symbolic execution," in 2018 Formal
Methods in Computer Aided Design (FMCAD), 2018, pp. -9.

[21] D. Ward, 1. Ibarra, and A. Ruddle, "Threat analysis and risk as­
sessment in automotive cyber security," SAE International Journal
of Passenger Cars-Electronic and Electrical Systems, vol. 6, no. 2013-
01-1415, pp. 507-513, 2013.

[22] J. Barnat, L. Brim, V. Havel, J. Havlfcek, J. Kriho, M. Lenco,
P. Rockai, V. Still, and J. Weiser, "Divine 3.0 - an explicit-state
model checker for multithreaded c & c++ programs," in Computer
Aided Verification, N. Sharygina and H. Veith, Eds. Berlin,
Heidelberg: Springer, 2013, pp. 863--868.

[23] M. Islam, C. Sandberg, A. Bokesand, T. Olovsson, H. Broberg,
P. Kleberger, A. Lautenbach, A. Hansson, A. Söderberg-Rivkin,
and S. P. Kadhirvelan, "Security Models," HEAVENS Project,
HEAVENS Project Deliverable D2, 2014.

[24] G. Macher, H. Sporer, R. Bedach, E. Armengaud, and C. Kreiner,
"Sahara: A security-aware hazard and risk analysis method,"

in 2015 Design, Automation Test in Europe Conference Exhibition
(DATE), 2015, pp. 621-624.

[25] S. Marksteiner, H. Vallant, and K. Nahrgang, "Cyber security
requirements engineering for low-voltage distribution smart grid
architectures using threat modeling," Journal of Information Secu­
rity and Applications, vol. 49, p. 102389, 2019.

[26] C. Michael, K. van Wyk, and W. Radosevich, "Risk­
Based and Functional Security Testing," Cybersecurity
and Infrastructure Security Agency (CISA), Tech. Rep.,
2005, retrieved at April 17, 2020. [Online]. Available:
https://www.us-cert.gov/bsi/ articles/best-practices/security­
testing/risk-based-and-functional-security-testing

[27] Wei-Tek Tsai, Xiaoying Bai, R. Paul, and Lian Yu, "Scenario­
based functional regression testing," in 25th Annual International
Computer Software and Applications Conference, 2001, pp. 496-501.

[28] B. J. Wood and R. A. Duggan, "Red teaming of advanced in­
formation assurance concepts," in Proceedings DARPA Information
Survivability Conference and Exposition, vol. 2, 2000, pp. 112-118.

[29] R. R. Linde, "Operating system penetration," in Proceedings of the
May 19-22, 1975, National Computer Conference and Exposition, ser.
AFIPS '75. New York, NY, USA: ACM, 1975, pp. 361-368.

[30] 1. Tarnowski, "How to use cyber kill chain model to build cyber­
security?" European Journal of Higher Education IT, 2017. [Online].
Available: http:/ /www. eunis. org/ download/TNC2017 /TNC17-
IreneuszTarnowski-cybersecurity.pdf

[31] S. Mauw and M. Oostdijk, "Foundations of attack trees," in
Information Security and Cryptology - ICISC 2005, D. H. Won and
S. Kirn, Eds. Berlin, Heidelberg: Springer, 2006, pp. 186-198.

[32] J. W. Duran and S. Ntafos, "A report on random testing," in Pro­
ceedings of the 5th International Conference on Software Engineering,
ser. ICSE '81. IEEE Press, 1981, pp. 179-183.

[33] D. S. Fowler, J. Bryans, M. Cheah, P. Wooderson, and S. A. Shaikh,
"A method for constructing automotive cybersecurity tests, a can
fuzz testing example," in 9th International Conference on Software
Quality, Reliability and Security Companion, 2019, pp. 1-8.

[34] R. McNally, K. Yiu, D. Grove, and D. Gerhardy, "Fuzzing: The
state of the art," Defence Science and Technology Organisation
Edinburgh (Australia), DSTO-TN "1043", 2012.

[35] P. Lapczynski, H. Heinemann, T. Schöneberger, and E. Metzker,
"Automatically generating fuzz tests from automotive communi­
cation databases," in 5th escar USA, Detroit, isits AG, 2017.

[36] H. Lee, K. Choi, K. Chung, J. Kirn, and K. Yim, "Fuzzing can
packets into automobiles," in 2015 IEEE 29th International Confer­
ence on Advanced Information Networking and Applications, 2015, pp.
817--821.

[37] D. S. Fowler, J. Bryans, S. A. Shaikh, and P. Wooderson, "Fuzz
testing for automotive cyber-security," in 2018 48th Annual IEEE/I­
FIP International Conference on Dependable Systems and Networks
Workshops (DSN-W), 2018, pp. 239-246.

[38] H. Holm, T. Sommestad, J. Almroth, and M. Persson, "A quantita­
tive evaluation of vulnerability scanning," Information Management
& Computer Security, 2011.

[39] W. Nichols, Z. Hili, P. Hawrylak, J. Haie, and M. Papa, "Automatie
generation of attack scripts from attack graphs," in International
Conference on Data Intelligence and Security, 2018, pp. 267-274.

[40] P. M. Kamde, V. D. Nandavadekar, and R. G. Pawar, "Value of test
cases in software testing," in 2006 IEEE International Conference on
Management of Innovation and Technology, vol. 2, 2006, pp. 668--672.

[41] M. Nahas and R. Bautista-Quintero, "Applying the scheduler
test case technique to verify scheduler implementations in multi­
processor time-triggered embedded systems," American Journal of
Engineering Research (AJER), vol. 5, no. 9, pp. 93-104, 2016.

[42] K. Heussen, C. Steinbrink, 1. F. Abdulhadi, V. H. Nguyen, M. Z.
Degefa, J. Merino, T. V. Jensen, H. Guo, 0. Gehrke, D. E. M.
Bondy et al., "Erigrid holistic test description for validating cyber­
physical energy systems," Energies, vol. 12, no. 14, p. 2722, 2019.

[43] D. R. Kuhn, R. N. Kacker, and Y. Lei, "Practical combinatorial
testing," NIST Special Publication, National Institute of Standards
and Technology, SP 800-142, 2010.

[44] S. Marksteiner and Z. Ma, "Approaching the automation of cyber
security testing of connected vehicles," in Proceedings of the Central
European Cybersecurity Conference 2019, ser. CECC 2019. New
York, NY, USA: ACM, 2019.

