
Turbo-AI: Iterative Machine Learning Based
Channel Estimation for 2D Massive Arrays

Yejian Chen, Jafar Mohammadi, Stefan Wesemann and Thorsten Wild
Bell Laboratories, Nokia, Lorenzstraße 10, D-70435 Stuttgart, Germany

Yejian.Chen@Nokia-Bell-Labs.com

Abstract—Recently, Machine Learning (ML) is recognized
as an effective tool for wireless communications and plays
an evolutionary role to enhance Physical Layer (PHY) of
5th Generation (5G) and Beyond 5G (B5G) systems. In this
paper, we focus on the ML-based channel estimation for 2-
Dimensional (2D) massive antenna arrays. Due to the extremely
high computational requirement for 2D arrays with Ordinary
Training, we exploit 2D Kronecker covariance model to perform
Subspace Training for vertical and horizontal spatial domain
independently, which achieves a complexity cost saving factor
O(M4N4)/O(MN4 + NM4) for ML with an M × N 2D-
array. Furthermore, we propose an iterative training approach,
referred to as Turbo-AI. Along with Subspace Training, the new
approach can monotonically reduce the effective variance of
additive noise of the observation, and update the Neural Network
(NN) models by re-training. Furthermore, we propose a concept,
named Universal Training. It allows to use one NN for a wide
range of Signal-to-Noise-Ratio (SNR) operation points and spatial
angles, which can greatly simplify Turbo-AI usage. Numerical
results exhibit that Turbo-AI can tightly approach the genie-aided
channel estimation bound, especially at low SNR.

I. INTRODUCTION

Witnessing so many Artificial Intelligence (AI) inspired
inventions and applications, no one is going to doubt, whether
the AI techniques are changing our world. The recent rapidly
developed AI techniques exhibit high potential for many
technical challenges. In 2016 and 2017, AlphaGo, the AI
program developed by DeepMind, defeated the human profes-
sional world champions twice in the most challenging strategy
board game Go, which can be recognized as a revolutionary
landmark of deep learning [1]–[2]. In communications society,
AI is attracting enormous attentions from both industry and
academia for enhancing the new concepts and novel technolo-
gies within the context of 5th Generation (5G) New Radio
(NR) [3] and even opening new perspectives for Beyond 5G
(B5G) systems. In this paper, we focus on the exploitation
of AI for PHYsical (PHY) layer of wireless communications.
It is well known that the performance of the key compo-
nents of PHY layer are mathematically bounded by derivable
optimums. Among them, the fundamental and the famous
one is the Shannon limit [4]. Obviously, it is impossible to
outperform the optimum bound by means of deep learning.
Instead, AI introduces an alternative path to approach the
optimum bound with low complexity. Thus, AI provides us
additional degrees of freedom to trade off the performance
and complexity in PHY layer design for 5G and B5G system.
There are potential AI applications for PHY layer, enumerated

in [5], such as blind channel decoding and data detection,
modulation recognition, channel estimation, and many others.

Hence, our paper is motivated in this context by introducing
AI for channel estimation to enhance PHY layer performance.
Precise channel estimation belongs to one of the key technical
prerequisites to support PHY layer operations, such as equal-
ization and data detection, power control, precise Channel
State Information (CSI) for transmit precoding and feedback,
user pairing for Multiple-Input Multiple-Output (MIMO) and
Non-Orthogonal Multiple Access (NOMA) system, and so
on. In [6], a Neural Network (NN) based channel estimation
approach is proposed, in which the conventional Minimum
Mean Square Error (MMSE) channel estimator is equivalently
represented under certain array-specific property assumptions
as a two-layer NN. The conventional channel estimators, e.g.
[7], are usually more complex than the Machine Learning
(ML) based solutions [8] for similar performance. Especially,
the computational requirement will be significantly increased
for massive Multiple-Input Multiple-Output (mMIMO) system
[9] in these conventional channel estimators with a large
number of antenna elements. A proof-of-concept is provided
in [10] provides for NN-based channel estimation, by means of
real-time experiment and measurement. In [11], the ML-based
channel estimation is considered for mMIMO with different
antenna configurations.

In this paper, we will focus on the low-cost ML-based
channel estimation with massive 2-Dimensional (2D) antenna
panels, by exploiting the approximation in [12]. With the
Kronecker channel model, the spatial covariance matrix of
a 2D-array can be decomposed as the Kronecker product
of a vertical covariance matrix and a horizontal covariance
matrix, respectively. The training for the full spatial covariance
matrix of the 2D-array, denoted as highly complex Ordinary
Training, can be replaced by low complex Subspace Training
with two independent NNs in horizontal and vertical do-
mains, respectively. Different combining strategies for channel
estimates, obtained after the Subspace Training in vertical
and horizontal subspaces, can improve the channel estimation
with reduced complexity. Furthermore, after combining the
estimates from independent subspaces, the estimation error,
which can be interpreted as additive noise, is still a Gaussian
random variable, but with reduced variance. Let the initial
observation be replaced by the less noisy channel estimates,
and repeat the Subspace Training and combining, to ap-
proach the optimum performance iteratively. Throughout this

ar
X

iv
:2

01
1.

03
52

1v
1

 [
ee

ss
.S

P]
 2

8
O

ct
 2

02
0

paper, this procedure is referred to as Turbo-AI. It can be
demonstrated through link level simulation that the genie-
aided bound can be tightly reached. Furthermore, we propose
the concept Universal Training to enhance the robustness of
Turbo-AI for practical implementation.

This paper is organized as follows. In Section II we focus on
the system model. An overview of Subspace Training, Turbo-
AI and Universal Training will be presented in Section III.
In Section IV, numerical results of link layer performance are
provided. Finally, Section V renders some conclusions.

II. SYSTEM MODEL

As depicted in Fig. 1, let us consider a 2D-array system
with M vertical elements and N horizontal elements. The
samples k = 1, · · · ,K are collected from time domain as
temporal symbols or from frequency domain as subcarriers.
Hence, the Single-Input Multiple-Output (SIMO) system can
be represented by following equation as

Yk = Hk + Zk, (1)

where the M × N matrix Yk and Hk stands for the obser-
vations and wireless channel, respectively. The matrix Zk de-
notes the Additive White Gaussian Noise (AWGN), element-
wise characterized by noise power spectral density N0 = 2σ2.
In [12], it is exhibited that the covariance matrix R of a 2D-

Vertical

dimension

M

N

0

A (M × N) 2D

Rectangular

Array

Hk

a

b

c

d

e

f

h

g

Fig. 1. Signal model with a 2D antenna panel

array can be approximated as

R ≈ Rh ⊗Rv , (2)

where Rh and Rv denote the common horizontal and vertical
covariance matrix in the sense of 1D-arrays in row and
column, respectively. The covariance matrices Rv , Rh and
R are thus M ×M , N ×N and MN ×MN matrices. The
spatial correlation between i-th and j-th antenna in Rh [13],
denoted as R

(i,j)
h , can be computed as

R
(i,j)
h =

1√
2%

π∫
−π

exp
[
−
√

2|φ|
%

+ j
2π

λ
∆di,j sin(θ + φ)

]
dφ,

(3)

where ∆di,j denotes the distance between both antenna el-
ements i and j. Parameters % and θ stand for the angular
spread and Direction of Arrival (DoA), respectively. The given

random variable φ obeys Laplacian power angular distribution
concerning % and θ. Equation (3) is also valid for vertical
spatial domain R

(i,j)
v . Considering the independent and iden-

tically distributed (i.i.d.) Rayleigh fading channel, it holds

vec(Hk) = R0.5vec(Hw,k). (4)

The elements in the M×N matrix Hw,k follow i.i.d. Rayleigh
distribution with E[|Hw,k|2] = 1, representing the sample k
randomly selected from time or frequency domain. Thus, the
channel matrix Hk can be equivalently computed as

Hk = R0.5
v Hw,k(R0.5

h)T . (5)

III. CHANNEL ESTIMATION AND MACHINE LEARNING

In this section, let us focus on the channel estimation
and training for machine learning. First of all, let us discuss
about the benchmark solution of channel estimation. For a
linear signal model in presence of Gaussian noise, the Linear
Minimum Mean Square Error (LMMSE) channel estimator is
regarded as the optimal linear estimator, in sense of being
capable of minimizing the Mean Square Error (MSE). For a
2D-array system, depicted in Fig. 1, the MMSE weight matrix
can be computed as

Wgenie = R(R + σ2IMN)−1. (6)

If the covariance matrix R is a priori known, it is referred to
as genie-aided solution. Nevertheless, the drawback is obvious
as well: if the number of antenna elements M and N become
large, the matrix inversion in (6) can be computationally
intensive.

A. Estimation Through Subspaces

Let us re-consider the problem from the view point of
horizontal and vertical subspaces as depicted in Fig. 2. We
can stack the data as slices horizontally and vertically to create
two observations. Let us define the N ×M matrix Hh and
M ×N matrix Hv as

Hh =
[
h
(h)
1 · · ·h

(h)
M

]
(7)

Hv =
[
h
(v)
1 · · ·h

(v)
N

]
, (8)

where M samples of N × 1 vector h
(h)
m and N samples of

M × 1 vector h
(v)
n are obtained in horizontal and vertical

subspaces, respectively. Consider MMSE channel estimation
for both subspaces individually, it holds

Ĥh = WhY
T = Rh(Rh + σ2IN)−1YT (9)

Ĥv = WvY = Rv(Rv + σ2IM)−1Y (10)

where Wh and Wv denote N × N and M × M MMSE
weighting matrices, and the observation is denoted as M ×N
matrix Y. Let us simply consider the arithmetic mean to
combine the estimates from vertical and horizontal subspaces.
It holds

Ĥa = 0.5(ĤT
h + Ĥv) = 0.5(YWT

h + WvY). (11)

The result in (11) can be further reformulated as a vectorized
expression as

vec(Ĥa) = 0.5(IN ⊗Wv + Wh ⊗ IM)vec(Y), (12)

where the MN ×MN matrix Wa = 0.5(IN ⊗Wv +Wh⊗
IM) is the effective weighting with respect to the subspace
combining with arithmetic mean. Similarly, we can exploit the
geometric mean to perform the subspace combining. It holds

vec(Ĥg) = (IN ⊗Wv)
0.5(Wh ⊗ IM)0.5vec(Y) (13)

= (W0.5
h ⊗W0.5

v)vec(Y),

where the MN ×MN matrix Wg = W0.5
h ⊗W0.5

v is the
effective weighting with geometric mean. With the properties
of Kronecker product, it yields,

Ĥg = W0.5
v Y(W0.5

h)T . (14)

Notice that the same data is reordered as the inputs for the
horizontal NN and vertical NN, respectively. Nevertheless,
the reshuffling patterns of corresponding AWGN components
within both observations exhibit strong independence, repre-
sented as colorful spots in Fig. 2 for examples. The gain from

Vertical domain

Horizontal domain

M K

N

Time
domain

Horizontal domain

Vertical domain Time
domain

N

K

2K

MK

Horizontal domain

K

N

Time
domain

Vertical domain Vertical domain

Horizontal domain

Time
domain

K

2K

NK

M

M

Fig. 2. Stacking M vertical slices in horizontal spatial domain and stacking
N horizontal slices in vertical spatial domain

combining the outputs of two NNs after Subspace Training
comes from the fact that the output randomness of each esti-
mated element is originated from training these independent
elements. It can be exhibited that the variance post-processing
noise can be reduced after subspace combining, e.g. arithmetic
mean. Let VAR[Z

(i,j)
a] the variance of the AWGN component

on i-th row and j-th column in matrix Za after exploiting
arithmetic mean. It holds,

ρ

4
N0 < VAR

[
Z(i,j)
a

]
≤ N0 (15)

with ρ =
∑M
m=1E[|W(i,m)

v |2] +
∑N
n=1E[|W(j,n)

h |2] and 0 ≤
ρ ≤ 2. The variance of the original AWGN component is
VAR[Z(i,j)] = N0 = 2σ2. The proof of (15) will be provided
in Appendix A.

In order to explore the property of arithmetic mean and
geometric mean, let us introduce the notations y = vec(Y),
A = IN ⊗Wv and B = Wh ⊗ IM . With the arithmetic
mean, the deviation of the channel estimates from the genie-
aided MMSE channel estimator can be computed as

Da =
1

MN
yH
[1
2

(A + B)−Wgenie
]2
y (16)

and with geometric mean, the deviation can be similarly
computed as

Dg =
1

MN
yH(A0.5B0.5 −Wgenie)

2y. (17)

Furthermore, it holds

Da −Dg =
1

MN
yHL(P + Q)y (18)

with L = (A0.5 − B0.5)2, P = A + B − 2Wgenie and
Q = 2(A0.5B0.5 −Wgenie). According to our computational
analysis for our dataset with both i.i.d. Rayleigh channel
assumption and 3GPP compliant channel model, the following
holds

Da ≥ Dg , (19)

which indicates that the geometric mean can provide the
channel estimates with better quality. For computing the
geometric mean Ĥg , the matrix square root operation (·)0.5
has to be invoked for matrices Wv and Wh, which introduces
additional complexity due to the non-linear operation.

B. Neural Network and Complexity

It is exhibited in [6] that a MMSE channel estimator can be
approximated as a two-layer NN network. Thus, in a M ×N
2D-array system, with a MN×MN spatial covariance matrix
R, the number of input parameters is 2M2N2 real values, if
the sample covariance matrices are exploited for the training.
Obviously, the complexity will be significantly increased, if
a massive 2D-array is deployed. In [6], matrix transformation
and decomposition are considered to reduce the number of
NN parameters for antenna array with special structure. With
the analysis in the previous subsection, the Kronecker model
allows us to exploit the spatial decomposition naturally, and
process the horizontal and vertical subspaces individually as
Uniform Linear Array (ULA) antennas. As depicted in Fig. 4,
we exploit two NNs in parallel, each of which has simple struc-
ture as a two-layer network with ReLu activation. The same
M ×N ×K data structure, see Fig. 2, will be reconstructed

and delivered to both NNs as the observations for vertical
and horizontal subspaces. The input and the output of the
NNs are spatial sample covariance matrices Rv , Rh and the
weight matrices Wv , Wh, respectively. Fig. 3 exhibits how to
perform the combining for vertical and horizontal subspaces in
sense of arithmetic mean and geometric mean, according to the
analysis in the previous subsection. Exploiting the full MMSE

NN 2 NN 1

!"# $ %
&×'

Dense ()

*+ $ %
&×& *, $ %

'×'

-+ $ %
&×& -, $ %

'×' [./0123]4

5 $ %&×'

./0123

./04

Dense 6)

ReLu ReLu

Dense () Dense 6)

!"7 $ %
&×'

Fig. 3. Two parallel NNs for Subspace Training

Ordinary Training for the M ×N 2D-array, two concatenated
(MN)2-In-(MN)2-Out dense layers in one NN have to be
considered. The number of real values as the input parameters
is 2M2N2. The number of the stored real values of both
dense layers is 8M4N4. Considering the cost of parameter
passing, ReLu operation and real/imaginary part matrix multi-
plication, the complexity of the full MMSE Ordinary Training
is O(M4N4). In Fig. 3, two parallel NNs are depicted, each
of which has two concatenated dense layers. The number
of real values as the input parameters of the network is
2(M2+N2). The number of stored real values of both NNs is
4(M4 +N4). The total cost of Subspace Training to involve
parameter passing, ReLu operation, real/imaginary part matrix
multiplication and subspace combining is O(MN4 +NM4).
Let us define a cost saving function η(M,N) as

η(M,N) ≈ O(M4N4)

O(MN4 +NM4)
. (20)

For a (M = 4, N = 8) and a (M = 8, N = 16) 2D-array
systems, the cost saving coefficients with Subspace Training
are approximately 50 and 450, respectively.

C. Turbo-AI

Turbo-AI is an iterative procedure, which consists of an
iterative training stage and an iterative estimation stage. Let us
explore the operation principle of Turbo-AI in this subsection.
After being combined in horizontal and vertical subspaces, the
channel estimates, obtained by the NN described in previous
subsection, still exhibit residual additive noise, which is Gaus-
sian, but with a reduced variance, compared to the noise in

���
� � ����

��	
� � ����
��

���
� � ����
��

� � ������

P
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n

ct
io

n
 �
�
��
��

��

��

��

��

��

Fig. 4. Probability density function of post-processing noise after Subspace
Training and combining at 0dB SNR

the channel observation input. This property can be illustrated
in Fig. 4. Let us study the Probability Density Function (PDF)
of the real part signal of the raw AWGN Z0, as well as
that of the channel estimation error after horizontal Subspace
Training Zh and the channel estimation error after arithmetic
mean Za. Notice that we can plot the PDFs straightforwardly
by means of measuring Zh and Za, or alternatively, plot the
theoretical Gaussian distribution functions by the measured
post-processing noise variance. The PDFs, obtained from
both approaches, coincides to each other very well, which
confirms that the channel estimation errors still obey Gaussian
distribution with reduced variance. Let these noisy channel
estimates replace old observations of the training data, and
produce the new channel estimates repeatedly with the same
NNs by means of Subspace Training. This iterative procedure
is referred to as Turbo-AI, due to the iteratively achievable
processing gain, which eventually makes the channel estimates
get very close to the solution produced by genie-aided channel
estimator.

Note that the Turbo-AI procedure introduces a new way to
train the NN. As opposed to training the whole layers (from
all iterations) at once, we train each layer to the same final
labels, from bottom to top. This acts like a regularization by
limiting the degrees of freedom that our network can take. It
further boosts the convergence speed. Moreover, the chance
of getting stuck in a local minima is a lot smaller this way,
as in each stage we are dealing with a small 2-layered NN.
This solution is not entirely heuristic since it is based on the
observation that the dominant randomness at the input and the
output of Turbo-AI is Gaussian with different variances.

In Fig. 5, the training phase for i-th iteration of Turbo-AI is
presented. Notice that a dedicated set of NN weights, so-called
NN-models, can be stored for the validation from other users
with the same spatial characteristics. In the inference phase,
depicted in Fig. 6, the user should estimate the initial SNR,
decide to start with the best matched pre-trained NN-models
Wv,i and Wh,i, and replace both Subspace Training blocks
in Fig. 5 to estimate the channel iteratively. Considering the
potential complexity for hardware design, introduced by the

square root operations to calculate geometric mean for both
Wv,i and Wh,i during the iterations, we adopt arithmetic
mean for subspace combining to realize Turbo-AI as an overall
relatively low complex solution throughout this paper. In
Appendix B, the proof of the applicability of Turbo-AI will
be provided.

Training Dataset

(Observation, Label)
NN (Horizontal

Subspace

Training)

NN (Vertical

Subspace

Training)
Subspace

Combining

Replace the “Observation” of

i-th iteration

Store !",# $ for

i-th iteration Channel

estimates

%#
&

'(),#

%#*+ %#*+ - '(),#

%# '",#

'.,#

Store !.,# $ for

i-th iteration

Fig. 5. Training phase: Block diagram for i-th iteration training of Turbo-AI

≈ ≈ ≈ ≈ ≈ ≈

Vertical NN-models

Horizontal NN-models

… …

Receive Signal

(Noisy Pilots)

Subspace

Combining

≈ ≈

!",# $
Channel

estimates

%#
&

'(),#

%#
'",#

'*,#

… …

… …

!*,# $

… …

≈ ≈

Fig. 6. Inference phase: Block diagram for i-th iteration training of Turbo-AI

D. Universal Training for Turbo-AI

Turbo-AI can iteratively improve the channel estimation.
The training phase, depicted in Fig. 5, executes dedicated
training for one direction with respect to vertical and hori-
zontal spatial domain. For another direction, the vertical and
horizontal NNs have to be retrained again. For the same
reason, a set of vertical and horizontal NN-models have to
be stored, because the effective SNR will increase during the
iterations. Especially, the estimation of initial SNR to start the
Turbo-AI in Fig. 6 should be precise. Otherwise, it can also
cause the mismatch of the NN-models during the iterations.
This motivates us to think about the question, whether it is
possible to span the parameter space of the training, and make
the NN-models of Turbo-AI become more universal and more
robust against the parameter estimation error in the practice.
Thus, we name this concept Universal Training. In Fig. 7, the

θ

2D-Array Universally Train Horizonal NN:

θ1 θ2 θm

SNR1 SNR2 SNRm

…
Horizontal

Subspace

Training

Universally Train Vertical NN:

ϕ1 ϕ2 ϕn

SNR1 SNR2 SNRn

…
Vertical

Subspace

Training

!"

(#$%)

!&
(#$%)

Training data

Training data

ϕ

Fig. 7. Universal Training with respect to SNR and spatial domain

basic idea of Universal Training is illustrated. For training the

horizontal NN, the training data consists of the data batches
for different horizontal angle θm and SNR values randomly.
During the training stage, the NN tries to find out a model
to deliver sub-optimum solution for all possible combination
of parameters θm and SNRm. The randomization for the data
combination is necessary to prevent ML from falling in a local
optimum. Thus, the learning procedure takes longer than the
conventional training.

After the training, a universal NN-model is ready for
channel estimation within the parameter space spanned by data
combination θm and SNRm. Similarly, the vertical NN-model
can be universally learned in another parameter space, spanned
by parameter φn and SNRn. As a matter of fact, the Universal
Training is sub-optimal and can cause performance loss, if
more parameters are introduced in training. On the other side,
with Universal Training, Turbo-AI requires only a couple of
vertical NN-models and horizontal NN-modes, or even one
vertical NN-model and one horizontal NN-model to enable
the iterations for arbitrary combination of θm, φn and SNR
value. This can introduce huge cost saving and flexibility in
hardware design for a practical implementation.

IV. SIMULATIONS AND NUMERICAL RESULTS

In this section, let us focus on the performance of Turbo-
AI with link level simulations. Throughout our investigation,
the spatial i.i.d. Rayleigh fading channel, modeled by (4) and
(5), is adopted to generate channel responses. In Table I, the
parameters are summarized.

TABLE I
LINK LEVEL SIMULATION AND TRAINING PARAMETERS

Number of vertical elements M = 8

Number of horizontal elements N = 16

Antenna spacing Half of wavelength
Vertical Angular spread π/180

Horizontal Angular spread π/90

Optimizer for ML Adam
Learning rate α = 0.009

Hyper-parameters β1 = 0.9, β2 = 0.999

Activation function ReLu
Training data set size K = 500000 (Time domain)

In Fig. 8, the performance of Turbo-AI is presented for
user validation with the stored NN-models through Subspace
Training, as depicted in Fig. 6. With the cooperation be-
tween vertical and horizontal NN, the arithmetic mean based
subspace combining can approach the genie-aided MMSE
estimator very fast, especially at the first and the second
iteration. Even at relatively low SNR, e.g. SNR at 0dB, the
performance gap to the genie-aided bound is only 0.13dB
after four iterations. In Fig. 9, the measured PDFs of the
channel estimates from horizontal domain after the iterations
are presented, which are a set of Gaussian distribution curves
with reduced variance.

In Fig. 10, the Turbo-AI performance with Universal Train-
ing is summarized. As mentioned in previous section, the
more parameters are introduced in the training, the more
performance loss should be expected. In Fig. 10, we consider

Fig. 8. Turbo-AI performance: channel estimation NMSE versus iterations,
a 2D-array with M = 8 and N = 16, i.i.d. Rayleigh fading, SNR at 0dB

� � ������

P
ro

b
ab

il
it

y
 d

en
si

ty
 f

u
n
ct

io
n
 �
	

�
��

�
�
� � ����

�
���
� � �������

�
���
� � �������

�
���
� � �������

�
���
� � �������

�
���
� � �������

Raw AWGN

Ch. Est. Error, 0th Iter

Ch. Est. Error, 1st Iter

Ch. Est. Error, 2nd Iter

Ch. Est. Error, 3rd Iter

Ch. Est. Error, 4th Iter

Fig. 9. Turbo-AI performance: track the PDFs of horizontal estimates, a
2D-array with M = 8 and N = 16, i.i.d. Rayleigh fading, SNR at 0dB

three parameters, namely the range of SNR, horizontal and
vertical spatial coverage θ and φ, respectively. First of all,
let us carry out the Universal Training only for SNR with
the range from 0dB to 15dB, and assume that θ and φ are a
priori known directions. Comparing to the dedicated training,
the performance loss uniquely introduced by the universal
SNR training is about 1.20dB. The universal SNR training
is quite meaningful for Turbo-AI, since only one NN-model
is required for the Turbo-AI, due to being able to adapt
to all possible effective SNR values during the iterations.
Then, let us increase the coverage horizontally and vertically
with respect to both parameters θ and φ. We can observe
further obvious degradation. Finally, we carry out Universal
Training for the whole sector, namely −60o < θm < 60o,
30o < φn < 90o and SNR ∈ [0dB, 15dB]. It is quite
convenient to exploit Turbo-AI to estimate the channel with
one vertical NN-model and one horizontal NN-model for the
whole sector. Being the trade-off between complexity and
performance, the performance gap to dedicated training is

1.20dB

3.98dB

Fig. 10. Turbo-AI performance: dedicated training versus universal training,
a 2D-array with M = 8 and N = 16, i.i.d. Rayleigh fading, SNR at 0dB

about 3.98dB. Nevertheless, comparing to the Least Square
(LS) channel estimator, which achieves only 0dB channel
estimation NMSE at 0dB SNR, Turbo-AI with one NN-model
converges at approximately -11dB, which is quite satisfactory.
In Fig. 11, the performance of diverse channel estimators is

0.7dB

2.20dB

Fig. 11. Channel estimation NMSE versus SNR, a 2D-array with M = 8
and N = 16, i.i.d. Rayleigh fading

summarized. The ML-based channel estimators are bounded
by LS estimator and genie-aided MMSE estimator. The 2D
Subspace Training based channel estimators outperform the
horizontal or vertical NNs. Especially, the 2D Subspace Train-
ing and combining with geometric mean outperforms that
with arithmetic mean, which numerically verifies equation
(15) to (17) in the previous section. Turbo-AI with dedicated
training exhibits powerful performance. With four iterations,
the genie-aided bound can be tightly approached, especially
for low SNR region. Further, with the training parameters
10o < θm < 30o, 40o < φn < 60o and SNR ∈ [0dB, 15dB],
we verify the pre-trained universal NN-model for a SNR value
at 0.7dB, a strange value, which is not included in our selected

universal training data set at all. Simulation exhibits that this
universal NN-model for Turbo-AI is still applicable. With three
iterations, the performance gap to genie-aided bound is only
2.20dB.

V. CONCLUSION

In this paper, we propose a set of ML-based channel esti-
mation approaches for 2D massive arrays. Exploiting the 2D
Kronecker channel covariance model, we can carry out vertical
and horizontal Subspace Training, to estimate the channel
in sense of arithmetic mean and geometric mean. Subspace
Training provides a sub-optimal solution with much lower
complexity than that of full array size inputs. Although the
cost saving from Subspace Training with respect to hardware
implementation is huge, a performance gap does still exist,
considering the genie-aided MMSE channel estimator. Thus,
we further trade off the complexity and performance, and
introduce an iterative ML-based channel estimation approach,
referred to as Turbo-AI, in which the observation for ML
can be iteratively de-noised by means of the cooperation
of horizontal and vertical Subspace Training and combining.
Numerical results exhibit that the genie-aided bound perfor-
mance can be tightly approached by Turbo-AI, even at very
low SNR. From the view point of system design, Subspace
Training and Turbo-AI provide diverse application possibilities
to support both offline learning and online learning with
scalable complexity. Furthermore, in order to enhance the
flexibility of hardware design, Universal Training is introduced
as a counterpart for training with dedicated parameters. In
Universal Training, we span the parameter space in training
phase and make the NN-model adapt to a wide range of
parameters. For instance, the parameter space can be spanned
by vertical spatial coverage φ, horizontal spatial coverage θ
and SNR. It is demonstrated that flexible performance can be
achieved by adjusting the range of the parameter space. Thus,
Universal Training provides additional degrees of freedom to
facilitate practical implementation. For the future perspective,
we will validate the concepts, e.g. Subspace Training, Turbo-
AI and Universal Training, in 3GPP spatial channel model
for a multicarrier system. The channel correlation in space,
time and frequency can be jointly considered. These additional
dimensions are assumed to be able to provide further enhance-
ment for ML-based channel estimation.

APPENDIX

A. Proof of (15)

Before proving equation (15), let us introduce several
Lemmas to define the NN, which is exploited for channel
estimation. We inherit the notations from previous sections.
The observations and labels of a 2D-array with M vertical
elements and N horizontal elements are denoted as M × N
matrices Y and H, respectively, with Hv = H and Hh = HT .
Let Z denote the M × N AWGN matrix, with covariance
matrix RZ = N0IM = 2σ2IM . Without loss of generality,

we adopt the vertical subspace for defining the Lemmas. The
same Lemmas hold for horizontal domain as well.

Lemma 1: When a neural network is trained over adequate
amount of channel observation, sampled from one given dis-
tribution, this neural network is called converged, if following
properties hold,

E[‖WvY −H‖2F] ≤ E
[
‖Z‖2F

]
(21)

‖Wv −Wv,genie‖F < ε (22)

where Wv denotes the M×M weighting matrix and WvY−
H represents the zero-mean estimation error. The operator
‖A‖F denotes the Frobenius norm of matrix A. Matrix
Wv,genie denotes the optimal MMSE weighting matrix in
vertical subspace, defined in (6), and ε is small non-negative
value. Lemma 1 follows from the the MSE loss function.

Equation (22) in Lemma 1 is difficult to be proven mathe-
matically, as the proof of convergence to the optimum point
generally does not exist for an arbitrary architecture and loss
function. The conditions in Lemma 1 are based on our obser-
vations of training the NNs on many different scenarios and
channel data distributions, corrupted by Gaussian noise. We do
not claim these conditions and properties for an arbitrary type
of data. Nevertheless, the procedure for the core NN design
based on [6] and our simulations indicates that it holds for
Gaussian inputs. Furthermore, we treat Wv as a deterministic
matrix in proving (15), if the NN is converged and the matrix
Wv,genie itself is deterministic as well.

Lemma 2: From Lemma 1, it straightforwardly holds

E[‖WvZ‖2F] ≤ E
[
‖Z‖2F

]
.

Furthermore, for an arbitrary vertical array element i, with
i ∈ {1, 2, · · · ,M}, through the spatial filtering with Wv , the
post-processing noise will be reduced, if the convergence of
NN is reached, namely

E[‖W(i,:)
v Z‖2F] ≤ E

[
‖Z(i,:)‖2F

]
, (23)

where W
(i,:)
v and Z(i,:) denote the i-th row of matrices Wv

and Z, respectively.

With the Lemma 1 and Lemma 2 introduced above, now we
can start to prove equation (15).

Proof: With Lemma 2, we obtain

E
[
‖WvZ‖2F

]
= E

[
Tr(WvZZ

HWH
v)
]

= 2σ2Tr(WvW
H
v)

≤ E
[
‖Z‖2F

]
= E

[
Tr(ZZH)

]
= 2σ2M . (24)

Thus, it yields,

Tr(WvW
H
v) ≤M ⇔

M∑
i=1

M∑
m=1

|W(i,m)
v |2 ≤M , (25)

where W
(i,m)
v denotes the weighting coefficient on i-th row

and m-th column of Wv . Exploiting the same operations for
(23), considering (24) and (25), we obtain,

0 ≤
M∑
m=1

|W(i,m)
v |2 ≤ 1, ∀i ∈ {1, 2, · · · ,M}. (26)

Similarly, for horizontal case, we have

0 ≤
N∑
n=1

|W(j,n)
h |2 ≤ 1, ∀j ∈ {1, 2, · · · , N}. (27)

Considering arithmetic mean to combine the estimates from
vertical and horizontal subspaces, we have

Ĥ(i,j)
a =

1

2

[
Ĥ(i,j)
v + Ĥ

(j,i)
h

]
. (28)

Furthermore, it holds,

E
[
|Ĥ(i,j)

a |2
]

=
1

4
E
[
|Ĥ(i,j)

v + Ĥ
(j,i)
h |2

]
=

1

4
E
[
|Ĥ(i,j)

v |2
]

︸ ︷︷ ︸
A

+
1

4
E
[
|Ĥ(j,i)

h |2
]

︸ ︷︷ ︸
B

+
1

2
Re
{
E
[
Ĥ(i,j)
v Ĥ

(j,i)∗

h

]}
︸ ︷︷ ︸

C

.

(29)
Now, let us resolve the terms A, B and C in the equation
above. It holds,

A =
1

4
E

[∣∣ M∑
m=1

W(i,m)
v H(m,j)

v

∣∣2]+
σ2

2

M∑
m=1

∣∣W(i,m)
v

∣∣2 (30)

B =
1

4
E

[∣∣ N∑
n=1

W
(j,n)
h H

(n,i)
h

∣∣2]+
σ2

2

N∑
n=1

∣∣W(j,n)
h

∣∣2 (31)

C =
1

2
Re
{
E

[M∑
m=1

W(j,m)
v H(m,i)

v

N∑
n=1

W
(j,n)∗

h H
(n,i)∗

h

]}
+ σ2W(i,i)

v W
(j,j)
h . (32)

Let us pick out the post-processing AWGN related terms from
A, B and C. It holds,

VAR
[
Z(i,j)
a

]
=
σ2

2

M∑
m=1

|W(i,m)
v |2 +

σ2

2

N∑
n=1

|W(j,n)
h |2

+ σ2W(i,i)
v W

(j,j)
h , (33)

where the M × N matrix Za denotes the post-processing
noise after deploying arithmetic mean. Consider the following
inequality

M∑
m=1

|W(i,m)
v |2 +

N∑
n=1

|W(j,n)
h |2

≥W(i,i)2

v + W
(j,j)2

h ≥ 2W(i,i)
v W

(j,j)
h . (34)

With (33) and (34), the upper bound of VAR
[
Z

(i,j)
a

]
can be

represented as

VAR
[
Z(i,j)
a

]
≤ 2
{ M∑
m=1

|W(i,m)
v |2 +

N∑
n=1

|W(j,n)
h |2

}σ2

2

≤ 2σ2 = N0. (35)

With (33), we find the lower bound of VAR
[
Z

(i,j)
a

]
as

VAR
[
Z(i,j)
a

]
>
σ2

2

M∑
m=1

|W(i,m)
v |2 +

σ2

2

N∑
n=1

|W(j,n)
h |2

=
σ2

2
ρ =

ρ

4
N0. (36)

with ρ =
∑M
m=1 |W

(i,m)
v |2 +

∑N
n=1 |W

(j,n)
h |2 and 0 ≤ ρ ≤ 2.

Finally, let us make a summary, by jointly considering (35) and
(36). It holds,

ρ

4
N0 < VAR

[
Z(i,j)
a

]
≤ N0. (37)

(q.e.d.)

Further Discussion

In Fig. 12, numerical demonstration is provided to exhibit
the contour of |W(i,j)

v |2 with M = 8. The presented weight
matrix is the average of a large number of weight matrices,
generated by the pre-trained NN-model for certain stationary
statistics. Thus, the weight matrices in Fig. 12 can be regarded
as the approximation of the optimum |W(i,j)

v,genie|2 within dif-
ferent batch stationary inference stages. In i.i.d. data batch,
no spatial correlation can be exploited, and in the data batch
involving Kronecker model, rich spatial correlation exists.
Fig. 12 not only verifies the equations (25)-(27) numerically,
but also reveals the fact, that the off-diagonal elements in
Wv and Wh will become dominant, if the spatial correlation
increases. This makes the term W

(i,i)
v W

(j,j)
h in (33) reduce

and become negligible, and helps to reduce the post-processing
noise variance and improve the quality of channel estimates.
Let us again focus on post-processing noise variance in (33),
and introduce following notations for further simplification as

z =
1

σ2
VAR

[
Z(i,j)
a

]
, (38)

x =

M∑
m=1

∣∣W(i,m)
v

∣∣2, (39)

y =

N∑
n=1

∣∣W(j,n)
h

∣∣2, (40)

d = W(i,i)
v W

(j,j)
h . (41)

Obviously, equation (33) can be thus represented as

z =
1

2
(x+ y) + d. (42)

Furthermore, considering the post-processing noise variance
VAR

[
Z

(i,j)
v

]
and VAR

[
Z

(i,j)
h

]
, which are uniquely obtained

from vertical and horizontal Subspace Training, respectively.
With equation (29) to equation (31), let us additionally intro-
duce,

ቚ𝑾𝑣,iid
(𝑖,𝑚)

ቚ
2
 ቚ𝑾𝑣,Kron

(𝑖,𝑚)
ቚ
2

𝑖 𝑖

𝑚
 𝑚

max
𝑖

෍ ቚ𝑾𝑣,iid
(𝑖,𝑚)

ቚ
2

𝑀

𝑚=1

= 0.8268 ≤ 1

෍෍ ቚ𝑾𝑣,iid
(𝑖,𝑚)

ቚ
2

𝑀

𝑚=1

𝑀

𝑖=1

= 6.6041 ≤ 𝑀 = 8 ෍෍ ቚ𝑾𝑣,Kron
(𝑖,𝑚)

ቚ
2

𝑀

𝑚=1

𝑀

𝑖=1

= 1.4007 ≤ 𝑀 = 8

max
𝑖

෍ ቚ𝑾𝑣,Kron
(𝑖,𝑚)

ቚ
2

𝑀

𝑚=1

= 0.2393 ≤ 1

Fig. 12. Contour of |W(i,m)
v |2 with and without spatial correlation at 10dB

SNR

1

σ2
VAR

[
Z(i,j)
v

]
= 2

M∑
i=0

∣∣W(i,m)
v

∣∣2 = 2x, (43)

1

σ2
VAR

[
Z

(i,j)
h

]
= 2

N∑
j=0

∣∣W(j,n)
h

∣∣2 = 2y. (44)

Thus, we are able to find the effective subspace combin-
ing region for (x, y)-pairs, which realizes both inequalities
VAR

[
Z

(i,j)
a

]
< VAR

[
Z

(i,j)
v

]
and VAR

[
Z

(i,j)
a

]
< VAR

[
Z

(i,j)
h

]
for the post-processing noise variance in vertical and horizon-
tal domains individually, so that the boosting effect in Fig. 8
by means of subspace combining can be achieved, if Turbo-
AI is additionally deployed. With the introduced simplified
notations, following equation system can be established as,


z =

1

2
(x+ y) + d,

z < 2x,
z < 2y,

(45)

with 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 and 0 ≤ d ≤ 1. In Fig. 13, the
equation system (45) is sketched in Cartesian coordinates. The
blue intersection part denotes the (x, y, z)-pairs, that satisfy
the equation (45), and its corresponding projection on plane
z = d is illustrated as the red shadow. With Fig. 13, we obtain
following inequality

1

3

M∑
m=1

∣∣W(i,m)
v

∣∣2 +
2

3
W(i,i)

v W
(j,j)
h <

N∑
n=1

∣∣W(j,n)
h

∣∣2
< 3

M∑
m=1

∣∣W(i,m)
v

∣∣2 − 2W(i,i)
v W

(j,j)
h . (46)

Notice that the equation (46) provides the range for both∑M
m=1 |W

(i,m)
v |2 and

∑N
n=1 |W

(j,n)
h |2, in order to effectively

support Turbo-AI. First of all, for a 2D massive array system,

∑M
m=1 |W

(i,m)
v |2 and

∑N
n=1 |W

(j,n)
h |2 should be adjusted by

selecting the number of antenna elements for both vertical and
horizontal subspaces, or by configuring the antenna spacing
to realize spatial correlation. Secondly, notice that the red
shadowing part in Fig. 13 will be reduced, if d = W

(i,i)
v W

(j,j)
h

increases. Once d = 1 holds, the shadowing part will disap-
pear completely. This indicates that the subspace combining
will not be effective any more, if the diagonal elements of
matrices Wv and Wh become dominant, due to loss of spatial
correlation.

-pair

Fig. 13. Effective combining region for (x, y)-pairs to boost the performance
with Turbo-AI

B. Proof of Turbo-AI

Turbo-AI is an iterative procedure. In training stage, Turbo-
AI exploits the new estimates to replace the observations and
repeats the training. The applicability of Turbo-AI comes from
the fact that the additive noise variance after each training will
be smaller than that of the previous observation, which can be
represented by following equality,

E
[
‖WI+1

(I∏
i=0

WiY
)
−H‖2F

]
≤ E

[
‖

I∏
i=0

WiY −H‖2F
]
,

(47)

where Wi denotes the weighting matrix of i-th iteration,
Y and H denotes the observations and labels, respectively.
Furthermore, the noise distribution at the input and output
of the NN remains Gaussian due to the fact that our NN in
essence is a linear operator on the input data Y.

Proof: In Appendix A, the convergence of a neural
network is defined. Thus, after initializing Turbo-AI at 0-th
iteration, if the convergence is reached after the learning stage,
it holds,

E
[
‖W0Y −H‖2F

]
≤ E

[
‖Y −H︸ ︷︷ ︸

Z

‖2F
]
. (48)

And at first iteration, as long as the convergence is reached
with the updated observations W0Y, a weighting matrix W1

exists, which satisfies the following inequality,

E
[
‖W1W0Y −H‖2F

]
≤ E

[
‖W0Y −H︸ ︷︷ ︸

Z0

‖2F
]
. (49)

In order to prove (37) in sense of mathematical induction, let
us assume that the following inequality holds at I-th iteration,

E
[
‖WI

(I−1∏
i=0

WiY
)
−H‖2F

]
≤ E

[
‖
I−1∏
i=0

WiY −H︸ ︷︷ ︸
ZI−1

‖2F
]
.

(50)

Then, at (I + 1)-th iteration, with the updated observations∏I
i=0 WiY, the training can be carried out in the same neural

network again. The weighting matrix WI+1 will be obtained,
as the convergence is reached. It holds,

E
[
‖WI+1

(I∏
i=0

WiY
)
−H‖2F

]
≤ E

[
‖

I∏
i=0

WiY −H︸ ︷︷ ︸
ZI

‖2F
]
.

(51)

(q.e.d.)

REFERENCES

[1] Silver, D. et. al.; “Mastering the Game of Go with Deep Neural
Networks and Tree Search,” Nature, Vol. 529, pp. 484–503, Jan. 2016.

[2] Silver, D. et. al.; “Mastering the Game of Go without Human Knowl-
edge,” Nature, Vol. 550, pp. 354–371, Oct. 2017.

[3] Boccardi, F; Heath, R.W.; Lozano, A.; Marzetta, T.L.; Popovski, P.;
“Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag.,
Vol. 52, No. 2, pp. 74–80, Feb. 2014.

[4] Shannon, C.E.; “A Mathematical Theory of Communication,” Bell
System Technical Journal 27 (3), pp. 379–423, Jul. 1948.

[5] O’Shea, T.; Hoydis, J. “An Introduction to Deep Learning for the
Physical Layer,” IEEE Trans. Cognitive Commun. Network, Vol. 3,
No. 4, pp. 563–575, Dec. 2017.

[6] Neumann, D.; Wiese, T.; Utschick, W.; “Learning the MMSE channel
estimator,” IEEE Trans. Signal Process., Vol. 66, No. 11, pp. 2905–
2917, Jun. 2018.

[7] Chen, Yejian; ten Brink, S.; “Pilot Strategies for Trellis-Based MIMO
Channel Tracking and Data Detection,” in Proc. 2013 IEEE Global
Telecommun. Conf. (Globecom’13), pp. 4313–4318, Atlanta, USA, Dec.
2013.

[8] Dong, Peihao; Zhang, Hua; Li, Geoffrey Ye; Gaspar, I.; Naderi-
Alizadeh, N.; “Deep CNN-Based Channel Estimation for mmWave
Massive MIMO Systems,” IEEE J. Select. Topics Signal Process.,
Vol. 13, No. 5, pp. 989–1000, Sep. 2019.

[9] Marzetta, T.L.; “Noncooperative Cellular Wireless with Unlimited
Numbers of Base Station Antennas,” IEEE Trans. Wireless Commun.,
Vol. 9, No. 11, pp. 3590–3600, Nov. 2010.

[10] Hellings, C.; Dehmani, A.; Wesemann, S.; Koller, M.; Utschick, W.;
“Evaluation of Neural-Network-Based Channel Estimators Using Mea-
surement Data,” in Proc. ITG Workshop on Smart Antennas (WSA’19),
Apr. 2019.

[11] Koller, M.; Hellings, C.; Utschick, W.; “Learning-Based Channel
Estimation for Various Antenna Array Configurations,” in Proc. IEEE
20th Int. Workshop Signal Process. Advances Wireless Commun.
(SPAWC’19), Jul. 2019.

[12] Ying, Dawei; Vook, F.W.; Thomas, T.A.; Love, D.J.; Ghosh, A.;
“Kronecker product correlation model and limited feedback codebook
design in a 3D channel model,” in Proc. IEEE Int. Conf. Commun.
(ICC), Jun. 2014.

[13] 3GPP Technical Specification Group Radio Access Network; “Spatial
Channel Model for Multiple Input Multiple Output (MIMO) Simula-
tions,” 3GPP TS 25.996 v.15.0.0, Jun. 2018.

	I Introduction
	II System Model
	III Channel Estimation and Machine Learning
	III-A Estimation Through Subspaces
	III-B Neural Network and Complexity
	III-C Turbo-AI
	III-D Universal Training for Turbo-AI

	IV Simulations and Numerical Results
	V Conclusion
	V-A Proof of (15)
	V-B Proof of Turbo-AI

	References

