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Abstract—Data aggregation is an efficient approach to handle
the congestion introduced by a massive number of machine type
devices (MTDs). The aggregators not only collect data but also
implement scheduling mechanisms to cope with scarce network
resources. We use the concept of meta distribution (MD) of the
signal-to-interference ratio (SIR) to gain a complete understand-
ing of the per-link reliability and describe the performance of
two scheduling methods for data aggregation of machine type
communication (MTC): random resource scheduling (RRS) and
channel-aware resource scheduling (CRS). The results show the
fraction of users in the network that achieves a target reliability,
which is an important aspect to consider when designing wireless
systems with stringent service requirements.
Index Terms: data aggregation, scheduling schemes, meta distri-
bution.

I. INTRODUCTION

Nowadays, machine-type communication (MTC) applica-
tions—smart building and surveillance, smart cities, smart
grid, remote maintenance and monitoring systems—have a
significant impact on society and constitute an important factor
in economic development. These applications fall under the
Internet of Things (IoT) umbrella, which envisions connec-
tivity for a huge number of heterogeneous, low-complexity,
low-power and low-storage devices (e.g., sensors, actuators,
appliances) communicating between each other through the
Internet without human intervention. This variety of system
requirements brings numerous challenges in connectivity and
efficient communication management [1].

A promising way to enable a massive number of simultane-
ously connected devices relies on the concept of data aggrega-
tion, which means that the traffic coming from machine-type
devices (MTDs) is first collected by nodes called aggregators,
which then relay the data to the core network. As shown
in Fig.1, this structure [2]: i) shortens the distance in the
communication while diminishing the power consumption
of the MTDs; ii) reduces the number of connections to
the core, thus decreasing the congestion; and iii) extends
network coverage. Several articles have recently investigated
and exploited the advantages of data aggregation in massive
MTC (mMTC). For example, the authors of [2] presented
experimental results that quantify the signaling load reduction
as the number of aggregators grows in two practical scenarios:
smart metering and vehicular sensing. An efficient network
slicing data aggregation scheme is introduced in [3] for
MTC applications in 5G networks. In contrast to conventional
strategies that only consider the device location, this solution

Fig. 1. Typical MTC scenario with data aggregation.

also assesses the latency requirement to effectively increase
the network capacity and reduce the collision probability and
average access delay of devices. In [3], the authors proposed
a data aggregation scheme based on the clustering of sensor
nodes and extreme learning machine. This design employs a
Kalman filter to transmit only accurate and condensed data to
the base station. In [4], a novel clustering technique based on
fuzzy logic is suggested for cluster head selection and energy-
efficient routing protocols in wireless sensor networks with
data aggregation.

Because of the scarce network resources, aggregators can
also perform different types of scheduling mechanisms. This
allows incorporating some intelligence in the aggregator such
that the network performance improves [5], [6]. For these
reasons, some solutions have been proposed to optimize
the data aggregation process. In [7], a scheduling mecha-
nism is designed to minimize the latency of the aggregation
phase. Meanwhile, two scheduling schemes: random resource
scheduling (RRS) and channel-aware resource scheduling
(CRS) are proposed in [5] and analyzed using stochastic
geometry. The authors show that CRS and RRS schemes
achieve similar performance as long as the available resources
in the aggregator are not very limited, while CRS outperforms
RRS when the number of MTDs requesting service exceeds
the number of available channels. Later, these scheduling
mechanisms were extended in [8], [9] under non-orthogonal
multiple access (NOMA) and imperfect successive interfer-
ence cancellation.

On the other hand, the meta distribution (MD) of the
signal-to-interference ratio (SIR), which is the distribution



of the success probability conditioned on the point process,
has become an attractive tool to understand the behavior of
large-scale cellular networks better. By characterizing the SIR
MD, one can obtain useful insights on how the link success
probabilities are distributed in a realization of the network.
For example, the MD is used in [10] to evaluate the reliability
and latency of a cellular network with services coexisting in
the sub-6GHz and millimeter wave spectrum. Authors of [11]
exploited the SIR MD to adjust the per-link reliability via
rate control. The MD is further used in [12] to describe the
behavior of linear motorway vehicular ad hoc networks, where
the vehicles’ high speed makes the Poisson point process not
suitable for system modeling. In [13], the MD allows the
authors to optimize the power allocation in downlink NOMA
with and without latency constraints.

To the best of our knowledge, current literature lacks a
framework that integrates the three aforementioned concepts:
data aggregation, MD, and resource scheduling. Our objective
is to fill this gap through the following contributions:
• We use the MD concept to fully characterize the up-

link traffic performance in a Poisson network with data
aggregation. We adopt the RRS and CRS scheduling
schemes proposed in [5] to deal with the limited spectrum
resources. However, we provide a more fine-grained
performance characterization of a typical link.

• We present an accurate and simple closed-form expres-
sion for the SIR MD under the RRS scheme based on
an approximation obtained from the relation between
the geometric and the arithmetic mean, in contrast to
the usually adopted moment inversion approach (Gil-
Pelaez theorem) that implies the calculation of complex
integrals.

• Our results show that CRS can serve more devices
than RRS for a common target reliability. Moreover,
we conclude that the standard success probability does
not guarantee quality-of-service (QoS) for any node in a
network. We also provide insights into the transmission
rate required to keep a percentage of devices/users com-
municating with a target reliability for both scheduling
schemes.

The rest of the paper is structured as follows. Section II
presents the system model and assumptions. Section III defines
the SIR MD as a per-link performance metric. Sections IV
and V study RRS and CRS scheduling schemes, respectively.
Finally, Section VI presents numerical results and network
design insights, while Section VII concludes the paper.

II. SYSTEM MODEL AND ASSUMPTIONS

We examine the uplink transmissions of a large-scale single-
tire cellular network overlaid with spatially distributed aggre-
gator nodes. One specific deployment can be interpreted as
an instantaneous realization of an independent homogeneous
Poisson point process (HPPP), represented by Φp, with inten-
sity λp (expected number of aggregators per area unit). Since
Φp is a stationary process, the distribution of the points is
invariant with respect to translation of the origin; therefore, the

SIR analysis does not depend on the particular location of each
aggregator. Thus, according to Slivnyak’s theorem [14] and
without loss of generality, we consider a “typical” aggregator
located at the origin, which is subject to interference produced
by the other non-intended transmitters in the network.
Consider that at any instant, the MTDs across the entire net-
work transmit information to their serving aggregators through
the same setN of N orthogonal channels. Each aggregator can
accommodate only one MTD per channel, out of K requesting
service within its coverage area—K is a Poisson distributed
random variable with mean m, K ∼ Poiss(m). Thus, the
only contribution to the interference comes from the MTDs
in the serving zones of other aggregators using the same
channel (inter-cluster interference)1. Notice that each MTD
transmits whenever it has new information to send, and its
corresponding aggregator has allocated resources for trans-
mission—conforming the two scheduling schemes described
in the following sections. Assuming that the MTDs have low
mobility, complex association mechanisms between MTDs and
aggregators are not needed; thus, we can model their locations
as a Matérn cluster process (MCP)2, where the aggregators
form the parent point process [5].

The MCP can be defined as

Φ ,
⋃

v∈Φp

v + Bv, (1)

where Bv denotes the offspring point process; and each point
s ∈ Bv is independent and identical distributed around the
cluster center v ∈ Φp with distance distribution f(rd) = 2rd

R2
d

,
where Rd is the radius of the clusters formed by the aggrega-
tors and its corresponding MTDs [15]. Notice that the MCP
definition implies that each MTD is associated with a single
aggregator even though it might be the case that a particular
MTD is located within several aggregators’ coverage areas.

We adopt a channel model that consists of the commonly
used power-law path-loss as the large-scale propagation effect.
Thus, the signal power decreases at a rate of r−α with
the propagation distance r, and α ≥ 2 is the path loss
exponent. Quasi-static fading is considered as the small-scale
effect, which means that the channel is constant during a
transmission block and changes independently from block to
block. Additionally, Rayleigh multi-path fading environment is
assumed, with intended and interfering channel power gains
(h and g, respectively) being exponentially distributed with
unit mean. This allows us to examine the worst-case scenario
without line of sight.

All MTDs use full inversion power control. This is, each
device controls its transmit power so that the average sig-
nal power received at the serving aggregator is equal to

1The probability that any MTD within any cluster generates interference
does not depend on its position in the area respect the typical link—the channel
occupation probability is P0 = K/N when N > K and 1 otherwise. Thus,
based on the independent thinning property, we can model the interference
field observed from the typical link as an HPPP with density P0λp.

2This is a doubly Poisson cluster process that reflects in a better way
the properties of the scenario treated in this work, compared to other point
processes belonging to the same group such as the Thomas process [14].



a predefined constant value ρ. This guarantees a uniform
user experience while saving an important amount of energy
[8]. Due to the high density of MTDs and aggregators, we
consider an interference-limited scenario (i.e., the co-channel
interference limits the performance of all links, and the thermal
noise at the receiver side can be neglected); consequently,
the received SIR determines the network performance and the
value of ρ is irrelevant.

III. THE MD OF THE SIR

The link success probability given a SIR threshold θ,
ps(θ) = P(SIR > θ), is a performance metric of interest
in large-scale interference-limited networks. The computation
of ps requires spatial averaging over the point process; thus,
it does not reveal users with low success probability. In other
words, ps allows designers to know the fraction of MTDs
that succeed in transmitting, but it does not exhibit how
concentrated the link success probabilities are; therefore, it
is impossible to distribute the resources across the network
properly. It is important to measure the fluctuation of the
link reliability around ps to fully characterize the network’s
performance in terms of connectivity, end-to-end delay, and
QoS. Thus, we center our attention on random variables of
the form

Ps(θ) , P(SIR > θ|Φ), (2)

where the conditional probability is taken over the fading and
the channel access scheme and given the nodes’ position for a
particular realization of the network. Following this notation,
the standard success probability would be ps(θ) = E[Ps(θ)].
The intention is then to find the two-parameter complementary
cumulative distribution function (CCDF) of Ps(θ), defined as
[16]

F̄ (θ, x) , P(Ps(θ) > x), (3)

where x ∈ [0, 1] refers to the target reliability level. Due to
the ergodicity of the point process, one can understand F̄ (θ, x)
as the fraction of links or users that achieve an SIR θ with
probability at least x [17]. Direct calculation of (3) is usually
infeasible because the probability density function (PDF) of
the interference power is hard to find except for just a few
path loss exponents and fading models. Consequently, some
conjectures and approximations are usually made to ease the
heavy mathematical work; but this frequently results in an
inappropriate modeling of practical scenarios.

Different methodologies have been recently proposed in the
literature to find closed-form expressions or approximate the
MD. In [18], the entire MD is reconstructed only from its
moments using Fourier-Jacobi expansions. Authors of [16]
compare the results for the MD obtained from using the Gil-
Pelaez theorem, the beta approximation, and Paley-Zygmund
bound3. Finally, an efficient calculation method based on bino-
mial mixtures was presented in [19]. This approach permits us

3The Paley-Zygmund bound is useful to determine the fraction of links that
attains at least a certain fraction of the average performance.

to extract the MD from a linear transformation of the moments
(simple matrix-vector multiplication). This linear mapping is
an upper triangular matrix, symmetric with respect to the
antidiagonal, and needs to be calculated only once for the
desired level of accuracy. However, high order moments are
needed, which is not always feasible to compute.

Most of these methods require the computation of complex
integrals and are sensitive to the parameters selection. Differ-
ently, in the next section we provide a simple, yet efficient,
method for computing the SIR MD under RRS.

IV. RANDOM RESOURCE SCHEDULING (RRS)

Under RRS, each aggregator randomly assigns the channels
in N to the MTDs. Notice that this mechanism does not need
channel state information (CSI). Since the MTDs use inversion
power control, the SIR experienced by the typical user is
SIR = h

I , where I =
∑
i∈Φ\{0} gir

α
di
y−αi is the aggregated

interference from MTDs in other clusters transmitting over
the same channel, {yi} denotes the distance of the interfering
MTDs respect the typical user, h and {gi} are the fading power
gains on the desired and interfering links, respectively, and
{rdi} is the distance between the MTDs and their serving
aggregators. For an arbitrary but fixed realization of Φ, the
conditional success probability can be obtained from (2) as

Ps(θ) = P

 h∑
i∈Φ\{0}

girαdiy
−α
i

≥ θ

∣∣∣∣∣∣∣Φ


= Egi

P
h ≥ θ ∑

i∈Φ\{0}

gir
α
diy
−α
i

∣∣∣∣∣∣gi,Φ


(a)
= Egi

exp

−θ ∑
i∈Φ\{0}

gir
α
diy
−α
i

∣∣∣∣∣∣Φ


(b)
=
∏

i∈Φ\{0}

[
1

1 + θ(
rmi
yi

)α

]
(c)
= lim
η→∞

η∏
i=1

[
1 + θ

(
rdi
yi

)α]−1

(d)

≤ lim
η→∞

∑η
i=1

[
1 + θ

(
rdi
yi

)α]
η

−η

(e)
= lim

η→∞

[
1 +

θ

η

η∑
i=1

(
rdi
yi

)α]−η
= lim
η→∞

[
1 +

θ

η
β

]−η
(f)
≈ e−βθ, (4)

where (a) comes from applying the CCDF of the unit mean ex-
ponential distribution of h; (b) follows from using the Laplace
transform of the sum of independent and identical distributed
exponential random variables {gi}; in (c), we consider the
number of interfering nodes as η, and then use the relation
between the geometric and the arithmetic mean to obtain (d).
Note that interchanging geometric and arithmetic means was
shown to conduce to accurate performance expressions in [20]
for sufficiently dense networks without aggregation. Finally,



(e) comes from simple algebraic transformations; and (f)

results from making β =
∑η
i=1

(
rdi
yi

)α
.

Remark 1. Obtaining the PDF of Ps(θ) directly from (b)
seems infeasible for massive network deployments; thus, in
this case, we adopt approximation (4) to attain the final SIR
MD analytical expression.

The Laplace transform of β (See Appendix A) has the form
of a stretched exponential or Kohlrausch function, i.e, e−ts

2/α

for a certain constant t. In [21, Table I], the authors provide
the PDF of such random variables for different values of α.
Herein, we adopt these results and set α to 4 for simplicity.
Then, the PDF of β is given by [21, Table I]

fβ(ω) =
te

−t2
4ω

2
√
πω

3
2

. (5)

From (3)-(5), we attain the SIR MD under RRS as

F̄ (θ, x)=P
(
e−βθ>x

)
=P

(
β<
− lnx

θ

)
=

∫ − ln x
θ

0

fβ(ω)dω

=

∫ − ln x
θ

0

te
−t2
4ω

2
√
πω

3
2

dω
(a)
= b

∫ ∞
−θ
ln x

u
1
2−1e−audu

= ba−
1
2 Γ

(
1

2
,− θa

lnx

)
, (6)

where (a) comes from substituting 1
ω = u, a = t2

4 , b = t
2
√
π

and t = 1
2P0λpπR

2
dΓ
(
1− 2

α

)
. Note that P0λp is the density

of the served MTDs and P0 is the average channel occupation
probability, which is independent of the scheduling scheme
[5]:

P0 = EK
[

min(K,N)

N

]
=

N∑
k=0

k

N

mke−m

k!
+

∞∑
k=N+1

mke−m

k!

= 1− Γ[1 +N,m]

N !
+
mΓ[1 +N,m]− e−mmN+1

(N − 1)!N2
. (7)

From the previous equation it becomes evident that as N
increases, the occupation probability for a certain channel
decreases, which improves the performance.

Remark 2. The same procedure to compute the SIR MD in
(6) applies for any integer value of path loss exponent α > 2.

V. CHANNEL-AWARE RESOURCE SCHEDULING (CRS)

Contrary to the RRS scheme, the aggregators that implement
CRS allocate the available channel resources to the MTDs
with better SIR (equivalently, better channel gains). Herein,
each aggregator is assumed with perfect CSI of its associated
MTDs. From (2), we have that the conditional success proba-
bility corresponding to the ν-th link with h(ν) channel power
gain is

Ps(θ) , P(SIR > θ|Φ) = 1− P(h(ν) < θI|Φ), (8)

where ν = 1, ..., N corresponds to the selected MTDs ordered
according their SIR as h(1)>. . .>h(ν)>. . .>h(N). Then,

the cumulative distribution function (CDF) of h(ν) using order
statistics results is Fh(ν)(v)=

∑K
l=q

(
K
l

)
[Fh(v)]l[1−Fh(v)]K−l,

where q = K−ν+1 and Fh(v) is the CDF of an exponential
random variable. The methodology to find the SIR MD is the
same as in Section III:

F̄ (θ, x)

(a)
= P

(
1−

K∑
l=q

(
K

l

)
EI
[
[1− e−Iθ]le−Iθ(K−l)

∣∣∣Φ] > x

)
(b)
= P

(
1−

K∑
l=q

l∑
r=0

(
K

l

)(
l

r

)
(−1)rEI

[
e−Iθ(K−l+r)

∣∣∣Φ]>x)
(c)
= P

(
1−

K∑
l=q

l∑
r=0

(
K

l

)(
l

r

)
(−1)r

∏
i∈ΦI

1

1+θl,r(
rdi
yi

)α
>x

)
, (9)

where (a) comes from combining (8) and (3), and from using
the CDF of h(ν); (b) is obtained by using the binomial
expansion (1 + z)l =

∑l
r=0

(
l
r

)
zr; and (c) follows from

considering the expectation in (b) as the Laplace transform
of the interference conditioned on the point process, and
by making θl,r = θ(K − l + r). Herein, we analyze the
worst-case performance, which is when ν = N . This is, we
consider the link with the smallest channel coefficient among
all the links with access granted by the aggregator. Thus, by
setting q = K−N + 1 in (9), we avoid averaging over all
possibilities of ν, reducing complexity while keeping the per-
link performance guarantee concept. Notice that considering
all choices of ν would lead to an average result, which
contradicts the MD concept. Moreover, (9) allows a semi-
analytical computation of the MD that depends only on the
interfering nodes’ position inside the clusters and with respect
to the typical link. Therefore, it is unnecessary to model either
the channel fading or the scheduling process, which reduces
the computation time significantly.

VI. NUMERICAL RESULTS

This section presents numerical results to analyze the per-
link performance in an mMTC setup with data aggregation
under RRS and CRS. The aggregators are deployed in a disk
of radius 3 km with density λp = 3 × 10−6 aggregators/m2,
which guarantees 100 aggregators deployed on average in
the area while eliminating the impact of the border effect
in the simulation. It was selected N = 20, m = 60, and
Rd = 40 m to produce visualization errors in the order
of 10−2. Monte Carlo based results are obtained with 105

samples and are included in the figures with markers to
validate our analytical (for RRS) and semi-analytical (for CRS)
expressions, represented with lines.

Fig. 2 shows the efficacy of the SIR MD for describing
the system per-link performance. One can realize that the
traditional ps does not guarantee QoS for any node in the
network, which is even more remarkable when RRS is enabled
in the aggregation phase. This is because the channels are
assigned to links that communicate with high error probability.
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In contrast, having the MD in hand allows effective distribution
of those resources as the exact fraction of links communicating
with a target reliability is known in advance. Moreover,
aggregators implementing CRS admit a higher percentage of
links achieving a target reliability in the resources-constrained
communication system.

Fig. 3 permits a more rigorous analysis of the fraction of
links that achieve certain reliability given the SIR threshold θ.
For example, the marked point shows that the transmission rate
should be set no greater than log2(1 + 10−5/10) = 0.396 bits
per channel use (bpcu) to guarantee nearly 86% of the links
achieving at least 99.9% success probability when operating
with RRS. One may notice that nearly the same fraction of
devices can transmit with the same rate under both scheduling
schemes, but with reliability improved from 0.9 when using
RRS to 0.999 under CRS. If simplicity is desired in the
network, RRS is the solution, but only a small percentage of
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Fig. 4. Transmit rate versus average number of MTDs per aggregator for
F̄ (θ, x) = u = 0.99, 0.95 and x = 99% of reliability.
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devices achieve high reliability. However, if a larger number
of devices need to communicate, CRS seems to be the best
option to provide them the required reliability.

Fig. 4 visualizes the trade-off between the transmit rate
and m. In general, the transmit rate has to decrease when
the number of MTDs requesting transmission approaches the
available resources. However, when this value exceeds N , the
probability of selecting a better channel under CRS increases,
and the transmit rate can improve. In contrast, under RRS
the rate can not exceed a constant value. Notice that the
percentage of devices communicating with the target reliability
must remain the same in both cases.

Fig. 5 shows an important trade-off that network designers
need to consider. This is, the aggregators’ density can not
increase loosely; otherwise, only a small fraction of MTDs
would communicate with the target reliability. On the other
hand, it is clear that as λp approaches 0, the highest percentage
of MTDs achieving the target reliability, but this is not the best



choice because we would not benefit from aggregation. Notice
that, in general, the density of served MTDs increases with λp.
However, under RRS, almost no transmissions satisfy 99% of
reliability. Moreover, based on these figure results, one can
determine the density of MTDs that allows reaching an SIR θ
with reliability x, which is given by λpP0F̄ (θ, x).

VII. CONCLUSIONS

In this work, we analyzed the meta distribution of the SIR
to provide a more fine-grained description of the per-link per-
formance under RRS and CRS scheduling schemes compared
to the analyses derived from the traditional success probability.
Our results showed that RRS performs extremely poor in
terms of per-link reliability compared to CRS, when a limited
amount of resources can be scheduled among the MTDs. This
is, RRS guarantees the same per-link reliability performance
as CRS but for a smaller number of communication links.
This difference is more significant when targeting stringent
communication errors. In future works, we might explore
analytical approaches to characterize the meta distribution
under CRS and implement an algorithm that ensures efficient
power and rate control in these challenging scenarios.
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APPENDIX A
LAPLACE TRANSFORM OF β

We proceed as follows

Lβ(s)=EΦ,rd

[
exp

(
− s

∑
i∈Φ\{0}

( rdi
yi

)α)]
= EΦ

∏
i∈Φ\{0}

Erd
[

exp
(
− s
( rdi
yi

)α)]
(a)
= exp

(
−2πλ

∫ ∞
0

(
1−Erd

[
exp

(
− s
(
rd
y

)
α
)])

ydy

)
(b)
= exp

(
−2πλ
α Erd

∫ ∞
0

[
1− exp

(
−srαd
w

)]
w

2
α−1dw

)
(c)
= exp

(
− πP0λpErd

[
Ew
[(

w
(srd)α

)− 2
α

)])
= exp

(
− πP0λpErd [r2

d] Ew
[
w

2
α

])
= exp

(
−πP0λp

R2
d

2 Γ
(
1− 2

α

)
s

2
α

)
= exp

(
−ts

2
α
)
, (10)

where (a) comes from applying the probability generating
functional (PGFL) defined in [22], [23]; (b) follows from the
substitution y−α = 1

w ; (c) is obtained using the following
definition of moment of a non-negative continuous real random
variable E[zn] =

∫
nzn−1(1− F (z))dz, and by noticing that

Ew
(
w

2
α

)
is the expected value of an exponential random

variable with unitary mean.

REFERENCES

[1] G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz,
“A Survey on 5G Networks for the Internet of Things: Communication
Technologies and Challenges,” IEEE Access, vol. 6, pp. 3619–3647,
2017.

[2] Z. Dawy, W. Saad, A. Ghosh, J. G. Andrews, and E. Yaacoub, “To-
ward Massive Machine Type Cellular Communications,” IEEE Wirel.
Commun., vol. 24, no. 1, pp. 120–128, February 2017.

[3] I. Ullah and H. Y. Youn, “Efficient data aggregation with node clustering
and extreme learning machine for WSN,” J. Supercomput., pp. 1–27,
2020.

[4] A. Hamzah, M. Shurman, O. Al-Jarrah, and E. Taqieddin, “Energy-
efficient fuzzy-logic-based clustering technique for hierarchical routing
protocols in Wireless Sensor Networks,” Sensors, vol. 19, no. 3, p. 561,
2019.

[5] J. Guo, S. Durrani, X. Zhou, and H. Yanikomeroglu, “Massive Machine
Type Communication with data aggregation and resource scheduling,”
IEEE Trans. Commun., vol. 65, no. 9, pp. 4012–4026, 2017.

[6] C.-H. Chang and H.-Y. Hsieh, “Not every bit counts: A resource
allocation problem for data gathering in machine-to-machine commu-
nications,” in IEEE Globecom. IEEE, 2012, pp. 5537–5543.

[7] X. Li, X. Xu, S. Wang, S. Tang, GuoJun Dai, JiZhong Zhao, and Yong
Qi, “Efficient data aggregation in multi-hop wireless sensor networks
under physical interference model,” in IEEE 6th MASS, Oct 2009, pp.
353–362.
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