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Abstract—In this work, we proposed a tractable mathematical
framework to analyze the coverage probability in dynamic down-
link cellular networks taking into account the queue dynamics
with finite buffer restriction. In particular, the developed model is
based on stochastic geometry and queueing theory to handle the
interaction between the coverage probability and the queueing
state evolution. We also analyze the coverage probability as well
as packet loss probability with discrete time Markov chain at
stationary regime. We explicitly derive the influence of the packet
buffer length to the coverage and packet loss probability. We
show in particular that small buffer length leads to a better
coverage probability but also to a larger packet loss probability,
advocating for a tradeoff between these two metrics.

Index Terms—stochastic geometry, downlink cellular network,
instantaneous SINR, DTMC, finite buffer.

I. INTRODUCTION

A. Background and related works

Stochastic geometry provides a mathematical framework to
analyze the performance of large scale wireless networks by
capturing the spatial randomness intrinsic to the wireless sys-
tems including fading, shadowing, and power control [1]–[3].
Recently, stochastic geometry has been combined with more
complex network models taking into account frequency reuse,
multiple antennas, multiple-tiers or load-aware protocols, to
cite a few [4]–[6].

Since real systems are subjected to temporal traffic vari-
ations and the sources generate packets according to some
stochastic processes [7], the full-load hypothesis, which as-
sumes that each cell uses the same frequency band and is
always transmitting, is not enough to address the performance
of practical systems. The full load hypothesis generally leads
to pessimistic network performance [6].

Therefore, load-awareness is essential for practical per-
formance assessment. The main difficulty is the complex
interaction between the packet arrival process and the service
rate, which depends on the coverage probability, that depends
in turn on the interference distribution over the networks and
the dynamic of transmitters’ queues. Hence, the distribution
of the interferers and the queue length at each transmitter are
two interdependent processes which make the analysis of the
signal to interference plus noise ratio (SINR) quite challenging
[6], [8].
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A simple way to decouple the influence of the interference
and the data traffic in the SINR analysis, is to consider that the
set of interfering transmitters is a Poisson point process (PPP)
randomly thinned from the original PPP according to a certain
activity factor [5]–[7]. In [7], authors studied the impact of the
activity probability on heterogeneous cellular network perfor-
mance, e.g. coverage probability, average rate, conditioned on
that the typical user connects to the strongest BS. Similarly,
[5], [6] integrates stochastic geometry and queueing theory to
study sufficient and necessary conditions for queue stability in
ad hoc networks. However, the interaction between the queues
at different transmitters are either ignored or only analyzed by
approximations.

To model the aforementioned interactions between the
queues and the interference distribution, authors in [8]–[10]
introduced queueing theory in the analysis of the coverage
probability. A traffic-aware spatio-temporal model for IoT
devices supported by cellular uplink connectivity has been
developed in [9]. The authors studied the trade-off between
the scalability of the network, i.e. its ability to support a
large number of devices, and its stability, i.e. the queues are
not diverging. Similarly, a novel spatio-temporal mathematical
framework has been developed to analyze the transmission
success probability of a cellular network [10], where the
number of accumulated packets in the queues is approximated
by a Poisson distribution. However, the theoretical findings are
not validated by simulations.

To the best of our knowledge, all the works mentioned
before studied the coverage probability with infinite queue
lengths. However, the packet loss probability is also an
important performance measure needed for the design of
telecommunication networks. The quantity of interest is the
probability of a new packet is dropped when the buffer has a
finite size [11], [12]. The main contribution of the paper is to
derive the coverage and packet loss probabilities considering
the buffer restriction.

B. Approach and contributions

This work proposes a tractable mathematical model to ana-
lyze the coverage probability and packet loss probability in a
downlink cellular network, in which queue dynamics are taken
into consideration. We develop a comprehensive approach to
handle the interaction between the coverage probability and
the queueing state evolution using a discrete time Markov



chain (DTMC) when a finite buffer length at each transmitter
is considered. We derive a closed-form expression of the
coverage probability that depends on the fraction of active base
stations (BS) that depends in turn to the activity probability
which is related to the buffer length. We also characterize the
packet loss probability with DTMC the stationary regime.

C. Notations

Throughout the paper, P{·} denotes probability, EX{·}
denotes the expectation over the random variable X . The
indicator function is denoted as 1{·}, which takes values 1
when the statement {·} is true and 0 otherwise. The Euclidean
norm is denoted as ‖ · ‖.

The rest of paper is organized as follows. Section II presents
the system model and the assumptions. The coverage and
packet loss probabilities are established in Section III. Section
IV provides the simulation results and conclusions are drawn
in Section V.

II. SYSTEM MODEL

A. Spatial & physical layer parameters

We consider a single-tier downlink cellular-based network
where BSs are spatially distributed in R2 following an ho-
mogeneous PPP Φ = {xi}i∈N with intensity λ, where the
xi’s are the positions of BS. We assume the user equipments
(UEs) density is high enough that every BS has at least one
user associated with it. Besides, each UE is served by its
nearest BS. A single UE, randomly chosen, is considered as
a typical UE and is located at the origin (0, 0) for the easy of
analysis, with its tagged BS located at x0. Moreover, every BS
is assumed to transmit in the same band, i.e. full frequency
reuse.

B. Traffic model

We use a discrete time queueing system to model the
random traffic arrival and departure processes. The time is
slotted in very short equal intervals. Each time slot can be
used for a single transmission attempt, which means that a
single packet arrival or departure can take place per time slot.

A geometric inter-arrival packet generation, with parameter
ξ ∈ [0, 1] (packet/slot) is assumed at each BS. The arrived
packets at each BS are stored in a buffer with finite size until
being transmitted successfully. When a packet arrives and the
buffer is full, this new arrival packet is dropped. The buffer
length restriction B are the same for all BS and is the maximal
number of packets the buffer can contained.

Contrarily to the arrival process, the departure process
cannot be fixed a priori. It is characterized according to
the time-dependent SINR distribution. If the received SINR
exceeds a predefined threshold θ, the receiver can decode the
packet, this packet is transmitted successfully and it can be
removed from the queue. If the transmission failed, the packet
remains in the buffer and waits for a re-transmission in the next
time slot until being successfully transmitted. In this paper, no
limit on the number of retransmissions is considered. At each
time slot, the transmitters with empty buffer remain silent.

Moreover, we define Φt as the set of BS that remain active in
the time slot t ∈ N.

The realization of the point process Φ is conditioned on
a full time activity of the BS located at x0. The relevant
probability measure over the PPP is then reduced to Palm
probability, denoted as Px0 . Correspondingly, the expectation
is taken with respect to the measure Px0 .

C. Signal-to-interference ratio

The received SINR at time slot t experienced by the typical
UE is

γt =
hx0,t ‖x0‖−α

σ2 +
∑

x∈Φ\x0

hx,t ‖x‖−α 1(x ∈ Φt)
(1)

where ‖x‖ is the distance between the interfering BS at x
and the typical user, hx,t and hx0,t are the channel gains
between the typical UE and the interfering BS at position x
and its tagged BS at position x0 at time slot t, respectively, and
they are assumed to be exponentially distributed. α stands for
the path loss exponent, σ2 denotes the power of the additive
white Gaussian noise and 1(x ∈ Φt) indicates whether a
node located at x ∈ Φ is transmitting at time slot t, i.e.
1(x ∈ Φt) = 1 or not, i.e. 1(x ∈ Φt) = 0. Moreover, we
note qt the quantity

qt = P1(x∈Φt)(1(x ∈ Φt) = 1) (2)

which can be seen as the fraction of active interfering BS
at time slot t or equivalently the probability that a randomly
chosen BS is active at time slot t.

III. PERFORMANCE ANALYSIS

The main technical results of the paper are presented now.
we first detail the dynamic coverage probability. Then, the
traffic analysis and its relation with the coverage probability
are performed thanks to a DTMC. By characterizing the
stationary regime of this DTMC, we derive the distribution
of stable coverage probability and packet loss probability.

A. Dynamic coverage probability

Considering that the typical UE receives data at time slot
t, i.e. its associated BS in x0 is always active, the coverage
probability is defined as [6]

pt(θ, ξ, B) , Px0 [γt > θ] (3)

where θ is the decoding SINR threshold.

Lemma 1. The received dynamic coverage probability expe-
rience by the typical UE at time t is

pt(θ, ξ, B) = 2πλ

∫ ∞
0

e−σ
2θrαe−πλr

2(1+qtρ(α,θ))rdr (4)

where ρ(α, θ) =
∫∞

1
[1 + u

α
2 θ−1]−1du.

Proof. See Appendix A.

Lemma 1 quantifies how the coverage probability behaves
at a given time slot and depends on the traffic. The queue
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Figure 1. DTMC model.

states are affecting the coverage probability via the parameter
qt. As qt decreases, less interferers are actives in the network,
and hence, the aggregate interference decreases and dynamic
coverage probability increases at typical BS.

To characterize qt, a Markov chain with B + 2 states is
considered where the state space is {0, 1, · · · , B,B + 1} as
illustrated in Fig. 1. State 0 represents the empty buffer event.
When the buffer is in this state, the transmitter remains silent.
When the queue is in state B, it means the buffer is full
and hence any new generated packet is dropped, i.e. state
B + 1. Since the packets arrive according to the Bernoulli
process with parameter ξ and the service is then geometric
with parameter pt, the number of packets at an arbitrary time
instant can be modeled as the DTMC given in Fig. 1. Note
that qt is the complementary probability for the queue to be
in state 0 at each time slot.

B. Stable coverage probability

The network is called stable if the number of active transmit-
ters converges regardless of the network initial condition [13].
Let Φ̃ be the limit of Φt as t→∞, which represents the point
process in the stable regime. Let q = P

1(x∈Φ̃)(1(x ∈ Φ̃) = 1).
The stable coverage probability is defined as

p(θ, ξ, B) = lim
t→∞

pt(θ, ξ, B) (5)

Lemma 2. Considering qt→∞ = q, the stable coverage
probability is

p(θ, ξ, B) = 2πλ

∫ ∞
0

e−σ
2θrαe−πλr

2(1+qρ(α,θ))rdr (6)

where ρ(α, θ) =
∫∞

1
[1 + u

α
2 θ−1]−1du.

Proof. See Appendix B.

By characterizing the stationary regime of DTMC, we
decouple the time dependence of the coverage probability and
the queue states. Thanks to Lemmas 1 and 2, we are now
ready to present our main result of this paper, i.e. the stable
coverage probability with finite buffer restriction.

Theorem 1. The stable coverage probability with a finite
buffer restriction B is given by the fix point equation

p(θ, ξ, B) (7)

= 2πλ

∫ ∞
0

e−σ
2θrαe

−πλr2

(
1+

(RB+2−R)ρ(α,θ)

RB+2−R+(R−1)p̄(θ,ξ,B)

)
rdr

where p̄(θ, ξ, B) = 1− p(θ, ξ, B), and R = ξp̄(θ,ξ,B)

ξ̄p(θ,ξ,B)
.

Proof. See Appendix C.

Corollary 1. In an interference-limited network, i.e. σ2 → 0,
we have

p(θ, ξ, B) =

[
1 + Υ

∫ ∞
1

1

1 + u
α
2 θ−1

du

]−1

(8)

where Υ = 1 + (1−RB+2)−1(1−R)
−1

(1 − p(θ, ξ, B)).
When the path loss exponent α = 4, the stable coverage
probability can be further simplified to

p(θ, ξ, B) =
[
1 + Υ

√
θ(
π

2
− arctan

√
θ)
]−1

(9)

For the sake of simplicity, we use p instead of p(θ, ξ, B)
in the rest of this paper. The fix point equation expressed in
Theorem 1 can be iteratively solved using Algorithm 1.

Algorithm 1 Iteration algorithm for computation of p and q.
Initialize q1 ∈ (ξ, 1), q0 = 0, i = 0, ε� 1
while |qi+1 − qi| ≥ ε do
i← i+ 1, q ← qi, p← p (22) in Appendix C
if |qi+1 − qi| ≥ ε then
qi+1 ← q (21) in Appendix C
break

end if
end while
Return q ← qi+1 and p

C. Packet loss probability

The packet loss probability is the probability that a new
packet is dropped when it meets the maximum queue length
situation and is given by the following lemma.

Lemma 3. The packet loss probability at a randomly chosen
BS with finite buffer length restriction B is given by

ploss =
RB+2 −RB+1

(R− 1)p̄+RB+2 −R
(10)

where p is the stable coverage probability in Theorem 1 and
R = ξp̄

ξ̄p
.

Proof. ploss is the probability to be in the state B + 1.
According to (16) and Theorem 1, the result is obtained after
some algebraic manipulations.

IV. NUMERICAL RESULTS AND SIMULATIONS

BS positions are generated using a PPP with density λ =
0.25. Each UE is associated to its nearest BS. The packets
arrive to each BS according to the Bernoulli process with
parameter ξ and the service is then geometric with parameter
pt at each time slot. For each network realization, the queues
are let to evolve up to the convergence, i.e. the number of
active transmitters does not evolve with time, then a new
network realization is drawn and the process repeats.
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Figure 2. Coverage probability at stable state with different buffer restrictions
B and arrival rates ξ.

Fig. 2 compares the analytical result obtained in Theorem 1
evaluated with Algorithm 1, with the Monte-Carlo simulations
under different arrival rate ξ as well as different buffer restric-
tion B. First, we observe that the full load model is pessimistic
w.r.t. the coverage probability. When the buffer length is kept
constant, e.g. B = 5, we observe that the higher the arrival
rate, the lower the coverage probability, on a large range of
coverage threshold θ. Indeed, when ξ increases the queues are
more solicited and hence BSs often have a packet to transmit
and hence they generate interference. A more surprising result,
is the dependency of the coverage probability with the buffer
size when the arrival rate is fixed, i.e. ξ = 0.3. We notice
that when the buffer length increases, i.e. B changes from 1
to 5, the coverage probability degrades for thresholds between
2 dB and 14 dB. This is due to the fact that BS with a large
B drop less packets than BS with a smaller queue size, for
a given arrival rate. Hence, the activity probability is larger
when B = 5 than when B = 1 that increases the interference
and hence decreases the coverage probability. However, a very
constraint queue size implies an important packet loss since
the probability that a randomly chosen queue be full is higher
when B = 1 than when B = 5.

Fig. 3 plots the coverage probability and the packet loss
probability in Lemma 3 w.r.t the threshold θ, and labeled on
the arrival rate ξ and the queue length B. When fixing the
queue length B = 5, we observe that the coverage probability
improves when the arrival rate decreases, i.e. from ξ = 0.3 to
ξ = 0.1 since the network generates less packets in the second
case and hence the probability for a BS to be idle increases,
that decreases the interference to the typical user. Moreover,
since less packets are generated the packet loss probability
also decreases for a given coverage threshold. When fixing the
arrival rate ξ = 0.3, we observe that the packet loss decreases
significantly when B increases for low to medium range of
values of θ.
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Figure 3. Packet loss probability and coverage probability at stable state
(λ = 0.25, σ2 = −10 dB, α = 4).

V. CONCLUSION

In this paper, we proposed a tractable mathematical model
to analyze the stable coverage probability and packet loss
probability in a dynamic traffic randomly deployed downlink
cellular network with finite buffer length. The queue evolution
at each transmitter has been handled with a DTMC and
a Bernoulli distribution for packet arrival. The interaction
between the coverage probability and the queue state evolution
has been captured in closed-form. We also discussed the
impact of different arrival rates and different buffer lengths
to the network performance, measured with the coverage
probability and the packet loss probability.

APPENDIX

A. Proof of Lemma 1

Given the typical UE received data at time slot t, its condi-
tional SINR coverage probability is written as (to lighten the
notation we remove the index t from the channel coefficients)

pt = Px0(γt ≥ θ)

= Px0

 hx0 ‖x0‖−α

σ2 +
∑

x∈Φ\x0

hx ‖x‖−α 1(x ∈ Φt)
≥ θ


=

∫ ∞
0

2πλr0e
−πλr2

0 exp(−σ2θrα0 )

× Px0

 hx0
‖x0‖−α

σ2 +
∑

x∈Φ\x0

hx ‖x‖−α 1(x ∈ Φt)
≥θ
∣∣∣∣‖x0‖=r0

dr0

=

∫ ∞
0

2πλr0e
−πλr2

0e−σ
2θrα0 LI(θrα0 )dr0 (11)

where the Laplace transform (LT) of a random variable X in
s is denoted as LX(s). Further, the LT LX(s) in (11), with



s = θrα0 , has the form:

LI(s) = E
[

exp
(
−s
∑

x∈Φ\x0

hx ‖x‖−α1(x ∈ Φt)
)∣∣∣∣r0

]
a
= EΦ

 ∏
x∈Φ\x0

Ehx
[
exp
(
−shx ‖x‖−α 1(x ∈ Φt)

)]∣∣∣∣r0


= EΦ

 ∏
x∈Φ\x0

1

1 + s ‖x‖−α 1(x ∈ Φt)

∣∣∣∣r0


= E{1(x∈Φt)}

EΦ

 ∏
x∈Φ\x0

1

1+s ‖x‖−α1(x∈Φt)

∣∣∣∣∣r0,
1(x ∈ Φt)


b
= EΦ

 ∏
x∈Φ\x0

(E1(x∈Φt)[1(x ∈ Φt) = 1]

1 + s ‖x‖−α× 1

+
E1(x∈Φt)[1(x ∈ Φt) = 0]

1 + s ‖x‖−α × 0

) ∣∣∣∣∣r0

]

c
= EΦ

 ∏
x∈Φ\x0

(
qt

1 + s ‖x‖−α
+ 1− qt

) ∣∣∣∣r0

 (12)

where (a) follows from the i.i.d. hypothesis of hx and further
independence from the point process Φ, (b) follows from the
law of total expectation and using independence activity of BS
[9, Assumption 2], and (c) follows from qt = P(1(x ∈ Φt) =
1).

According to the PGFL of PPP and with r = ‖x‖, we have

LI(θrα0 )

= exp

(
−2πλ

∫ ∞
r0

(
1−

(
qt

1 + θrα0 r
−α + 1− qt

))
rdr

)
a
= exp

(
−πλr2

0

∫ ∞
1

qt
1 + u

α
2 θ−1

du

)
(13)

where (a) is obtained by the change of variable u = ( rr0 )2.

B. Proof of Lemma 2

Considering qt→∞ = q, we have

p = lim
t→∞

pt(θ, ξ, B)

= lim
t→∞

2πλ

∫ ∞
0

e−σ
2θrαe−πλr

2(1+qtρ(α,θ))rdr

a
= 2πλ

∫ ∞
0

e−σ
2θrαe−πλr

2(1+qlimt→∞ρ(α,θ))rdr

= 2πλ

∫ ∞
0

e−σ
2θrαe−πλr

2(1+qρ(α,θ))rdr (14)

where ρ(α, θ) =
∫∞

1
[1+u

α
2 θ−1]−1du. (a) follows the fact that

pt is non-negative and continuous. Let A(r) = ee
−σ2θr2

, and
g = A(r)e−πλr

2

, we have
∣∣A(r)e−πλ(1+qtρ(α,θ))

∣∣ ≤ g, ∀θ >
0, t ∈ N. Since g is integrable, by the dominant convergence
theorem, we have p and the result follows.

C. Proof of Theorem 1

The number of packets in the queue can be characterized
by the stationary distribution of DTMC in Fig. 1. When t→
∞, q = P

1(x∈Φ̃)(1(x ∈ Φ̃) = 1), p is given in (14). The
transition probability matrix writes

P=



ξ̄ ξ 0 0 · · · 0
pξ̄ p̄ξ̄ + pξ p̄ξ 0 · · · 0
0 pξ̄ p̄ξ̄ + pξ p̄ξ · · · 0

0 0
. . . . . . . . . 0

0 0 0 pξ̄ p̄ξ̄ + pξ p̄ξ
0 0 0 0 pξ̄ p̄ξ̄ + ξ


(15)

For stationary Markov chains, we have

πP = π, πe = 1 (16)

where π = [π0, π1, π2, · · · , πB , πB+1] is the row vector that
contains the stationary probabilities, in which πi(1 ≤ i ≤ B)
denotes the probability of being in state with i packets, πB+1

denotes the probability of a new packet is dropped when it
meets the maximum queue length situation, and e is a column
vector of ones with the proper length.

The solution of (16) is the solution of
π0 = π0ξ̄ + π1ξ̄p

π1 = x0ξ + π1(ξ̄p̄+ pξ) + x2ξ̄p

πi = πi−1ξp̄+ xi(ξ̄p̄+ pξ) + πi+1ξ̄p, 2 ≤ i ≤ B
πB+1 = πBξp̄+ πB+1(p̄+ pξ)

(17)

according to (17), we have

πi =
π0

p̄
(
ξp̄

ξ̄p
)i, 1 ≤ i ≤ B (18)

πB+1 = (
ξp̄

ξ̄p
)B

ξ

ξ̄p
π0 (19)

After normalization, we obtain

π0 =

[
1 + ξRB(ξ̄p)−1 + (p̄)−1

B∑
i=1

Ri

]−1

(20)

where R = ξp̄
ξ̄p
. Combine (20) and (14), and the condition that

q = 1− π0, we have

q = 1−

[
1 + ξRB(ξ̄p)−1 +

B∑
i=1

Ri(p̄)−1

]−1

(21)

p = 2πλ

∫ ∞
0

e−σ
2θrαe−πλr

2(1+qρ(α,θ))rdr (22)

where ā = 1 − a with a ∈ {p, ξ}, ρ(α, θ) =
∫∞

1
[1 +

u
α
2 θ−1]−1du, R = ξp̄

ξ̄p
. According to (21) and (22), the inter-

dependence between q and p shows the relationship between
the queue and the stochastic geometry in the analysis. After
some manipulations, we obtain the result.
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