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Abstract—Non-orthogonal multiple access (NOMA) has been
considered one of the most promising radio access techniques
for next-generation cellular networks. In this paper, we study
the joint user and power scheduling for downlink NOMA
over fading channels. Specifically, we focus on a stochastic
optimization problem to maximize the weighted average sum
rate while ensuring given minimum average data rates of users.
To address this problem, we first develop an opportunistic user
and power scheduling algorithm (OUPS) based on the duality
and stochastic optimization theory. By OUPS, the stochastic
problem is transformed into a series of deterministic ones for
the instantaneous weighted sum rate maximization for each slot.
Thus, we additionally develop a heuristic algorithm with very
low computational complexity, called user selection and power
allocation algorithm (USPA), for the instantaneous weighted
sum rate maximization problem. Via simulation results, we
demonstrate that USPA provides near-optimal performance with
very low computational complexity, and OUPS well guarantees
given minimum average data rates.

Index Terms—Fading channels, non-orthogonal multiple ac-
cess (NOMA), opportunistic scheduling, power allocation, user
scheduling.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) is envisioned as

a promising technology for future cellular networks due to its

advantage of achieving high spectral efficiency over the con-

ventional orthogonal multiple access (OMA) techniques [1].

Although various NOMA techniques have been proposed thus

far, this paper focuses on power-domain NOMA [2]. In power-

domain NOMA, superposition coding (SPC) and successive

interference cancellation (SIC) are employed at the transmitter

and receiver sides, respectively. Based on SPC and SIC,

power domain diversity gain can be achieved by appropriate

user selection and power allocation, which are therefore very

important research topics.

There are many studies on user selection and/or power

allocation in NOMA systems [3]–[8]. Specifically, in [3], a

heuristic algorithm for joint user selection and power allo-

cation to maximize the sum rate has been developed. On the

other hand, the weighted sum rate maximization has been stud-

ied in [4], [5]. In [4], the authors have developed a heuristic

user selection and power allocation algorithm that iteratively

decides whether to select one or both for every two users.

In [5], the authors have developed an optimal power allocation

algorithm based on geometric programming (GP) and a user

selection algorithm. Then, they have alternately updates user

selection and power allocation based on the matching game.

In [6], a NOMA-based mixture transceiver architecture that

applies SPC and SIC to each group and opportunistically

increases the multiplexing gain while providing full diversity

order is proposed. Despite the achievement of high throughput

in [3]–[6], quality of service (QoS) constraints have not been

considered.

In [7], [8], minimum data rate requirements are consid-

ered as the QoS constraints. Specifically, in [7], the authors

have proven that the power allocation problem for the sum

rate maximization is a convex problem that can be solved

by standard algorithms for convex optimization. In [8], the

authors have developed an optimal user selection and power

allocation algorithm for the sum rate maximization based

on the exhaustive search and branch-and-bound approaches.

However, due to its prohibitive computational complexity,

they have proposed another heuristic algorithm using matching

theory and successive convex approximation.

Despite extensive studies on user selection and/or power

allocation in NOMA systems, there are still some limitations.

First, most of the previous studies, including [3]–[8], have

focused on optimization problems from a snapshot perspective.

That is, user selection has been concentrated, rather than user

scheduling, under fixed channel conditions while considering

instantaneous QoS constraints. In practical systems over time-

varying fading channels, a significant drop in overall perfor-

mance can occur since such instantaneous QoS constraints

should be always satisfied even for users with very low channel

gains. However, such instantaneous QoS constraints are not

essential in most applications. In addition, although various

problems have been studied, including [3]–[8], the weighted

sum rate maximization problem with QoS constraints, which

is NP-hard, has not been well studied. In particular, most of

the algorithms for maximizing the weighted sum rate have

very high computational complexity.

Motivated by the above observations, in this paper, we

develop a joint user and power scheduling algorithm with very

low computational complexity in downlink NOMA over fading

channels to maximize the weighted average sum rate while en-

suring given minimum average data rates of users. To this end,

we first develop an opportunistic user and power scheduling

algorithm (OUPS) based on the duality and stochastic opti-

mization theory. As a merit, OUPS is an online algorithm that

can make decisions with only the instantaneous channel status
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without requiring knowledge of the underlying distribution of

the fading channels, making it effectively applicable to various

practical applications. However, OUPS necessitates solving the

user selection and power allocation problem for maximizing

the instantaneous weighted sum rate at every slot. Although its

optimal solution can be achieved by the algorithm developed

in [5], the algorithm is too complex to be executed at every

slot. Hence, we additionally develop a very simple heuristic

algorithm, called user selection and power allocation algorithm

(USPA), which has extremely low computational complexity.

Finally, through the simulation results, we verify that USPA

provides near-optimal performance notwithstanding very low

computational complexity, and show that OUPS with USPA

well guarantees given minimum average data rates of all users.

The rest of the paper is organized as follows. In Section II,

we present the system model. In Section III, we formulate

a stochastic user and power scheduling problem and develop

OUPS to solve it. In Section IV, we develop USPA with very

low computational complexity, which is exploited at every

slot in OUPS. Simulation results are presented in Section V,

followed by the conclusion in Section VI.

Notation: Scalars, vectors, and sets are denoted by italic,

boldface, and calligraphic letters, respectively. E[·] denotes

the statistical expectation operator. R≥0 denotes the set of

nonnegative real numbers. For a set S, (08)∀8∈S denotes a

vector that consists of elements in the set {08 : 8 ∈ S}. For a

complex number 0, |0 | denotes its absolute value.

II. SYSTEM MODEL

We focus on the downlink of a single-cell in the NOMA

system, where one single-antenna base station (BS) with

maximum transmission power of %max transmits data to a set

of # single-antenna users, denoted by N = {1, 2, . . . , #}. We

assume a time-slotted system over block fading channels, in

which channel gains vary from one slot to another but remain

constant during a slot. Let {ℎC
8
, C = 1, 2, . . .} be the fading

process associated with User 8, where ℎC
8

is a complex-valued

continuous random variable representing the channel gain from

the BS to User 8 in slot C. The fading process is assumed to

be stationary and ergodic. We assume that information on the

underlying distributions of the fading process is unknown to

the BS due to the difficulty of obtaining such information a

priori. However, we assume that instantaneous channel gains

are known to the BS at the beginning of each slot.

In NOMA, multiple users can be simultaneously scheduled

with different levels of power in the same slot. Let GC
8
,

satisfying E[|GC
8
|2] = 1, be the information-bearing signal

transmitted to User 8 in slot C, and ?C
8

be the power allocated

to signal GC
8
. Also, let @C

8
be the user selection indicator whose

value is 1 if User 8 is selected in slot C and 0 otherwise. Then,

the received signal at User 8 in slot C is given by

HC8 = ℎC8

∑

8∈N
@C8

√
?C
8
GC8 + =C8 , (1)

where =C
8
∼ CN(0, f2

8
) is the zero-mean Gaussian noise with

variance f2
8 . For ease description, we define the noise-to-

channel ratio (NCR) of User 8 in slot C as

[8 =
f2
8

|ℎC
8
|2
. (2)

After receiving signal HC
8
, User 8 performs SIC to decode

its own signal, GC
8
, from it. User 8 first decodes the signals for

each User 9 with [ 9 ≥ [8 , and then subtracts the components

associated with them from the received signal. In succession,

User 8 decodes its own signal by treating the signals for users

whose NCRs are smaller than its NCR as noise. With a typical

assumption that SIC can be successfully done, the maximum

achievable data rate of User 8 in slot C is obtained as

'8 (pC , qC ; hC ) = @C8 log2

(

1 +
?C
8∑

9∈N:[C
9
<[C

8
?C
9
+ [C

8

)

, (3)

where pC
= (?C

8
)∀8∈N , qC

= (@C
8
)∀8∈N , and hC

= (ℎC
8
)∀8∈N .

III. OPPORTUNISTIC USER AND POWER SCHEDULING

We formulate a joint user and power scheduling problem,

where the objective is to find optimal user selection and power

allocation for each slot to maximize the weighted average sum

rate while ensuring minimum average data rates of users as

maximize
pC , qC , ∀C

lim
)→∞

1

)

)∑

C=1

∑

8∈N
F8'8 (pC , qC ; hC ) (4a)

subject to lim
)→∞

1

)

)∑

C=1

'8 (pC , qC ; hC ) ≥ '̄8, ∀8 ∈ N , (4b)

pC ∈ P, qC ∈ Q, ∀C, (4c)

where F8 and '̄8 are the weight and minimum average data

rate requirement of User 8, respectively, P = {pC ∈ R#
≥0
|∑

8∈N ?C
8
≤ %max}, and Q = {0, 1}# . The constraints (4b)

and (4c) represent the minimum average data rate requirements

of users and the ranges of power allocation and user selection

vectors, respectively. Note that the problem is not easy to solve

due to the average over an infinite time horizon. To address this

problem, we take advantage of the fact that the long-term time

average converges almost surely to the expectation for almost

all realizations of the fading process by the ergodicity of the

fading process. Thereby, by denoting a channel vector in a

generic slot by h without C, we can reformulate the problem as

(P) maximize
ph, qh, ∀h

Eh

[
∑

8∈N
F8'8 (ph, qh; h)

]

(5a)

subject to Eh

[
'8 (ph, qh; h)

]
≥ '̄8, ∀8 ∈ N , (5b)

ph ∈ P, qh ∈ Q, ∀h, (5c)

where ph
= (?h

8
)∀8∈N and qh

= (@h
8
)∀8∈N . For any slot with h,

user selection and power allocation can be done according to

the solution for qh and ph obtained by solving Problem (P).

However, there is still a big challenge in solving Prob-

lem (P). That is, since no information on the underlying

distribution of h is provided, we need to solve the problem



without such information. To resolve the challenge, we lever-

age the duality and stochastic optimization theory as in [9],

[10]. Accordingly, we first define a Lagrangian function, !,

for Problem (P) as

!(p̄, q̄, �) = Eh

[
∑

8∈N
F8'8 (ph, qh; h)

]

+
∑

8∈N
_8

(
Eh

[
'8 (ph, qh; h)

]
− '̄8

)

= Eh

[
∑

8∈N
(F8 + _8)'8 (ph, qh; h)

]

−
∑

8∈N
_8 '̄8, (6)

where p̄ = (ph)∀h, q̄ = (qh)∀h, and � = (_8)∀8∈N is a

nonnegative Lagrangian multiplier vector corresponding to the

constraint (5b). Using (6), we can define the dual problem as

(D) minimize
�

� (�)

subject to � � 0,

where � is the elementwise inequality, 0 is a zero vector, and

� (�) = maximize
p̄, q̄

!(p̄, q̄, �) (7)

subject to ph ∈ P, qh ∈ Q, ∀h.

Since Problem (P) is nonconvex, there may be a duality gap

even if Problem (D) is optimally solved. However, the duality

gap vanishes in our problem, resulting in no loss of optimality.

Theorem 1. The strong duality holds between Problem (P)

and its dual problem, Problem (D).

Proof. See Appendix A. �

We thus develop an algorithm that solves Problem (D), To

this end, we first focus on finding its objective function, � (�).
The first term in (6) is separable for each channel vector, and

the second term is independent of the decision variables, p̄

and q̄. Hence, for any given Lagrangian multiplier vector, �,

the maximization in (7) can be solved by separately solving

the following subproblem for each given channel vector h:

(Dh) maximize
ph, qh

∑

8∈N
(F8 + _8)'8 (ph, qh; h)

subject to ph ∈ P, qh ∈ Q. (8)

The expectation has disappeared in Problem (Dh), so that it

can be solved without knowledge of the underlying distribution

of the fading process once the channel realization is provided.

Thus, for given � and h, Problem (Dh) becomes a deterministic

optimization problem for user selection and power allocation

that aims to maximize the instantaneous weighted sum rate

with weight F8 + _8 for User 8. An algorithm to solve this

problem, called USPA, will be developed in the next section.

We now focus back on solving Problem (D). Even though

the optimal user selection and power allocation can be ob-

tained for each h and � by solving Problem (Dh), the under-

lying distribution of h is still required to solve Problem (D).

Nevertheless, thanks to the fact that Problem (D) is a convex

Algorithm 1: Opportunistic user and power scheduling

1 Initialize: �0
= 0, and C = 1

2 for each slot C do

3 Obtain a solution to Problem (Dh) using USPA.

4 Transmit a signal based on the obtained solution.

5 Update �
C according to (9) and (10), and C ← C + 1.

stochastic programming problem [11], we can solve it using

the stochastic subgradient method, where the Lagrangian mul-

tipliers are iteratively updated according to

_C+18 = max
{
0, _C8 − Z CEC8

}
, ∀8 ∈ N , (9)

where �
C and Z C are the Lagrangian multiplier vector and the

step size in slot C, respectively, and vC = (EC
8
)∀8∈N is the

stochastic subgradient of � (�) with respect to � at � = �
C .

By Danskin’s min-max theorem [12], we can determine vC as

EC8 = 'C
8 − '̄8 , ∀8 ∈ N , (10)

where 'C
8

is the instantaneous data rate of User 8 in slot C,

which is given by the user selection and power allocation ac-

cording to the solution to Problem (Dh) with h = hC and � = �
C .

When � follows this update process, it converges almost surely

to the optimal solution, �∗, to Problem (D) if Z C meets [13]

Z C ≥ 0,

∞∑

C=1

Z C = ∞, and

∞∑

C=1

(Z C )2 < ∞. (11)

The proposed OUPS is outlined in Algorithm 1.

IV. USER SELECTION AND POWER ALLOCATION

In this section, we develop USPA to solve Problem (Dh). To

alleviate the difficulty of Problem (Dh) caused by the integer

variables, i.e., qh, we first consider a problem defined as

(Q1) maximize
ph

∑

8∈N
F̃8'8 (ph; h)

subject to ph ∈ P, (12)

where F̃8 = F8 + _8 , and '8 (ph; h) is defined as '8 (ph, qh; h)
with @C

8
= 1. An optimal solution to Problem (Dh) can be

easily obtained from that to Problem (Q1).

Theorem 2. Let (ph)† be an optimal solution to Problem (Q1).

Then, the optimal solution, {(ph)∗, (qh)∗}, to Problem (Dh)

can be obtained as

(ph)∗ = (ph)† and (qh)∗ = (@h
8 )∀8∈N , (13)

where for all 8 ∈ N , @h
8

is 1 if (?h
8
)† > 0 and 0 otherwise.

Proof. See Appendix B. �

Hence, we focus on Problem (Q1) rather than Problem (Dh).

For notational simplicity, we omit h and assume, without loss



of generality, that users are ordered such that [8 > [ 9 if 8 < 9 .

Then, Problem (Q1) can be equivalently reformulated as

(Q2) maximize
?8 , ∀8∈N

#∑

8=1

F̃8 log2

(

1 + ?8∑
9>8 ? 9 + [2

8

)

subject to

#∑

8=1

?8 ≤ %max,

?8 ≥ 0, ∀8 ∈ N .

Problem (Q2) is still nonconvex, so we cannot apply standard

tools for convex optimization. Furthermore, as mentioned

before, the problem needs to be solved with very low computa-

tional complexity since the user selection and power allocation

should be done at every slot with a very short time period.

To cope with these challenges, we first find candidate users

to whom power may be allocated, and then address how to

optimally allocate power to them. To this end, we define a

last SIC user as follows.

Definition 1. A last SIC user refers to a user who does not

experience any interference signal after the SIC process.

We start with the assumption that User : is the last SIC user

and has been allocated a certain amount of power. Accordingly,

we assume that ?: is given as a certain positive value, and

?8’s for 8 > : are given as zero so that User : does not

experience any interference signal after the SIC process. Under

this assumption, ?8’s for 8 ≥ : are no longer decision variables.

Note that how to select the last SIC user and how much

power to allocate to it will be discussed later. Accordingly,

Problem (Q2) can be reformulated as

(Q3) maximize
?8 , ∀8<:

:−1∑

8=1

F̃8 log2

(

1 + ?8
∑

9>8 ? 9 + [2
8

)

subject to

:−1∑

8=1

?8 + ?: ≤ %max,

?8 ≥ 0, ∀8 < :.

The purpose of this problem is not to find power allocation to

users but to find candidate users when User : is the last SIC

user. Based on the fact that the interference power is usually

much greater than the noise power, the noise power of users

suffering from the interference signals can be assumed to be

negligible. Hence, we assume that f2
8
= 0 for 8 < :. Then, by

letting d8 =
∑:

9=8 ? 9 , we can approximate Problem (Q3) as

(Q4) maximize
d8 , ∀8<:

:−1∑

8=1

F̃8 log2

(
d8

d8+1

)

subject to

:−1∏

8=1

d8

d8+1
× d: ≤ %max

d8

d8+1
≥ 1, ∀8 < :,

where the constraints are equivalent to those in Problem (Q3),

which can be derived by simple arithmetic operations. In suc-

cession, by letting A8 = log2(d8/d8+1) for 8 < :, A: = log2(d: ),

and taking the logarithm of the both sides of the constraints,

we can reformulate Problem (Q4) equivalently as

(Q5) maximize
A8 , ∀8<:

:−1∑

8=1

F̃8A8

subject to

:−1∑

8=1

A8 + A: ≤ log2 (%max),

A8 ≥ 0, ∀8 < :.

In Problem (Q5), the decision variables, A8’s for all 8 < :, are

linearly combined in the objective function, and the feasible

set is a unit simplex. Hence, it is obvious that the objective

function is maximized when all A8’s, except the one with the

largest weight, are zero. Also, by the definition of A8 , we can

easily see that, for any 8 < :, ?8 is zero if and only if A8
is zero. Thus, we can conclude that only one user with the

largest weight is selected as the other candidate user together

with the last SIC user, i.e., User :. We state this result in the

following theorem.

Theorem 3. Under the assumption that the noise signals of

users who suffer from the interference signals are neglected,

by the solution to Problem (Q2), at most two users are selected

as candidate users to whom power may be allocated. To be

specific, when User : is selected as the last SIC user, User q:

is accordingly selected as the other candidate user where

q: = argmax
8<:

{F̃8}. (14)

By Theorem 3, Problem (Q2) can be reduced to the power

allocation problem for the two-user case, defined by

(P2) maximize
?q:

, ?:
F̃q:

log2

(

1 +
?q:

?: + [2
q:

)

+ F̃: log2

(

1 + ?:

[2
:

)

subject to ?q:
+ ?: ≤ %max,

?q:
≥ 0; ?: ≥ 0.

This two-user power allocation problem can be optimally

solved in closed forms.

Theorem 4. The optimal solution, {?∗q:
, ?∗

:
}, to Problem (P2)

is derived as

?∗: =





0, if F̃:/F̃q:
< �1,

%max, if F̃:/F̃q:
≥ �2,

F̃q:
[2
:
−F̃: [

2
q:

(F̃:−F̃q:
) , otherwise,

(15)

?∗q:
= %max − ?∗: , (16)

where

�1 =

[2
:

[2
q:

and �2 =

%max + [2
:

%max + [2
q:

. (17)

Proof. See Appendix C. �

Using Theorem 4, the weighted sum rate, ':
sum, when User :

is selected as the last SIC user can be given as

':
sum = F̃q:

log2

(

1 +
?∗
q:

?∗
:
+ [2

q:

)

+ F̃: log2

(

1 +
?∗
:

[2
:

)

. (18)



Algorithm 2: User Selection and Power Allocation

1 for each : ∈ N do

2 Suppose that User : is the last SIC user.

3 Select the other candidate user, q: , using (14).

4 Calculate ':
sum using (18).

5 Find :∗ using (19).

6 Select Users :∗ and q:∗ as the optimal candidate users.

7 Allocate power to them according to (15) and (16).

In turn, the optimal last SIC user, :∗, can be obtained as

:∗ = argmax
:∈N

':
sum. (19)

The pseudocode of USPA is described in Algorithm 2.

Before closing this section, we discuss the computational

complexity. Our USPA has linear computational complexity,

i.e., O(#), since ':
sum can be calculated based on the closed-

form formula in (18). As a benchmark, we consider the GP-

based algorithm proposed in [5], which provides an optimal

solution to Problem (Q2) by solving its equivalent GP problem

using interior point methods. Hence, we call it OPT. Note that

the computational complexity of OPT is known as O((: +
<)1/2(<:2+:3+=3)) [14], where :, <, and = are the problem-

dependent parameters. In our problem, they are set as follows:

: = 2# + 1, < = # + 1, and = = # . Thus, OPT has nonlinear

computational complexity of O((3# + 2)1/2(13#3 + 20#2 +
11# + 2) + !) ≈ O(13

√
3#7/2 + !), where ! represents the

computational complexity for converting from the solution to

the GP problem back to that to Problem (Q2). As a result, the

computational complexity of OPT is much higher than that

of USPA, and thus it is a heavy burden to run OPT at every

slot. We will show the comparison between USPA and OPT

in detail in the next section.

V. SIMULATION RESULTS

We consider a single cell with one BS with a maximum

transmission power of 43 dBm and 5 users. According to [15],

we set the large-scale path loss to 128.1 + 37.6 log10 (3km) dB,

where 3km is the distance in kilometers, and consider the

lognormal shadow fading with a standard deviation of 8 dB and

the small-scale fading with coefficients following independent

and identical zero-mean unit-variance complex Gaussian dis-

tributions. The noise power for each user is set to −104 dBm.

The step size of the stochastic subgradient algorithm in (9) is

set to Z C = 1/C, which satisfies the conditions in (11) so that

the convergence of the algorithm is guaranteed.

We first compare USPA and OPT in solving Problem (Q2).

The comparison results for 1000 independent trials are shown

in Fig. 1. In each trial, user weights are randomly set between

0 and 1 and then normalized by their sum, and the distance

of each user from the BS is randomly set between 20 m and

500 m. Fig. 1a shows the performance comparison results over

1000 trials in terms of the weighted sum rate. As shown in

the figure, the performance of USPA is very close to that
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Fig. 1. Comparison results between USPA and OPT.

of OPT. On average, the performance difference between the

two methods over 1000 trials is only 0.0412 bps/Hz (0.7 %).

Fig. 1b shows the frequency histogram of the number of

selected users, and Fig. 1c shows the weighted average data

rates of users, where the user indices are sorted in decreasing

order of the weighted data rate. According to Fig. 1b, in OPT,

the probability of selecting three or more users reaches about

25 %, which is not small. However, according to Fig. 1c, since

the sum of the weighted data rates of the first two users

occupies over 96 % of the weighted sum rate, the last three

users do not significantly contribute to the performance. That

is why the performance of USPA, which selects at most two

users, is very close to that of OPT. In addition, it is worth

noting that in obtaining the above simulation results, OPT

have taken about 3900 times more execution time than USPA.1

These results verify that not only does USPA provide good

performance close to the optimal one, but it also has very low

computational complexity.

Now, we evaluate the performance of our OUPS by com-

paring the following three types of OUPS: (i) OUPS-USPA

where user selection and power allocation are performed by

our USPA, (ii) OUPS-OPT where they are performed by OPT,

and (iii) OUPS-OMA where only one user who can provide

the highest instantaneous weighted data rate using full power

is selected at each slot. Fig. 2 shows the performance results

over 10,000 slots under the scenario where 5 users with equal

weights are located 20 m, 140 m, 260 m, 380 m, and 500 m

away from the BS. The first three users have the minimum

average data rate requirements of 2 bps/Hz, and the last two

users have those of 4 bps/Hz. Fig. 2a shows that OUPS-USPA

not only provides much higher performance than OUPS-OMA,

but also provides high performance comparable to OUPS-OPT.

1All simulation results have been obtained by using MATLAB R2019b on
a computer with Intel Core i7-9700K CPU (3.60 GHz) and 32.0 GB RAM.
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Fig. 2. Performance results of OUPS.

On the other hand, Fig. 2b shows the average data rates of each

user for our OUPS-USPA. As shown in the figure, we can see

that the QoS constraints for all users are well satisfied, and the

user closest to the BS achieves the highest average data rate

among all users so that the average sum rate is maximized. The

results demonstrate that OUPS-USPA provides near-optimal

performance while ensuring the given QoS constraints.

VI. CONCLUSION

We have studied the joint user and power scheduling

problem to maximize the weighted average sum rate while

ensuring given QoS constraints. We have first developed OUPS

that fully exploits time-varying channels, and then developed

USPA with extremely low computational complexity. Through

the simulation results, we have shown that USPA provides

near-optimal performance despite being about 3900 times

faster than OPT, and OUPS meets the QoS constraints well.

This study will be the cornerstone of our future work on

scheduling for multi-carrier NOMA systems.

APPENDIX A

PROOF OF THEOREM 1

In order to prove the strong duality between Problem (P)

and its dual problem, Problem (D), we utilize the time-sharing

condition proposed in [16], which is defined as follows.

Definition A.1. Let {p̄G , q̄G} and {p̄H , q̄H} be the optimal so-

lutions to Problem (P) with R̄ = R̄G and R̄ = R̄H , respectively,

where R̄ = ('̄8)∀8∈N , R̄G = ('̄G,8)∀8∈N , and R̄ = ('̄H,8)∀8∈N .

Then, Problem (P) is said to satisfy the time-sharing condition

if for any R̄G and R̄H , and for any 0 ≤ \ ≤ 1, there always

exists a feasible solution {p̄I , q̄I} such that

Eh

[
'8 (ph

I , q
h
I ; h)

]
≥ \'̄G,8 + (1 − \) '̄H,8, ∀8 ∈ N , (A.1)

Eh

[
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8∈N
F8'8 (ph

I , q
h
I ; h)

]

≥ \Eh

[
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8∈N
F8'8 (ph

G , q
h
G ; h)

]

+ (1 − \)Eh

[
∑

8∈N
F8'8 (ph

H , q
h
H ; h)

]

. (A.2)

It has been proven in [16] that if an optimization problem

satisfies the time-sharing condition, the strong duality holds

regardless of the convexity of the problem. Hence, we prove

Theorem 1 by showing that Problem (P) satisfies the time-

sharing condition. First, for any {p̄G , q̄G} and {p̄H , q̄H}, and

for any \ ∈ [0, 1], let us set {pI , qI} as

{pC
I , q

C
I} =

{
{pC

G , q
C
G} C ≤ ⌊\)⌋,

{pC
H , q

C
H}, C ≥ ⌊\) + 1⌋,

(A.3)

where ⌊·⌋ is the floor function that gives the largest integer not

exceeding its argument. Then, the first condition (A.1) holds

as follows. For all 8 ∈ N ,

Eh

[
'8 (ph

I , q
h
I ; h)

]

= lim
)→∞

1

)

)∑

C=1
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1
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]
+ (1 − \)Eh

[
'8 (ph

H , q
h
H ; h)

]

≥ \'̄G,8 + (1 − \) '̄H,8 . (A.4)

where the first and third equality holds due to the ergodicity

of the fading process. Similarly, the second condition (A.2)

also holds as follows.
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Hence, the time-sharing condition holds for Problem (P). �

APPENDIX B

PROOF OF THEOREM 2

Since @h
8

is either 0 or 1, the objective value of Problem (Dh)

is less than or equal to the optimal value of Problem (Q1), i.e.,∑
8∈N F̃8'8 (ph, qh; h) ≤ ∑

8∈N F̃8'8 (ph; h), for any ph ∈ P



and qh ∈ Q. Hence, by letting (ph)† be an optimal solution

to Problem (Q1), we have
∑

8∈N
F̃8'8 (ph, qh; h) ≤

∑

8∈N
F̃8'8 ((ph)†; h), (B.1)

for all ph ∈ P and qh ∈ Q. Consider (ph)∗ = (ph)† and

(qh)∗ = (@h
8
)8∈N such that @h

8
= 1 if (?h

8
)† > 0 and @h

8
= 0

otherwise. By simple arithmetic operations, it can be easily

verified that
∑

8∈N
F̃8'8 ((ph)∗, (qh)∗; h) =

∑

8∈N
F̃8'8 ((ph)†; h). (B.2)

Hence, an optimal solution to Problem (Dh) is given as

{(ph)∗, (qh)∗}, which is obtained from the optimal solution,

(ph)†, to Problem (Q1). �

APPENDIX C

PROOF OF THEOREM 4

Since a larger transmission power results in a higher

weighted sum rate, the first constraint in Problem (P2) can

be replaced with ?q:
+ ?: = %max. Then, by substituting ?q:

into %max − ?: , Problem (P2) can be equivalently transformed

into a one-variable optimization problem as

(P′2) maximize
0≤?: ≤%max

6(?:), (C.1)

where

6(?:) = F̃q:
log2

(
%max + [2

q:

?: + [2
q:

)

+ F̃: log2

(
?: + [2

:

[2
:

)

. (C.2)

The derivative of 6(?:) with respect to ?: is given as

6′(?:) =
1

ln 2

[
−F̃q:

?: + [2
q:

+ F̃:

?: + [2
:

]

=

1

ln 2
·
(F̃: − F̃q:

)?: + F̃:[
2
q:
− F̃q:

[2
:

(?: + [2
q:
) (?: + [2

:
)

. (C.3)

From the above equation, we have 6′( ?̂: ) = 0 if and only if

?̂: =

F̃q:
[2
:
− F̃:[

2
q:

(F̃: − F̃q:
) . (C.4)

Using (C.3) and (C.4), we can derive an optimal solution, ?∗
:
,

to the problem in (C.1) by considering the following three

mutually exclusive cases:

1) Suppose F̃:/F̃q:
> 1. Then, according to (C.3),

6′(?: ) < 0 if ?: < ?̂: and 6′(?: ) ≥ 0 otherwise.

Also, according to (C.4), ?̂: < 0 since [: < [q:
. Thus,

6(?:) is an increasing function on [0, %max], resulting in

?∗
:
= %max.

2) Suppose F̃:/F̃q:
= 1. Then, according to (C.3), 6′(?: ) ≥

0 for any ?: ∈ [0, %max]. Thus, 6(?:) is an increasing

function on [0, %max], resulting in ?∗
:
= %max.

3) Suppose F̃:/F̃q:
< 1. Then, according to (C.3),

6′(?: ) > 0 if ?: < ?̂: and 6′(?: ) ≤ 0 otherwise.

Also, according to (C.4), we have the following two

inequalities.

?̂: < 0 ⇔ F̃:

F̃q:

<
[2
:

[2
q:

, (C.5)

?̂: ≥ %max ⇔
F̃:

F̃q:

≥
%max + [2

:

%max + [2
q:

, (C.6)

Consequently, if (C.5) is met, 6(?:) is a decreasing

function on [0, %max], resulting in ?∗
:
= 0; if (C.6) is met,

6(?:) is an increasing function on [0, %max], resulting in

?∗
:
= %max; and if neither (C.5) nor (C.6) is met, 6(?:)

is an increasing function on [0, ?̂: ] but a decreasing

function on [ ?̂: , %max], resulting in ?∗
:
= ?̂: .

Note that since [: < [q:
, the right-hand side of (C.6) is always

less than one, i.e., (%max + [2
:
)/(%max + [2

q:
) < 1. Hence, by

combining the results for the above three cases, we can derive

?∗
:

as in (15). Lastly, we can derive ?∗q:
as in (16) since

?q:
+ ?: = %max. �
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