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Abstract— One of the key features of the 5G architecture is 

network slicing, which allows the simultaneous support of diverse 

service types with heterogeneous requirements over a common 

network infrastructure. In order to support this feature in the 

Radio Access Network (RAN), it is required to have capacity 

sharing mechanisms that distribute the available capacity in each 

cell among the existing RAN slices while satisfying their 

requirements and efficiently using the available resources. Deep 

Reinforcement Learning (DRL) techniques are good candidates to 

deal with the complexity of capacity sharing in multi-cell scenarios 

where the traffic in the different cells can be heterogeneously 

distributed in the time and space domains. In this paper, a multi-

agent reinforcement learning-based solution for capacity sharing 

in multi-cell scenarios is discussed and assessed under 

heterogeneous traffic conditions. Results show the capability of the 

solution to satisfy the requirements of the RAN slices while using 

the resources in the different cells efficiently.   

Keywords— RAN Slicing; Capacity sharing; Multi-Agent 

Reinforcement Learning; Deep Q-Network; Multi-cell. 

I. INTRODUCTION 

Network slicing is one of the main features of the 5G system 
architecture that allows simultaneously supporting diverse 
service types and applications that can be provided by diverse 
tenants (e.g., mobile network operators or mobile virtual 
network operators) with heterogeneous needs over a common 
network infrastructure [1]. This is achieved by provisioning each 
tenant with a logical network, i.e., network slice, which is 
optimized to the specific needs of the supported services. To 
support network slicing at the Radio Access Network (RAN), 
i.e., the so-called RAN slicing, the common pool of radio
resources in each of the existing cells needs to be efficiently
managed so that the requirements of the different RAN slices are
fulfilled and an efficient use of the available resources is
achieved [2]. Given the spatial heterogeneity of the time varying
traffic demands of the different RAN slices among the different
cells, capacity sharing methods are needed to dynamically
distribute the capacity available in the different cells among the
existing RAN slices while satisfying their requirements and
efficiently using the available resources.

This paper deals with the capacity sharing problem of RAN 
slicing in multi-cell scenarios. Although some works have 
proposed heuristic approaches to address this problem, such as 
[3] and [4], the complexity of 5G networks and the inherent
uncertainty of the wireless environment have motivated the use
of Deep Reinforcement Learning (DRL) solutions, as they allow
optimizing dynamic decision-making problems in real time and

supporting large state and action spaces. In this regard, different 
DRL methods have been used in the literature to distribute the 
aggregated system capacity among tenants, such as, Deep Q-
Network (DQN) [5], Deterministic Policy Gradients (DPG) 
solution combined with K-Nearest Neighbors (K-NN)  [6] and 
Generative Adversarial Network (GAN)-Double DQN (DDQN) 
[7]. In contrast, other DRL-based works are able to assign 
capacities to the different tenants on a per-cell basis. This is the 
case of [8] and [9], which firstly distribute the aggregated 
capacity at network level among the different tenants by means 
of DQN and then use an heuristic algorithm to determine the cell 
capacity for each tenant, or our recent work in [10], which 
proposes a Multi-Agent Reinforcement Learning (MARL) 
algorithm based on DQN, where each agent is associated to a 
different tenant and directly determines the capacities provided 
to this tenant in each cell. However, none of these previous 
works have explored the impact of the spatial and temporal 
heterogeneities of the traffic distributions in multi-cell 
environments, which is considered to be essential to prove the 
robustness and practicality of DRL-based solutions in cellular 
networks. This paper addresses this aspect by studying the 
behavior of a MARL solution in a multi-cell scenario under 
diverse levels of spatial and temporal heterogeneity in the traffic 
distributions of the tenants and by analyzing the impact of the 
Service Level Agreement (SLA) parameters in these situations.  

The rest of the paper is organized as follows. Section II 
describes the considered MARL solution in detail. Then, Section 
III describes the scenario considered for evaluation and provides 
the results that analyze the solution under heterogeneous spatial 
and temporal traffic distributions, and the impact of the SLA 
parameters. Finally, Section IV summarizes the conclusions.  

II. MARL-BASED CAPACITY SHARING MODEL

The capacity sharing solution considered in this paper has 
been designed to dynamically distribute the available capacity 
in a Next Generation (NG)-RAN infrastructure among K 
tenants, each of them provided with a RAN slice instance (RSI). 
The NG-RAN is composed of N cells, where each cell n=1,...,N 
has a total of Wn Physical Resource Blocks (PRBs) providing a 
cell capacity cn (b/s). The total capacity in the system C is 
obtained by aggregating cn for n=1..N. The solution aims at 
fulfilling the SLA established for each tenant while, at the same 
time, satisfying the traffic demands of the tenants in the different 
cells and efficiently using the available capacity. The 
requirements of the RSI of the k-th tenant are determined by the 
SLA of this tenant, which is defined in terms of: (a) the Scenario 
Aggregated Guaranteed Bit Rate, SAGBRk, which is the 
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aggregated capacity to be provided across all cells to tenant k if 
requested, and (b) the Maximum Cell Bit Rate, MCBRk,n, which 
is the maximum bit rate that can be provided to tenant k in cell 
n, and is defined to avoid that a single tenant uses all the capacity 
in a cell under highly heterogeneous spatial load distributions 
with tenants demanding excessive capacity in certain cells.  

The considered solution dynamically adjusts the capacity 
share for each tenant in time steps of duration Δt. The capacity 
share σk(t) of tenant k at time step t is defined as σk(t)=[σk,1(t),…, 
σk,n(t), …, σk,N(t)], where σk,n(t) is the proportion of cell capacity 
cn assigned to the tenant in cell n and is in the range 0≤ σk,n(t)≤ 
MCBRk,n/cn. For every cell n, the joint capacity share solution of 
all the tenants needs to assure that the cell capacity is not 

exceeded, so that ∑ σk,n(t)K
k=1 ≤1 holds.  

To dynamically tune σk(t) for the different tenants, a MARL 
approach based on DQN [11] has been considered. In the 
solution, there is one DQN agent per tenant so that the DQN 
agent of tenant k learns the policy πk that tunes σk(t) at each time 
step t. This policy is defined as: 

πk= argmax
ak

Q
k
�sk,ak,�k� (1) 

where Qk(sk,ak,θk) is the expected cumulative reward when 
starting at state sk and taking action ak and is provided by a Deep 
Neural Network (DNN) with weights θk.  

To learn their policies (i.e., the appropriate weights θk of the 
DNN), the different DQN agents interact synchronously with a 
common network environment. At time step t, the DQN agent 
associated to tenant k obtains the state sk(t) from the environment 
and, accordingly selects an action ak(t) that updates the capacity 

σk(t). This action selection follows an ε-Greedy strategy that 
chooses an action based on the currently learnt policy πk with 

probability 1-ε and explores a random action with probability ε. 
At the next time step t+1, a reward rk(t+1) assessing the 
suitability of ak(t) for the sk(t) is obtained as well as the new state 
sk(t+1). Then, the agent stores the experience tuple < sk(t), ak(t), 
rk(t+1), sk(t+1)> in an experience dataset that will be used to 
update the policy πk. The definitions of state, action and reward 
for the k-th tenant at time step t are given as follows:  

• State (sk(t)):  It is denoted as sk(t) = [sk,1(t),…, sk,n(t), …, sk,N(t), 

SAGBRk/C,  ∑ SAGBRk'
K

k
'
=1,k'≠k

/C], where each component 

sk,n(t) corresponds to the state of the tenant in cell n given by 

< ρk,n(t), ρn
A(t), σk,n(t-1),�n

A(t-1), MCBRk,n/cn >. The parameter 

ρk,n(t) is the resource usage, computed as the fraction of PRBs 
used by the tenant in the cell during the last time step (t-Δt, t),  

ρ
n
A(t) are the available resources not used by any tenant in the 

cell and �n
A(t) is the available capacity share in the cell not 

assigned to any tenant.  

• Action (ak(t)): It is given by ak(t)= [ak,1(t), …, ak,n(t), …, 
ak,N(t)], where ak,n(t) is the specific action for each cell n and 
can take three different values ak,n(t)ϵ{Δ,0,-Δ}, which 
correspond to increasing, maintaining and decreasing the 
capacity share as σk,n(t)= σk,n(t-1)+ak,n(t). This update is 
performed as long as the resulting capacity share σk,n(t) is in 
the range 0≤ σk,n(t)≤ MCBRk,n/cn. Otherwise, no update is 
performed. Moreover, it must be ensured that the capacity 

shares of all tenants satisfy the condition ∑ σk,n(t)K
k=1 ≤1 . 

Therefore, when this condition is not satisfied, the available 

capacity share �n
A(t) is computed before applying the actions 

of the tenants willing to increase (i.e. with ak,n(t)=Δ). If 

�n
A(t)>0, the capacity shares of these tenants are obtained by 

distributing �n
A(t)  among them proportionally to their 

SAGBRk. Otherwise, the actions of these tenants are not 
applied.  

• Reward (rk(t)): The obtained reward is given by:  

rk�t�=δk
(1)

(t)
φ1

·δk
(2)

(t)
φ2

 (2) 

which considers two main factors, δk
(1)

(t) and δk
(2)

(t), defined 
in the following, and their corresponding weights, φ1 and φ2.  

The first factor, δk
(1)

(t), promotes the satisfaction of the SLA 
of tenant k and is given by the ratio between the aggregated 
throughput of the tenant among all cells Tk(t) and the 
aggregated offered load of the tenant among all cells Ok(t), as 
long as the aggregate offered load in the system among all 
tenants, O(t), is lower than the total capacity in the system C. 

Instead, if O(t) is greater than C, δk
(1)

(t) is computed as the 

ratio between Tk(t) and min(SAGBRk+β
k
�t�,Ok(t)) , where 

β
k
�t� is the amount of assigned capacity that is left unused by 

the other tenants. The second factor, δk
(2)

(t) , measures the 
capacity overprovisioning and is defined by the ratio between 
Tk(t) and the assigned capacity to the tenant among all cells 
(i.e. the summation of cn·σk,n(t-1) for all n=1…N).  

 The experience tuples collected by the DQN agent as a result 
of the interaction with the environment are stored in the 
experience dataset and used for updating the weights θk of the 
DNN in every time step during the training process. Following 
the process described in [11], this is performed according to the 
mini-batch gradient descent of the average Mean Square Error 
(MSE) loss of Qk(sk,ak,θk) over a mini-batch U of experiences 
randomly selected from the experience dataset. 

III. PERFORMANCE EVALUATION 

A. Considered scenario 

 The scenario considered for evaluation is comprised of a 
NG-RAN infrastructure in a 3 km x 3 km area with N=5 cells, 
which serve the users of K=2 tenants, denoted as Tenant 1 and 
Tenant 2. The scenario has been configured according to the 
parameters in Table I, which includes the cells configuration, 
their position in the area under consideration and the SLA 
parameters of each tenant.    

 To generate heterogeneous spatial and temporal distributions 
of the offered load of the two tenants in the different cells, it is 
assumed that at time step t the offered load density (Mb/s/km2) 
of tenant k is spatially distributed according to the sum of a 
constant offered load density μk and a bivariate Gaussian 
distribution centered at the position (xk(t),yk(t)) with standard 
deviation dk and offered load density in the center mk. The center 
of the Gaussian distribution (xk(t),yk(t)) moves horizontally 
along the scenario with speed vk  Then, the offered load of tenant 
k in cell n at time step t, ok,n(t), is obtained by aggregating the 
offered load density over the cell service area determined by the 
Voronoi tessellation.  



TABLE I. SCENARIO CONFIGURATION 

Parameter Value 

Number of tenants (K) 2 

Number of cells (N) 5 

Area 3 km x 3 km  

Cell position 
(km) 

Cell n=1 (1.5,1.5) 

Cell n=2 (0.5, 2.5) 

Cell n=3 (2.5, 2.5)  

Cell n=4 (0.5,0.5)  

Cell n=5 (2.5,0.5)  

PRB Bandwidth (B) 360 kHz 

Number of PRBs per cell (Wn ) 78 PRBs 

Average spectral efficiency 5 b/s/Hz 

Cell capacity (cn) 140 Mb/s 

Total system capacity (C) 700 Mb/s 

SAGBRk 
Tenant 1 420 Mb/s (60% of system capacity) 

Tenant 2 280 Mb/s (40% of system capacity) 

MCBRk,n 
Tenant 1 

112 Mb/s (80% of cell capacity cn) 
Tenant 2 

Based on this methodology, the MARL model has been 
evaluated under four different offered load situations that reflect 
different levels of heterogeneity, denoted as Situations 1-4, 
whose configuration parameters have been included in Table II. 
For each situation, the offered load of each tenant in each cell 
has been obtained during a day. The level of heterogeneity in the 
different situations is varied through the values of offered load 
density in the center mk and deviation dk. As a result, Situation 1 
corresponds to a situation where the spatial distribution of the 
offered load of one tenant among the different cells is nearly 
homogeneous. Then, the level of heterogeneity is increased in 
Situations 2-4, being Situation 4 the one with the most 
unbalanced load among cells. To illustrate this, Fig. 1 plots the 
maps with the offered load densities for Tenant 1 and Tenant 2 
in Situation 4 at some illustrative times. The black triangles 
indicate the positions of the 5 cells. 

The MARL model has been developed in Python by using 
the library TF-Agents [12], which provides tools for the 
development of DRL models including DQN, and has been 
trained according to the parameters of Table III. The data used 
for the training has been generated by obtaining a wide range of 
spatial and temporal distributions of the offered loads of both 
tenants, obtained by modifying the values of the parameters of 
the Gaussian distributions of Tenant 1 and Tenant 2, including 
their initial position and speed, and diverse combinations of their 
SLA parameters.  

B. Performance under diverse heterogeneity levels 

In order to evaluate the capability of the policies learnt by 
the DQN agents of the two tenants to adapt to different levels of 
heterogeneity, they have been applied to the offered loads ok,n(t) 
in the Situations 1-4. Fig. 2 compares the resulting average 
offered load and the average assigned capacity (both expressed  

TABLE II. CONFIGURATION OF OFFERED LOAD SITUATIONS 

Parameter Tenant 1 Tenant 2 

Initial position(xk(0),yk(0)) (km) (0, 0.5) (1.5, 2.5) 

Speed (vk) (km/h) 0.125 -0.29 

Offered load density 

configuration 

(mk(Mb/s/km2), dk(km) )  

Situation 1 (24, 5) (16, 5) 

Situation 2 (28, 3) (24, 3) 

Situation 3 (36, 1) (36, 1) 

Situation 4 (72, 1) (96, 0.5) 

Constant offered load density (μk) (Mb/s/km2) 20 16 

 

Fig. 1. Offered load density maps of Tenant 1 and 2 during a day.  

TABLE III. MARL MODEL PARAMETERS 

Parameter Value 

Initial collect steps 5000 

Maximum number of time steps 
for training 

2·106 

Experience Replay buffer 

maximum length (l) 
107 

Mini-batch size (J) 256 

Learning rate (�) 0.0001 

Discount factor(γ) 0.9 

ɛ value (ɛ-Greedy) 0.1 

DNN nodes 100 nodes x 1 layer 

Reward weights (φ1, φ2) (0.5, 0.4) 

Time step duration (Δt) 5 min 

Action step (Δ) 0.03 

as a percentage of the cell capacity cn) in the different cells for 
Tenant 1 and Tenant 2 in Situations 1-4. The aggregated offered 
load and the aggregated assigned capacity of each tenant at 
system level (i.e., among all cells) is also included as a 
percentage of the total capacity. Results reveal that the assigned 
capacity takes close values to the offered load requirements both 
at cell and system levels for the different situations, regardless 
of the level of heterogeneity. In fact, the obtained differences 
between the offered loads and the assigned capacities are lower 
than 8% for all cases, which are mainly due to the incremental 
action design, which makes that the assigned capacity fluctuates 
around the offered load within a margin between Δ and -Δ. The 
highest differences are observed for cell 4 in Situations 2 and 3 
and for cells 2 and 5 in Situation 4, since their total offered load 
in these cells exceeds cn during some periods, so the offered load 
of both tenants in those cells cannot be satisfied all the time (this 
can be seen when looking at the period between 19h and 22h of 
the second graph of Fig.  3 that depicts the cell offered load 
normalized to the cell capacity against the assigned capacity for 
cell 2). Moreover, results show that in certain cases when the 
traffic among cells is unbalanced and, in some cells, the offered 
load is higher than the relative SAGBRk, the policy is able to 
support this load by smartly distributing the assigned capacity in 
accordance with the spatial traffic distribution. For example, the 
average offered load of Tenant 1 in Situation 4 in cells 4 and 5 
exceeds the relative SAGBRk of 60% but the policy is able to 
support it since the offered load in the rest of cells is much lower 
than 60%. These results highlight the capability of the proposed 
solution to satisfactorily adapt to diverse levels of offered load 
heterogeneity among cells. 
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 Table IV includes the average reward, the average SLA 
satisfaction and the average assigned capacity ratio. The average 
SLA satisfaction is defined as the average ratio (bounded to 1) 
between the aggregate throughput Tk(t) and the minimum of the 
aggregate of min(ok,n(t),MCBRk,n) over all cells and SAGBRk. 
The average assigned capacity ratio is defined as the ratio 
between the assigned cell capacity and the cell offered load over 
all the cells in the scenario. These metrics have been obtained 
for both tenants considering the average over one day. Results 
show that the learnt policies achieve high average reward for 
both tenants in all situations. The good performance is also 
reflected in the values of SLA satisfaction, which are higher than 
0.96 for Tenant 1 and 0.93 for Tenant 2. The fact that slightly 
lower SLA satisfaction is obtained for Tenant 2 is that the traffic 
level of Tenant 2 is generally lower than that of Tenant 1, so the 
SLA satisfaction is more affected by the increases and decreases 
in action steps Δ than in the case of Tenant 1.  Finally, in relation 

 

 
Fig. 2 Average offered load and assigned capacity per cell and at 

system level for each considered situation.  

TABLE IV. SYSTEM-LEVEL PERFORMANCE INDICATORS 

Performance Indicator Situation 1 Situation 2 Situation 3 Situation 4 

Av. Reward Tenant 1 0.96 0.97 0.96 0.96 

Tenant 2 0.95 0.94 0.94 0.94 

Av. SLA 

satisfaction  

Tenant 1 0.97 0.98 0.97 0.96 

Tenant 2 0.94 0.97 0.95 0.93 

Av. assigned 

capacity ratio 

Tenant 1 1.04 1.01 1.01 1.08 

Tenant 2 1.04 1.02 1.08 1.05 

to the assigned capacity ratio, the obtained values are close to 1, 
with maximum deviations of 8%. This indicates that the 
assigned capacity properly matches the offered load with little 
overprovisioning.  

C. SLA parameters impact 

In this section, the impact of the SLA parameters on 
achieved behaviour of the proposed approach in the highly 
unbalanced Situation 4 is discussed.  

Fig.  3 compares the temporal evolution of the capacity 
shares σk,n(t) in cell 2 for Situation 4 from 12 hours to 24 hours 
against the cell offered load ok,n(t) normalized to the cell capacity 
cn. Results are shown for different values of MCBRk,n 
considering that the same MCBRk,n is configured for all cells and 
tenants. The rest of the parameters have been configured 
according to Table I. During the analyzed period, the offered 
load of Tenant 2 presents very high values between 19 hours 
until 21 hours, requiring nearly all the capacity in the cell. 
Instead, the offered load of Tenant 1 remains low, requiring 
around 35% of the cell capacity. Results show that the trained 
policies are able to assign the capacity without exceeding the 
MCBRk,n limit in any case. It is observed that depending on the 
MCBRk,n value, the assigned capacity shares of the tenants are 
differently distributed. While for MCBRk,n=60% and  
MCBRk,n =80%, the assigned capacity of Tenant 2 is limited and 
the offered load of Tenant 1 is satisfied, for MCBRk,n=100%, the 
offered load of Tenant 1 is not satisfied since nearly all the 
capacity is assigned to Tenant 2. Also, it is observed that for 
MCBRk,n=60% the capacity in the cell is not efficiently assigned  
since around 15% of the cell capacity remains unused from 18 
hours to 23 hours, although this capacity could have been 
assigned to Tenant 2. These results show the relevance of 
including the MCBRk,n parameter in the SLA to deal with 
unbalanced offered loads among cells, contributing to a more 
efficient and fairer distribution when is adequately configured.  

 Fig.  4 includes the aggregated offered load among all cells, 
Ok(t) (i.e., the summation of ok,n(t) for n=1..N) and the 
aggregated assigned capacity among all cells, Ak(t) (i.e., the 
summation of cn·σk,n(t) for n=1..N), both normalized to the total 

system capacity C, for both tenants with different values of 
MCBRk,n for the same period of Fig.  3. The SAGBRk values 
expressed as percentages of the system capacity are also 
depicted. For a low value of MCBRk,n, such as MCBRk,n=60%, 
the aggregated offered loads of both tenants at system level are 
not satisfied, leading to an inefficient use of the system capacity, 
since no more than the 60% of the cell capacity can be assigned 
to any tenant. In turn, when the value of MCBRk,n is increased 
the aggregated capacity shares Ak(t) of both tenants take closer 
values to Ok(t). However, Ak(t) still presents lower values than 
Ok(t), since in some cells there is not enough capacity to satisfy 
both tenants. Quantitatively, the average system utilization (i.e. 
the average of the ratio between the summation of Ak(t) of both 
tenants and the system capacity) for MCBRk,n=60% is 77% while 
for MCBRk,n=80% and MCBRk,n=100% is 83% and 82%, 
respectively. Also, good average SLA satisfaction ratios are 
obtained for both tenants, ranging from 0.9 up to 0.97 for the 
different analysed MCBRk,n values. The obtained results 
reinforce the relevance of choosing an appropriate value of 
MCBRk,n since it also affects the performance at system level. 

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 System
0

10

20

30

40

50

60

70

80

%

Situation 1

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 System
0

10

20

30

40

50

60

70

80

%

Situation 2

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 System
0

10

20

30

40

50

60

70

80

%

Situation 3

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 System
0

10

20

30

40

50

60

70

80

%

Situation 4

Av. Offered Load Tenant 1 Av. Assigned Capacity Tenant 1

Av. Offered Load Tenant 2 Av. Assigned Capacity Tenant 2



  

Fig.  3. Capacity shares vs offered load of tenants for cell 2 in Situation 

4 and for diverse values of MCBR. 

 

Fig.  4. Aggregated offered loads and assigned capacities in the system 

IV. CONCLUSIONS 

This paper has studied a capacity sharing solution for RAN 
slicing in multi-cell scenarios, designed as a multi-agent 
reinforcement learning model based on Deep Q-Network 
(DQN). Each DQN agent in the solution is associated to a 
different tenant and learns the capacity to be assigned to the 
tenant in the different the cells of the scenario so that the traffic 
demands are fulfilled while satisfying the Service Level 
Agreement (SLA) and making an efficient use of the resources 
in the different cells.  

The model has been trained considering a multi-cell scenario 
with two tenants that present heterogeneously distributed traffic 
demands among the different cells, which variate during time. 
The trained model has been evaluated considering diverse levels 
of temporal and spatial traffic heterogeneity among cells and the 
impact of the SLA parameters has been assessed. Results have 
shown that the considered solution adapts the assigned capacity 
to each tenant in each cell to the traffic requirements, proving 
the robustness of the solution. This is achieved while satisfying 
the SLA of the tenants with average satisfaction ratios above 
0.93, and efficiently using the available resources. Also, the 
relevance of including the maximum cell bit rate parameter in 
the SLA has been shown since it contributes to a more efficient 
and fair capacity assignment under highly unbalanced traffic 
situations.   
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