
On the Design of Quantization Functions for
Uplink Massive MIMO with Low-Resolution ADCs

Lifu Liu, Songyan Xue, Yi Ma, Na Yi and Rahim Tafazolli
Institute for Communication Systems (ICS), University of Surrey, Guildford, England, GU2 7XH

Email: (lifu.liu, songyan.xue, y.ma, n.yi, r.tafazolli)@surrey.ac.uk

Abstract—Quantization is the characterization of analogue-
to-digital converters (ADC) in massive MIMO systems. The
design of quantization function or quantization thresholds is
found to relate to quantization step, which is the factor that
adapts with the changing of transmit power and noise variance.
With the objective of utilizing low-resolution ADC is reducing
the cost of massive MIMO, we propose an idea as if it is
necessary to have adaptive-threshold quantization function. It
is found that when maximum-likelihood (ML) is employed as
the detection method, having quantization thresholds fixed for
low-resolution ADCs will not cause significant performance loss.
Moreover, such fixed-threshold quantization function does not
require any information of signal power which can reduce the
hardware cost of ADCs. Simulations have been carried out in
this paper to make comparisons between fixed-threshold and
adaptive-threshold quantization regarding various factors.

Index Terms—Quantization, low-resolution analogue-to-digital
converter (ADC), multiple-input multiple-output (MIMO),
maximum-Likelihood (ML).

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is one of
the most promising technologies for 5G communications; by
using tens of antennas at the base station, throughput and
reliability will be largely enhanced in communication system
[1]. But this technology still faces a lot of technical challenges,
for example, the huge demand of the antennas will lead to
the requirement of a large number of RF chains, and this will
result in the increase of the hardware complexity and hardware
cost [2]. It is known that analogue-to-digital converter (ADC)
contributes the most to the RF chain power consumption with
the consumption increases exponentially with resolutions [3];
based on this background, employing low-resolution (1, 2, 3
bit) ADCs at the receiver side is recognized as one of the cost-
effective schemes for future wireless communications. This
technology has already attracted many and still increasing
research efforts, mainly towards signal detection, channel
estimation, as well as performance evaluation [4]–[7].

Considering the non-linearity low-resolution ADC brings
to massive MIMO systems [8], signal detection is obviously
more challenging than systems with higher-resolution ADCs.
However, there are still numerous works have been done
in this research domain: for detection, maximum likelihood
(ML) detection has been well studied in [9], different from
the minimum Euclidean distance approach considered in the
conventional linear model, ML detection for receivers with
low-resolution ADC is related to the conditioned probability;
zero forcing (ZF) detector was also introduced in [4], while

a modified minimum mean square error (MMSE) detector
has been proposed in [10] which approximates the low-
resolution quantization model into a linear one, and this
detection method is specifically optimized for systems with
low-resolution ADCs.

Besides numerous researches that have been done in sig-
nal detection for massive MIMO with low-resolution ADCs,
quantization function for such systems has not attracted too
much attention. The history of researches on quantization
functions could be traced back to several decades ago while
the first step of the design for quantization functions was
about the fixed-rate scalar quantization; followed by the design
and optimizations for several types of adaptive quantization
functions, and these functions are widely used in recent
ADC researches [11]–[13]. The original objective for doing
optimizations for quantization functions is to reduce the mean
square error (MSE) between the analogue signal and the
quantized signal; and the adaptive quantization function has
a significant characteristic is that it requires the knowledge
of the received signal power which in another word is that it
requires power estimation at the receiver side to do specific
quantization optimization for each ADC. In this paper, the
concern arises from the key feature of low-resolution ADC:
the low-cost. Therefore, the practicality and complexity of
the quantization function come to essential factors to be
concerned; and it is useful and technologically important to
do extra analytical works and extensive studies on this topic.

To facilitate our study, we model the multiuser multi-
antenna signal reception into the problem of detection high-
resolution signals with low-resolution ADCs. The resolution
of signals is due to the employment of high-order modulations
(e.g., 16-QAM) at transmitter, the presence of multiple trans-
mitters, or both of them. Our key contribution in this paper
is on the analysis of quantization functions for low-resolution
ADCs in massive MIMO systems. ML detection method has
been utilised in this paper for signal reconstructions consid-
ering its ability to deal with the non-linear signals. By means
of computer simulations, our work reveals that from the error
probability aspect, the fixed-threshold approach has a small
difference from the widely used conventional quantization
function. Based on the fixed-threshold quantization function, a
ML detector has been derived to specifically conduct detection
for low-resolution quantized MIMO systems; such detector
considers a sign refinement for the quantized signals. Since the
adaptive-threshold quantization function requires the knowl-



Fig. 1. System model of massive MIMO with low-resolution ADCs

edge of the received signal power so that a power estimation
which is hardware-cost demanding is needed. It is trivial to
conclude that the fixed-threshold quantization function can be
a considerable solution for massive MIMO with low-resolution
ADCs when employing ML detector. This conclusion con-
forms with the original low-cost objective of implementing
low-resolution ADCs in massive MIMO systems. Simulation
performance evaluation will be carried out in this paper to
compare the performance of both fixed-threshold quantization
function and adaptive-threshold quantization function for mas-
sive MIMO with low-resolution ADCs while error probability
will be treated as the metric.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Signal Model for MIMO with Low-Resolution ADCs

The signal model of interest in its general form is depicted
in Fig. 1. Basically, there are K single-antenna transmitters,
with each sending a symbol xk, k = 0, ...,K − 1, to the
receiver. The receiver has N (N � K) receive-antennas, with
each associated by two low-cost RF chains (low-resolution
ADCs). Each symbol xk goes through a single-input multiple-
output (SIMO) channel hk = [h0,k, ..., hN−1,k]T , where hn,k
stands for the channel coefficient between the kth transmitter
and the nth receive-antenna, and the superscript [·]T for the
matrix/vector transpose. Denote H = [h0, ...,hK−1] to be the
MIMO channel matrix, x = [x0, ..., xK−1]T the multiuser
symbol block, v ∼ CN (0, σ2) denotes the additive white
Gaussian noise (AWGN), and the digital form of the unquan-
tized signal r = Hx + v. The output of low-resolution ADCs
is a N × 1 sequence y given by

y = Q(r) (1)

and this complex signal model (1) can be represented by a
real-form equivalent signal model [14], i.e.,[
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where Q(·) denotes the midrise b-bit uniform quantizer as

yn = Q(rn) =

{
sign(rn) ·

(
b |rn|∆ c∆ + ∆

2

)
, |rn| < S + ∆

2

sign(rn) · S, otherwise
(3)

where yn and rn denote the nth, n ∈ [1, 2N ] entry of ȳ and
r̄ (the non-quantized received signal r in the real form ), re-
spectively. ∆ is the quantization step, and S = (2b−1−1/2)∆
is the saturation level determined by resolution bit b.

The quantization step ∆ is chosen to minimize the distortion
between the quantized and unquantized signals so that MSE
E(|yn − rn|2) becomes a measurement standard. The setup
of ∆ has been analyzed in [12]; the distribution of the
unquantized signals is the key determining factor for ∆. For
standard Gaussian signal with standard noise (∼ N (0, 1)),
there is a parameter called standard quantization step ∆∗,
whose values can be found in [13], for example, ∆∗ = 0.9957
for 2-bit ADC, and 0.5860 for 3-bit ADC. In most of the state-
of-the-art researches, quantization step has been set as follow

∆ =
√

(Pt + σ2
v)/2∆∗ (4)

where Pt is the transmitter power, σ2
v is the noise variance.

B. ML Detector for Conventional Adaptive Quantization
Function

Given the channel knowledge H, the optimum decision
about x can be formed by means of maximizing the condi-
tional probability for a given received quantized signal y

x̂ = arg max
x

P(x|H,y) (5)

The solution of (5) leads to the ML detector algorithm.
To analyze this in the real form, it can be rewritten by
maximizing the conditioned probability P(x̄|ȳ) for a given
received quantized signal ȳ

max
x
P(x̄|ȳ)= max

x
P(x̄|r̄ ∈ R(ȳ)) (6)

= max
x

∫
R(ȳ)

p(x̄|r̄)dr̄

and R(ȳ) represents the quantized hyper-rectangular region
[7] in the (2N)-dimensional real space corresponding to the
construction vector r̄, while

R(yn) = {tlown ≤ rn ≤ tupn }; (7)

where the lower and upper boundaries of the quantization
region read as

tlown =

{
yn − ∆

2 for rn ≥ −∆
2 (2b − 2)

−∞ otherwise,
(8)

and

tupn =

{
yn + ∆

2 for rn ≤ ∆
2 (2b − 2)

+∞ otherwise,
(9)
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According to [9], the conditional probability in (6) can be
expressed as

P(x̄|ȳ)=

2N∏
n=1
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where Φ(·) represents the cumulative Gaussian distribution
and reads as

Φ(x) =
1√
2π

∫ x

−∞
exp(−t2)dt (12)

Based on the setup for the quantization step ∆ and the
design for above ML detector, it can be found that the design
of adaptive quantization function assume the knowledge of
the signal power at the receiver side. This motivates us to
rethink if adaptive quantization function necessary for low-
resolution ADCs equipped massive MIMO systems as having
the knowledge of received signal power requires power esti-
mation and such would result in higher complexity. Moreover,
the main objectives of using low-resolution ADCs in massive
MIMO systems are reducing the hardware and energy cost,
but doing such kind of estimation would not contribute to
the objectives. Motivated by this background, an analysis of
the fixed-threshold quantization function will be carried in the
following part; and a new ML detector will be proposed based
on fixed-threshold quantization function will be proposed.

III. MAXIMUM LIKELIHOOD DETECTOR FOR
FIXED-THRESHOLD QUANTIZATION FUNCTION

Different from the setup for low-resolution ADCs with
adaptive quantization thresholds in (8) and (9), the fixed-
threshold quantization function has thresholds uniformly fixed
in the range of [-1, 1] with Λ = 1/2b−1 as the quantization

step. Indicate L = 2b−1 overall thresholds, and the expression
of the set B for all thresholds should be

B= {−bL, ...,−b1, b0, b1, ..., bL}
= {−1, ...,−1/2b−1, 0, 1/2b−1, ..., 1} (13)

In the fixed-threshold quantized massive MIMO system,
the quantization function can be written as Qf (·) with the
quantized signal yfn being expressed as

yfn = Qf (rn) =

{
sign(rn) · d |rn|Λ eΛ, |rn| < 1

sign(rn), otherwise
(14)

Based on the definition of the fixed-threshold based quan-
tization function in (14), our analysis will start from the
following proposition.

Proposition 1. Given the quantized received vector ȳf , and
z = ȳf � |ȳf |−1 � ȳf , then the following equation will be
fulfilled

z = ȳf � |ȳf |−1 �Qf (H̄x̄ + v̄)

= Qf (ȳf � |ȳf |−1 � H̄x̄ + ȳf � |ȳf |−1 � v̄) (15)

where � is the element-wise product and |ȳf | denotes the
absolute vector based on ȳf .

Such proposition is because the product ȳf � |ȳf |−1 is a
binary vector and it will only change the sign of unquantized
signal r.

Let us define an index set

M = [m
(1)
L , ...,m

(1)
1 ,m

(2)
1 , ...,m

(2)
L ] (16)

where m
(1)
l denotes a vector that contains all index n that

make yfn = −lΛ; and m
(2)
l refers to the index vector that

has all n result in yfn = lΛ; moreover, l ∈ [1, L]. Therefore,
the likelihood function for a b-bit quantized massive MIMO
system can be expressed as (10).

In (10), (a) is based on the sign refinement in Proposition 1;
(b) is because vn and −vn have the same distribution method
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(or the same probability density function (PDF)) so that P(c ≥
vn) = P(c ≥ −vn) for arbitrary constant c; while (c) is just
the combination of index sets.

Having vn independent for all n, we can build the con-
ditional probability based on the proposed fixed-threshold
quantization function as (17). It can be found in (10) and (17)
that different from the unquantized signal rn that has been
mapped into [−bL−1bL−1]; the upper and lower bound for the
fixed-threshold system are ±1, however, there is probability
that rn be larger than 1 or smaller than −1, this is the
saturation that has been discussed in II-A, and we set ±1
to be the saturation levels.

Based on the same assumption that the channel state infor-
mation (CSI) is known at the receiver side for both adaptive
and fixed-threshold model, the most significant advantage the
fixed-threshold approach has is that it does not require any
extra beforehand signal processing where the adaption for
the quantization step ∆ has been removed; no signal power
knowledge is needed for the fixed-threshold approach.

IV. SIMULATION RESULTS AND DISCUSSION

TABLE I
FIXED/ADAPTIVE-THRESHOLD QUANTIZATION FUNCTION SETUP FOR

UPLINK MASSIVE MIMO

Parameter Configuration
UT (K) 1, 2

Rx Ant. (N ) 20, 40

Modulation 16QAM
ADC resolution 2-bit, 3-bit

Quantization Function fixed-threshold, adaptive-threshold
Detection method Maximum-likelihood detection

Computer simulations are carried out to do comparisons
between different quantization functions for massive MIMO
with low-resolution ADCs, with specific to the performance
evaluation for different ML detectors. We strive to achieve our
goals through intensive studies on several meaningful config-
urations: as specified in Table I. The wireless MIMO channel
is independent flat-Rayleigh (complex Gaussian) block fading.
The signal-to-noise ratio (SNR) is defined as the average
received bit-energy to noise ratio (i.e. Eb/N0 in dB). It is
worthwhile to note: 1) we skip the configuration of K = 4
since the complexity of ML detector is exponentially increased
along with the increasing of the number of transmitters; limited
by the hardware condition, it would cost a lot of time to
get a single line; 2) we choose 16-QAM as the showcase
modulation because it obeys our requirements of the high-
resolution signals and it’s general enough as our main concern
of this paper is not the modulation scheme but the quantization
function; 3) there are at least four states for the transmitted
signals in the real form which is enough for these two kinds
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Fig. 2. Comparisons for single-user system.

of ADCs with different resolutions to build up Rx-Tx one to
one bijection and this will avoid the stochastic resonance (SR)
phenomenon that has been found and discussed in the 1-bit
ADC model in [8].

Simulation results, in terms of the bit-error-rate (BER), are
plotted in Fig. 2 for single-user system and Fig. 3 for two-
users system with the number of receive antennas N and
ADC resolutions variable. The following phenomenons can
be observed:

1. In massive MIMO system with low-resolution ADC, it
is found that the signal detectability is monotonically
increasing with the SNR in both Fig. 2 and Fig. 3. The
performance can be improved by rising up the number
of receive antennas (N ) and bit resolutions (b) of ADC
as well. Moreover, an interesting phenomenon can be
found that double the number of receive antennas is more
efficient than double the number of quantization levels for
high-resolution signals to increase the signal detectability.
all light blue curves with diamond symbols (2-bit ADC,
40Rx) in two figures outperform those pink ones with
circle symbols (3-bit ADC, 20Rx) while comparing both
curves with the blue one with square symbols (2-bit
ADC, 20Rx). This can be explained as while the ADC
resolution is enough to build up the Tx-Rx signal one-to-
one bijection, signal detectability is more strictly limited
by the ADC resolutions rather than number of receive
antennas.

2. Both Fig. 2 and Fig. 3 exhibit clearly that there is a small
difference between the fixed and adaptive quantization
functions when configurations are the same. Concerning
the typical massive MIMO setup, where the receive-
antenna to transmit-antenna ratio fulfills: N/K � 10,
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Fig. 3. Comaprisons for two-users system.

these two types of quantizations share the same spatial
diversity-gain [15], thus the only factor that would cause
difference is the quantization error. It is found that the
fixed-threshold and adaptive-threshold approaches have
narrow gap in terms of BER. Furthermore, the fixed-
threshold can even outperform those with adaptive quan-
tization function with 2-bit ADCs in Fig. 3. This phe-
nomenon is because we use 16-QAM as the modulation
scheme, the 2-bit ADC is not sufficient to form the
bijection between the input and output signals for the two-
user system. In addition to the non-sufficient bijection of
2-bit ADCs, the stochastic resonance of low-resolution
ADC also makes the noise constructive for signal detec-
tion in a specific SNR range [8]. Therefore, the fixed-
threshold outperforms the adaptive approach because the
noise effect has been considered in the design of the
adaptive quantization function.

Lots of previous researches that focuses on low-resolution
quantized massive MIMO systems ignore the design for quan-
tization function but use the adaptive approach. In conventional
communication systems, with the knowledge of signal power
and noise variance, it is the gain controller who determines
how the threshold is adapted. Considering the relatively lower
signal processing ability of the low-resolution quantized mas-
sive MIMO system; using the gain controller to adapt the
quantization function comes to a burden. This motivates us
to consider the fixed-threshold quantization for low-resolution
quantized massive MIMO systems. Based on our simulation
works, within the negligible small difference between the
fixed-threshold quantization function and adaptive-threshold
quantization function, doing adaptive quantization for the low-
resolution ADCs is not necessary, and the gain this technology
can bring to the low-cost massive MIMO system is limited.

V. CONCLUSION

In this paper, we have investigated the problem of de-
tecting low-resolution quantized signals in massive MIMO
systems using different types of quantization functions. To
better achieve the low-cost intention of utilizing low-resolution

ADCs in massive MIMO systems, a fixed-threshold quantiza-
tion function has been analytically revealed; and experimental
comparisons have been made between the adaptive-threshold
quantization function and the fixed-threshold quantization
function with respect to different variables. Compared with
the adaptive-threshold quantization function, it was found
that the fixed-threshold quantization function could achieve
comparable detection performance without the need for gain
controller when using the ML detection algorithm to do the
boundary research. Work in this paper was different from
those concluded in conventional low-cost massive MIMO
systems; thus it could be interesting and encouraging for future
development in this research domain.
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