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Abstract—Connected and Autonomous Vehicles (CAVs) are
expected to become a reality on roads in the near future
bringing significant social, economic, and environmental benefits.
Cooperation and coordination among CAVs will be enabled
through Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) wireless communications. Each vehicle knows its current
location and in many cases will have to communicate this
information to its associated Roadside Unit (RSU). With the
proliferation of CAVs, the RSU is expected to receive and process
a large amount of feedback information from its assigned CAVs.
Thus, an event-triggered communication scheme is proposed
instead of conventional approaches where communication takes
place in a periodic manner. Further, the effect of age of infor-
mation on the resulting accuracy of the vehicle tracking error
is taken into account by considering the message queue wait
time at the RSU. A family of optimization problems is proposed,
used to determine the optimal accuracy threshold for the event-
triggered algorithm, so as to minimize the effect of the tracking
error caused by the queue wait time.

Index Terms—connected and autonomous vehicles, intelligent
transportation systems, age of information, event-triggering

I. INTRODUCTION

The introduction of connected and autonomous vehicles
(CAVs) will revolutionize road transportation and personal
mobility in the years to come. According to the independent
think tank RethinkX, by 2030 95% of passenger miles in the
U.S. will take place utilizing fleets of CAVs, while the mobility
model of people will change from individual car ownership to
a new business model of Transport as a Service (TaaS) [1].

The emergence of CAVs is expected to bring beneficial
changes to our transportation system. Many studies show that
the use of CAVs has the potential to improve road safety by
significantly reducing traffic accidents [2]. Additionally, CAVs
are expected to reduce traffic congestion and travel times,
factors with great economic impact on today’s society. These
factors will further bring environmental benefits by leading to
less fuel consumption and gas emission [3]. Finally, CAVs will
promote user equity, as persons who are not able to drive a
vehicle, e.g., elderly and disabled, will have the ability to go
anywhere anytime.

Although features such as self-parking, advanced driver
assistance, and autonomous emergency braking systems are al-
ready becoming available, full autonomy is still away from the
market as several scientific and technological challenges are
still open and need to be addressed [4], [5]. The full positive
outcomes of CAVs will be realized by developing technologies

that enable Vehicle-to-Infrastructure (V2I) communications.
The interaction between vehicles and roadside infrastructure
will allow the CAVs to know the road conditions ahead of
time and enable cooperative traffic management for maximum
efficiency. In order to support traffic management functions
through V2I communications, e.g., autonomous overtaking and
intersection crossing, the CAVs need to send messages to
their corresponding RSUs providing information about their
state, e.g., location, speed, acceleration, etc. Without loss of
generality, the focus of this work is on the vehicle location
information sent to an RSU by all vehicles associated to a
particular RSU.

When a large number of CAVs are sending periodic mes-
sages to an RSU, a very large number of small-sized messages
are generated. A vast number of messages received at the RSU
creates a bottleneck, as these messages must be processed
after waiting in a queue. Too many messages may lead to
two potentially undesirable situations. First, if the incoming
rate of messages is greater than the speed at which the RSU
can process them, the queue will grow infinitely long. Second,
even if the processing speed is adequate, the queue wait time
will contribute to the tracking error, as the position status of
a vehicle is updated only after it is processed by the RSU
(while the vehicle continues to travel). Therefore, the time that
elapses since the last received update was generated needs to
be investigated in terms of its effect on the resulting tracking
accuracy.

In the field of networked systems, this concept has recently
emerged as a notable topic and is referred to as the age of
information [6]. It is a novel metric that aims to quantify
the freshness of information and it is therefore inherently
related to the time a piece of information is queued prior
to being processed. The fundamental problem of how often
should a system’s status be updated with respect to the age of
information, taking into account that the status updates will
wait in a queue, was initially presented in [7]. Following this
seminal work, other related works have been published, e.g.,
[8], [9]. Further, the authors in [10] investigate several aspects
related to the age of information on IoT applications.

It should be noted that even though the age of information
characterizes the freshness of information in terms of time,
it does not take into account the freshness with respect to
the information content. For example, in the case of vehicle



tracking, it is not only the time since the last received update
was generated that affects the tracking accuracy, but rather the
combination of this time and the speed of the vehicle (i.e., the
distance the vehicle will travel within this interval) and hence
its location accuracy will depend on the vehicle’s speed. Such
meaningful variations of the age of information concept have
been recently investigated in [11], [12].

Further, in order to initially reduce the number of messages
to be sent to the RSU, instead of a periodic signaling approach,
this work proposes the adoption of an event-triggered signaling
scheme, where signaling takes place only upon the occurrence
of an “event”. Within the context of event-triggering systems,
an event corresponds to an unexpected situation, i.e., an
incident outside the system’s expected behavior [13]. Unlike
periodic schemes, the idea behind event-triggering approaches
is to carry out actions only upon the occurrence of certain
events [13]. Over the past years this concept has attracted the
interest of the scientific community as it typically decreases
the computation and communication burden and thus, exhibits
certain advantages over periodic approaches [14], [15]. The
topic of event-triggered communications has been also recently
addressed in the literature in relation to intelligent transporta-
tion systems and IoT, e.g., [16]–[22].

The rest of this paper is structured as follows. The vehicle
tracking problem is presented in Section II, while Section II-A
describes the event-triggered tracking approach. Section II-B
discusses the tracking error caused by the queue wait time
and its effect on the tracking accuracy of the event-triggered
approach. This is followed by Section III, that presents a
family of optimization problems used to derive the optimal
tracking accuracy for the event-triggered technique, while also
taking into account the tracking error caused by the queue wait
time. Finally, Section IV offers some concluding remarks and
potential avenues for future research.

II. VEHICLE TRACKING PROBLEM

A scenario is considered where the CAVs need to inform
their associated RSU about their current location. The route
that a vehicle will follow is known to the RSU, however, at
any given time the RSU needs to know the location of the
vehicle along its route. This work is subsequently divided into
two parts; initially, the tracking of the vehicle using event-
triggering is presented, followed by the determination of the
queue-induced tracking error.

A. Event-Triggered Tracking

An event-triggered vehicle tracking approach is presented,
in which both the RSU and the vehicle use a predetermined
mobility model to estimate the movement of the vehicle with
respect to time. Compared to periodic signaling, instead of
sending a message to the RSU in every period, a vehicle sends
a message in a period only if an event has occurred. An event is
triggered if there is a difference between the predicted (based
on the mobility model) and actual location of the vehicle that
exceeds a predetermined threshold (in meters). When an event

occurs, the vehicle and RSU update the vehicle’s estimated
position and the model parameters used.

The mobility model used to predict the locations of the
vehicles is a set of speed values assigned to every possible
location and time. Specifically, in this work the model con-
siders a speed value for each road for each hour of the day
(the average speed at road r between hours h and h + 1,
h ∈ {0, 1, · · · , 23}, is denoted as Up(r, h)). The model is
derived from a real dataset of GPS-based vehicle traces. In
particular, the dataset comprises of traces generated by the
onboard devices of approximately 1700 state-owned vehicles
in Cyprus and contains all the routes traveled by the vehicles
from February 2017 till July 2019 island-wide. The GPS-
coordinates of the vehicles are recorded every 30 seconds
and, additionally, when the vehicle turns or when unexpected
driving behavior is detected. Throughout the day, the number
of active vehicles ranges from approximately 300 − 350
(around midnight and early morning hours) to 1700 (during
the morning and early afternoon hours).

The route of each vehicle is known a priori and is defined
as a sequence of road segments. For the purpose of this work,
it suffices to represent a route, R, as a sequence of pairs,
{(rn, Ln)}, where rn is the road id and Ln the length of
the road segment that is part of the specific route. Without
loss of generality, for the following analysis the focus is on a
particular route, R.

In addition, time is considered in terms of periods (T is
the period length). Considering that a vehicle starts traveling
on route R at time instant zero, period k corresponds to the
interval between time instants (k − 1)T and kT . Given the
prediction model utilized, for each period k the pairs of road
ids and lengths traveled is denoted as Rk = {(rkl

, Lkl
)},

where (rkl
, Lkl

) is the l-th pair of road id and road segment
length traveled during period k. Specifically, given the time
of day, the vehicle’s location at the end of each period can be
estimated utilizing the model’s predicted speeds. It is noted
that Rk is not a subset of R, as a segment of the route,
(rn, Ln), is possibly split between two or more time periods.

Therefore, given the model as described above, at the end
of period m, i.e., at time mT , an event is triggered for a
particular vehicle if the difference between the predicted and
actual location of the vehicle exceeds a threshold α:

∣∣∣∣∣∣
m∑

k=n+1

|Rk|∑
l=1

Up(rkl
, hk)tkl

−
∫ mT

nT

U(t)dt

∣∣∣∣∣∣ > α, (1)

where nT is the time instant the last message was sent from the
vehicle, hk is the time of the day corresponding to time period
k, tkl

is the time needed to travel the road length Lkl
with the

corresponding predicted speed Up(rkl
, hk), |Rk| denotes the

length of sequence Rk, and U(t) is the actual instantaneous
speed of the vehicle.

Since the inequality of Eq. (1) is checked at the end of each
period, the instantaneous speed of the vehicle, U(t), can be
replaced by the average speed within the specific time interval.
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Figure 1. The average number of messages sent with the event-triggered
approach normalized against periodic signaling using three different prediction
models for the speeds of the vehicles.

For time interval tkl
, i.e., during the l-th road segment of

period k, the average speed, Ukl
, is calculated by:∫ (k−1)T+tkl

(k−1)T+tkl−1

U(t) dt = Ukl
tkl

(2)

Then, Eq. (1) becomes:∣∣∣∣∣∣
m∑

k=n+1

|Rk|∑
l=1

(Up(rkl
, hk)− Ukl

) tkl

∣∣∣∣∣∣ > α, (3)

Clearly, the degree to which the number of messages decreases
compared to a conventional periodic approach depends on the
differences between the actual and predicted speeds, that is,
the degree to which the actual vehicle movement matches
the behavior model utilized. Moreover, the threshold value α
determines the tracking accuracy of the algorithm. Clearly,
the smaller the value of α, the higher the required tracking
accuracy and the number of messages that will be sent.

Figure 1 illustrates the average number of messages sent
when using the described event-triggered approach normalized
over the number of messages that would have been sent
with periodic signaling. The result is the average obtained
by tracking 166 vehicle routes. These routes are randomly
selected from the aforementioned dataset and they correspond
to different areas and different times of the day. The prediction
models for the speeds of the vehicles that were used included
the average speed per road per hour of the day as described
in this section, the average speed per road (averaged over all
hours of the day), and randomly generated speeds within the
same range as real average speeds in the dataset.

Figure 1 clearly shows that the event-triggered algorithm
decreases the number of messages that need to be sent,
compared to periodic signaling. Also, as one would expect,
more accurate prediction models yield a higher decrease in
the number of communicated messages.

B. Queue-Induced Tracking Error

When an event is triggered, the vehicle sends a message,
M , to the RSU. However, the vehicle and the RSU will only
resynchronize as soon as the message M is processed by the

RSU, after waiting in the queue for some time, tq . Thus, the
resulting accuracy of the event-triggered approach is given by

α+ Utq, (4)

where U is the average speed of the vehicle over the duration
of tq . We designate Utq as the queue-induced tracking error.
Essentially, it is the distance the vehicle will travel while its
latest received message waits in the queue at the RSU.

As previously mentioned, the concept of taking into account
the time that has elapsed since the last received update was
generated is defined as the age of information [6]. By its
classical definition the age of information is a measure of
time representing the freshness of information in terms of the
amount of time that has passed, regardless of how much the
information content has changed. The queue-induced tracking
error is a quantity strongly linked with the age of information,
in the sense that it is the effect of the age of information on
the information content, i.e., how much the location of the
vehicle has changed as a consequence of the fact that in the
meantime the information has aged.

In order to estimate the queue wait time, tq , known results
from queuing theory are employed. Without loss of generality,
a single server and arrivals following a Poisson process are
considered. Since all messages in the queue are of the same
type and size a deterministic service time is also considered.
Thus, an M/D/1 queue is used, for which it is known that
the average wait time in the queue is given by [23]:

tq =
ρ

2µ(1− ρ)
, (5)

with ρ = λ/µ, where µ is the number of messages per second
processed by the RSU, and λ is the number of messages per
second received at the RSU. The value of µ is determined by
the messages’ size and the RSU’s processing speed.

In the case of a conventional periodic signaling approach,
parameter λ would be equal to V/T , where V is the number
of vehicles in the network and T the length of the period,
whereas for an event-triggered approach, the message arrival
rate depends on the value of α. Specifically, the arrival rate
is estimated using the empirical result of the event-triggered
tracking algorithm, i.e., by estimating an approximate polyno-
mial, p(α), using the results of Fig. 1. For these results the
prediction model, when using a speed value for every road for
every hour of the day, can be fitted by a 4-th degree polynomial
(Fig. 2) that will be used for the rest of this work. Note that,
in this case the number of messages sent per second by V
vehicles is estimated by V p(a)/T .

Figure 3 demonstrates the effect of the queue-induced
tracking error on the accuracy of the event-triggered approach.
Specifically, Fig. 3(a) illustrates the average wait time in the
queue and Fig. 3(b) illustrates the resulting accuracy of the
approach. The figures correspond to a scenario with 1000
vehicles traveling with a constant speed of 30 m/s and a period
of 5 s, while all vehicles use the same value for α (see Eq.
(3)). It is shown that for very small values of α, the queue
(thus the wait time) at the RSU will grow infinitely, as too
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Figure 2. p(α), fitted by a 4-th degree polynomial, for the empirical results
of event-triggered signaling presented in Fig. 1.
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Figure 3. Effect of the queue-induced tracking error: (a) The average queue
wait time (b) Resulting tracking accuracy of the event-triggered approach.

many messages are generated by the vehicles. Further, as the
α value becomes larger, it is shown that there is a region
where the queue-induced tracking error is high enough so that
the resulting accuracy of the event-triggered tracking is larger
than the value of α that has been set as a threshold.

III. MINIMIZING INFORMATION AGING

As previously discussed, for optimal performance, the ac-
curacy threshold (α) of the event-triggered vehicle tracking
algorithm must be at least sufficiently large so that the queue
at the RSU does not grow infinitely. In addition, it is desirable
that α is large enough so that the actual accuracy of the
tracking algorithm does not end up being larger than the set
threshold (α) due to the queue-induced tracking error.

Thus, a family of optimization problems is defined below
in order to determine the optimal accuracy threshold (α)
for the event-triggered approach. According to the specifics

of the application considered, different optimization problem
variations can be defined (in this work three different for-
mulations are presented accounting for roads, vehicles, and
routes). This optimization problem is solved at the RSU
and the result is communicated to the vehicles. Since the
optimization problems can be solved quickly, this allows for
frequent updates of the optimal accuracy values.

The first variation of the optimization problem considers a
different value of α for every road. The rationale behind this
approach is that depending on the road type, e.g., highway,
local street or arterial street, a different tracking accuracy is
desired. Thus, the following problem (P1) is defined:

(P1) min
αi

N∑
i=1

αi + Up(ri, hn) tq(µ, αi, Vi) (6a)

s.t.
N∑
i=1

p(αi) Vi

T
< µ, (6b)

αi ≤ αi,max, ∀i ∈ {1, 2, · · · , N}, (6c)

where N is the number of roads in the network under
consideration, Up(ri, hn) is the average speed at road ri at
the current time of the day hn, Vi is the current number of
vehicles traveling on road ri, and αi the accuracy threshold
for road ri. The optimization function(6a) corresponds to the
minimization of the sum of the queue-induced tracking errors
(Eq. (4)) of all roads. Following the discussion of Section II-B,
constraint (6b) rejects solutions for which the queue grows
infinitely, while constraint (6c) sets the maximum acceptable
value for the accuracy threshold for each road.

Moreover, it is of practical interest to assign priorities to
different roads. High priority means that a higher tracking
accuracy is desired for that particular road compared to roads
with lower priorities. In this case, the specific thresholds im-
posed by the inequalities of Eq. (6c) can be replaced by more
relaxed constraints. Specifically, the set of N roads can be
divided into subsets according to their priorities. For example,
defining Q priority classes and subset Pq ⊂ {1, 2, · · · , N}
as the set of road indexes assigned a priority q (with sets
P1, P2, · · · , PQ disjoint and priorities descending from P1

to PQ), constraint (6c) can be replaced with αi < αu,
∀i ∈ Pq, u ∈ Pq′ : q < q′, so that roads in classes with
higher priority will be assigned lower values of α.

Another alternative is to determine a different value of
accuracy per vehicle and per route. That is, to assign an αj

to each vehicle j so that a maximum expected number of
messages corresponds to the current route of the vehicle from
source to destination. Thus, problem P2 is defined:
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(P2) min
αj

V∑
j=1

αj + Up(hn) tq(µ, αj) (7a)

s.t.
V∑
i=j

p(αj)

T
< µ, (7b)

αj ≤ αj,max, ∀j ∈ {1, 2, · · · , V }, (7c)
mRj

tR
≤ p(αj)

T
, ∀j ∈ {1, 2, · · · , V }, (7d)

where Up(hn) is the prediction speed at the current location
of the vehicle at current time of the day hn. Constraint (7d)
now sets a maximum expected number of messages, mRj , for
the route R of vehicle j, where tR denotes the estimated time
to traverse route R based on the mobility model in use.

Figure 4 shows the results obtained when solving P2,
aiming to highlight the effect of constraint (7d) (by considering
three scenarios where 25%, 50%, and 75% of the routes are
constrained by the inequalities of constraint (7d)). From the
figure, it is observed that the αj’s for the routes that are
constrained by (7d) take small values, whereas the rest are
forced to larger values in order to satisfy the constraint (7b) (so
that the queue does not grow infinitely). Note that for all three
scenarios the values of the parameters used were: V = 1886,
T = 5 s, µ = 150, αi ≤ 100 m, and mRj values are drawn
randomly so that they correspond to a percentage of messages
ranging from 20% to 30% of the messages that would have
been sent via periodic signaling. Further, the values used for
the prediction speeds on each road, Up(hn), throughout this
work, were drawn from the mobility model of Subsection II-B,
which is based on real data.

In practice, depending on the application domain, the num-
ber of vehicles on each road might fluctuate continuously.
Therefore, the derived values of αi, ∀i ∈ {1, 2, · · · , N}, will
not be the most suitable most of the time. Naturally, the more
often the optimization process is performed, the closer to the
optimal the utilized values of αi’s will be. Nevertheless, in
practice, these values cannot be updated overly often. Thus, it
is of practical interest to consider solving the optimization
problem taking into account the potential variation on the
number of vehicles until the next execution of the optimization

algorithm. In this case, two questions must be investigated.
First, what modifications need to be made so that the solution
can accommodate the expected vehicle fluctuations sufficiently
well. Second, by how much the results worsen when the
modified formulation is solved for the initial number of
vehicles, as compared to the solution to the same problem
when the original formulation (P1) is used.

Clearly, this optimization problem is a variation of P1:

(P3) min
αi

N∑
i=1

αi + Up(ri, hn) tq(µ, αi, Vi) (8a)

s.t.
N∑
i=1

p(αi) V
+
i

T
< µF, (8b)

αi ≤ αi,max, ∀i ∈ {1, 2, · · · , N} (8c)

The objective function (8a) remains the same, therefore the
solution is optimized for the current number of vehicles at a
specific time instant. Constraint (8b) now accounts for an in-
creased number of vehicles, with V +

i representing the number
of vehicles on road i, such that V +

i > Vi, ∀i ∈ {1, 2, · · · , N}.
That is, the constraint guarantees that the increased number
of vehicles, V +

i , ∀i ∈ {1, 2, · · · , N}, can be accommodated
without the queue length growing infinitely. The addition of
parameter F < 1 at the right side of the inequality ensures
that not only the queue length remains finite, but the queue
wait time for the increased number of vehicles remains within
an acceptable limit. Due to the fact that the wait time for the
utilized queue model grows exponentially with α, the wait
time quickly becomes prohibitively large as the ratio of the
mean arrival rate over the mean service rate nears the value
1. Therefore, the value of parameter F must be close to, but
smaller than 1. Note that in P1 parameter F is not necessary,
since both the objective function and constraint (6b) consider
the same numbers of vehicles. As a consequence, the same
value of wait time affects both the objective function and
constraint (6b), thus a large wait time increases the value of
the objective function and does not yield an optimal solution.

Figure 5 shows the values of αi, ∀i ∈ {1, 2, · · · , N},
resulting from the optimization problems P1 and P3. The
total number of vehicles is 1886 and the values of V +

i are
10% higher than the corresponding Vi’s. The values of the
rest of the parameters are N = 20, µ = 200, αi < 50,∀i ∈
{1, 2, · · · , N}, and F = 0.995. This figure shows that, as
expected, in order to satisfy the constraint (8b) in P3, instead
of the constraint (6b) in P1, larger values need to be assigned
to the values of the αi’s. Further, Fig. 6 illustrates the values
of the objective function when the αi’s are provided by the
solutions of P1 and P3, with the values of V +

i ranging from
−10% to +10% compared to the corresponding Vi’s. The
figure shows that the solution of P3 can handle a 10% increase
in the number of vehicles, whereas for the actual current values
of vehicles Vi, ∀i ∈ {1, 2, · · · , N} (or even for lower values),
the solution is not considerably worse than the one given by
P1. The reader should also note that for the same scenario,
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P1 cannot handle more than a 5% increase in the number of
vehicles, making P3 a more effective approach to the problem
when the number of vehicles fluctuate.

IV. CONCLUSIONS
This work proposed the usage of an event-triggered algo-

rithm for vehicle position tracking and showed that, com-
pared to conventional periodic signaling, this approach can
significantly decrease the communication overhead. This is an
important advantage, especially taking into consideration the
expected scale of emerging CAVs.

Furthermore, the concept of the age of information was
considered with respect to the proposed event-triggered track-
ing scheme. It was demonstrated that for large numbers of
vehicles, the queue wait time for the messages at the RSU is
not negligible and can potentially lead to an additional tracking
error. This is a direct consequence of the fact that the position
of a vehicle is not updated as soon as the corresponding
message is generated, but rather after it is processed by the
RSU, while the vehicle continues to travel. Within this context,
the actual resulting accuracy of the event-triggered tracking
algorithm is defined. Subsequently, a family of optimization
problems were formulated (accounting for roads, vehicles,
and routes) that can be used to derive the optimal value
for the accuracy threshold of the event-triggered tracking
algorithm. That is, the optimal value above which an event
should be triggered, so that the resulting tracking accuracy
of the algorithm, taking into consideration the queue-induced
tracking error, is maximized.

Future work involves extending the methodology for a
distributed infrastructure, where local controllers process the
communication messages only for vehicles in their vicinity.
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[14] K. Åström and B. Bernhardsson, “Comparison of periodic and event
based sampling for first-order stochastic systems,” IFAC Proceedings
Volumes, vol. 32, no. 2, pp. 5006–5011, 1999.

[15] M. Mahmoud and M. Sabih, “Networked event-triggered control: An
introduction and research trends,” International Journal of General
Systems, vol. 43, no. 8, pp. 810–827, 2014.

[16] P. Kolios, C. Panayiotou, and G. Ellinas, “Tracking trip changes with
event triggering,” in Proc. of IEEE ITSC, 2015.

[17] P. Kolios et al., “Event-based communication for IoT networking,” in
Proc. IEEE 2nd World Forum on Internet of Things, 2015.

[18] ——, “Data-driven event triggering for IoT applications,” IEEE Internet
of Things Journal, vol. 3, no. 6, pp. 1146–1158, 2016.

[19] P. Kolios and G. Ellinas, “Model-adaptive event-triggering for efficient
public transportation tracking,” in Proc. IEEE International Workshop
on IoT Applications and Industry 4.0 (IoTI4), 2019.

[20] S. Trimpe and D. Baumann, “Resource-aware IoT control: Saving
communication through predictive triggering,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 5013–5028, 2019.

[21] C. Nowzari et al., “Event-triggered communication and control of
networked systems for multi-agent consensus,” Automatica, vol. 105,
pp. 1–27, 2019.

[22] M. Michalopoulou et al., “An event-triggering approach for bus tracking
based on multimodel mobility prediction,” in Proc. of IEEE ITSC, 2019.

[23] L. Kleinrock, Queueing Systems. Volume 1: Theory. Wiley, 1975.


