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Abstract—It is well known that physical-layer key generation
methods enable wireless devices to harvest symmetric keys by
accessing the randomness offered by the wireless channels.
Although two-user key generation is well understood, group
secret-key (GSK) generation, wherein more than two nodes
in a network generate secret-keys, still poses open problems.
Recently, Manish Rao et al., have proposed the Algebraic Sym-
metrically Quantized GSK (A-SQGSK) protocol for a network
of three nodes wherein the nodes share quantized versions of
the channel realizations over algebraic rings, and then harvest
a GSK. Although A-SQGSK protocol guarantees confidentiality
of common randomness to an eavesdropper, we observe that the
key-rate of the protocol is poor since only one channel in the
network is used to harvest GSK. Identifying this limitation, in
this paper, we propose an opportunistic selection method wherein
more than one wireless channel is used to harvest GSKs without
compromising the confidentiality feature, thereby resulting in
remarkable improvements in the key-rate. Furthermore, we also
propose a log-likelihood ratio (LLR) generation method for the
common randomness observed at various nodes, so that the soft-
values are applied to execute LDPC codes based reconciliation
to reduce the bit mismatches among the nodes.

Index Terms—Wireless security, physical-layer key generation,
group secret-key, common randomness, consensus algorithms

I. INTRODUCTION

It is well known that the randomness offered by wireless

channels can be exploited to harvest symmetric keys among

the nodes in a wireless network [1]. In two-user physical-

layer key generation, the nodes observe the temporal variation

in their wireless channel by sharing probing signals with

each other, followed by a consensus algorithm to synthesize

a secret-key. However, in a more generic model of group

secret-key (GSK) generation, more than two nodes intend to

harvest a secret-key for securing communication in broad-

cast and relaying applications, e.g., in vehicular networks.

Broadly, physical-layer GSK generation can be classified into

two types: (i) Pairwise GSK generation, wherein a central

authority (which is one of the nodes in the network) generates

a secret-key by applying two-user key generation algorithm

with one of its neighbours, and then shares it with the other

nodes in the network in a confidential manner [2], [3], and (ii)

This work was supported by the Indigenous 5G Test Bed project from
the Department of Telecommunications, Ministry of Communications, New
Delhi, India.

Group consensus based GSK generation, wherein the central

authority assists multiple nodes in the network to witness a

common source of randomness (CSR) so that all the nodes

can synthesize a group secret-key using a group consensus

algorithm [4], [5], [6], [7]. It is noted that the former scheme

trusts the central authority in the process of key generation and

key distribution whereas in the latter scheme all the nodes

share the responsibility of synthesising the key through a

group consensus algorithm on the observed CSR. One of the

motivations for using the latter class of methods is that the

group consensus algorithm, which is executed after sharing

the CSR, allows the nodes to mitigate a number of insider

attacks [8], which could be executed by the central authority.

In this paper, we are interested in the latter class of GSK

generation protocols for the above mentioned reasons.

Recently, [4], [5] have proposed a group secret-key (GSK)

protocol, referred to as the Algebraic Symmetrically Quan-

tized GSK (A-SQGSK) for a three-user network, wherein one

of the channels in the network, which is chosen as the CSR, is

appropriately quantized over an algebraic ring, and then shared

among the nodes while ensuring zero leakage of the CSR to

an external eavesdropper. It is observed that the A-SQGSK

protocol is the only protocol that preserves confidentiality

[4] in the class of group consensus based GSK generation,

and this feature is attributed to the use of algebraic rings.

Although A-SQGSK protocol provides zero leakage, we point

out that its key-rate is low because the protocol uses only

one of the channels in the network as the CSR. Furthermore,

in the context of two-user key generation, it is well known

that reconciliation algorithms, e.g., using low-density parity

check (LDPC) codes, can be used to arrive at zero mismatch

rate among the keys at the nodes. Towards employing such

reconciliation methods in A-SQGSK, we observe that aspects

of generating log-likelihood ratios (LLRs) of the secret bits

using the CSR samples have not been addressed hitherto.

Identifying the above mentioned limitations, we make the

following contributions in this work:

1) For the framework of A-SQGSK protocol, we propose

an opportunistic CSR selection strategy wherein the

randomness offered by two channels are utilized to syn-

thesize a GSK without compromising the confidentiality

feature. We show that our approach provides higher key-
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rate than the protocol proposed in [4], [5].

2) Furthermore, when both the channels are amenable to

key generation, we emphasize that using both would

lead to compromise in the confidentiality, and as a result,

we present a likelihood based strategy to choose one of

them so as to minimize the mismatch rate among the

nodes.

3) Finally, for the A-SQGSK protocol, we also propose

an LLR generation scheme, using which all the nodes

employ a reconciliation algorithm. We also use LDPC

based reconciliation to validate the effectiveness of our

LLR generation scheme. Although LLR generation on

CSR samples for two-user key generation is well known,

we highlight that the statistics of the underlying noise

is different at different set of nodes in the A-SQGSK

protocol [5]. Therefore, the proposed LLR generation

scheme is a non-trivial contribution in GSK generation.

II. SYSTEM MODEL AND BACKGROUND

Node-1

Node-2 Node-3

Eve

h12 h13

h23

h1E

h3Eh2E

Facilitator

Fig. 1. A network of three nodes along with an eavesdropper

A network comprising three nodes: node-1, node-2, and

node-3 is considered, as shown in Fig. 1. The channel between

node-j and node-k is denoted by hjk, where j 6= k and

hjk ∼ CN(0, 1) . Channel hjk is assumed: (i) to be flat-fading

and remains quasi-static for a block of at least 4 channel

uses, (ii) it exhibits pairwise reciprocity within the coherence-

block i.e., hjk = hkj and (iii) {hjk} are statistically inde-

pendent and identically distributed. Another assumption made

is that all the nodes witness Additive White Gaussian Noise

(AWGN) distributed as CN(0, σ2) , so that the average signal-

to-noise-ratio (SNR) is 1
σ2 . To synthesize a GSK, a subset of

{h12, h13, h23}, referred to as the CSR, must be learned by all

the nodes. In [4], the authors proposed the A-SQGSK scheme,

wherein the channel h12 is the chosen CSR among the nodes.

While a noisy version of h12 can be estimated at node-2 and

node-1 by probing pilot symbols within a coherence-block,

it is clear that node-3 needs to learn h12 explicitly. To help

this cause, [4] proposed a protocol to share quantized version

of h12 over an algebraic ring. First, we recall the A-SQGSK

protocol, and then point out its limitations.

A. A-SQGSK Protocol

To execute the A-SQGSK protocol, the three nodes must

be equipped with two complex constellations A′ and Ā, as

exemplified in Fig. 2. To formally define, A′ is the algebraic

ring Z2m
2
[i] where the set Z

2
m
2

, for some integer m > 1, is

given by {0, 1, . . . , 2m
2 −1}. Ā is a regular square quadrature

amplitude modulation (QAM) constellation of size 2m, given

by Ā = ĀI

⊕

iĀQ, such that ĀI = ĀQ = {−2
m
2 +1,−2

m
2 +

3, . . . , 2
m
2 − 3, 2

m
2 − 1}, where i =

√
−1, and m is even.

The one-one transformation from Ā to A
′, represented by

φ : Ā → A′, is φ(α) = α+2
m
2 −1+i(2

m
2 −1)

2 . The A-SQGSK

protocol consists of four phases:

Phase-1: node-1 broadcasts a pilot symbol x = 1 using

which node-2 and node-3 receive y
(1)
2 = h12x + n

(1)
2 and

y
(1)
3 = h13x + n

(1)
3 , where the noise n

(1)
2 and n

(1)
3 are

distributed as CN(0, σ2) respectively. In this notation, the

superscript denotes the phase number in each coherence- block

and the subscript denotes the node index. These two nodes

then estimate the channel as h12 + e
(1)
2 and h13 + e

(1)
3 , where

the estimation errors are distributed as e
(1)
2 , e

(1)
3 ∼ CN(0, γ) .

Furthermore, these estimates are then quantized as

Ch12
2 = ϕ(h12 + e

(1)
2 ) ∈ Ā and

Ch13
3 = ϕ(h13 + e

(1)
3 ) ∈ Ā,

wherein in the superscript denotes the inherently observed

channel and the subscript denotes the node index. Also, the

quantization operator ϕ(β) for β ∈ C is given as

ϕ(β) = arg mina∈Ā
|β − a|2 ∈ Ā,

where ϕ(·) works independently on in-phase and the quadra-

ture components.

Phase-2: Similarly, node-2 broadcasts a pilot symbol x = 1,

which is used by node-1 and node-3 to estimate the channel

as h12 + e
(2)
1 and h23 + e

(2)
3 , respectively, with similar

noise statistics as in Phase-1. Subsequently, the estimates are

quantized as

Ch12
1 = ϕ(h12 + e

(2)
1 ) ∈ Ā and

Ch23
3 = ϕ(h23 + e

(2)
3 ) ∈ Ā.

Phase-3: Similarly, node-3 transmits a pilot symbol x = 1,

whereby node-1 and node-2 estimate the channel as h13 +

e
(3)
1 and h23+e

(3)
2 , respectively. Subsequently, both the nodes

obtain the quantized version of estimates as

Ch13
1 = ϕ(h13 + e

(3)
1 ) ∈ Ā and

Ch23
2 = ϕ(h23 + e

(3)
2 ) ∈ Ā.

Phase-4: Assuming that the CSR is derived using h12, node-

3 does not have the access to it. To bridge the gap, node-1

computes the sum csum = φ(Ch12
1 ) ⊕ φ(Ch13

1 ) ∈ A′ over

the ring Z2m
2
[i] and then it broadcasts 1√

Eavg

φ−1(csum) to

node-2 and node-3, where Eavg is the average energy of the

QAM constellation.

With the knowledge of h13+ e
(1)
3 , node-3 obtains the max-

imum aposteriori probability (MAP) estimate of φ−1(csum),
denoted by θ̂3 ∈ Ā. Using the above estimate, node-3 obtains

the CSR as

Ch12
3 = φ−1

(

φ(θ̂3)⊖ φ(ϕ(h13 + e
(1)
3 ))

)

∈ Ā,

where ⊖ is the subtraction over the ring Z2m
2
[i]. Similarly,

node-2 will recover Ch13
2 , which is the decoded version of the
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I(Ch12
1 , Ch13

1 ;φ−1(csum)) = H(Ch12
1 , Ch13

1 )−H(Ch12
1 , Ch13

1 |φ−1(csum)) (1)

H(Ch12
1 , Ch13

1 ) = H(Ch12
1 ) +H(Ch13

1 |Ch12
1 ) = H(Ch12

1 ) +H(Ch13
1 ) (2)

H(Ch12
1 , Ch13

1 |φ−1(csum)) =

2m
∑

j=1

H(Ch12
1 , Ch13

1 |φ−1(csum) = cj)P (φ−1(csum) = cj) (3)

−
2m
∑

k=1

2m
∑

l=1

P (Ch12
1 = bk, C

h13
1 = al|φ−1(csum) = cj)log2(P (Ch12

1 , Ch13
1 = al|φ−1(csum) = cj)) (4)

P (Ch12
1 = bk, C

h12
1 = φ−1(φ(al)⊖ φ(cj))) =

{

P (Ch12
1 = bk), if bk = φ−1(φ(al)⊖ φ(cj))

0, otherwise
(5)

H(Ch12
1 , Ch13

1 |φ−1(csum) = cj) = −
2m
∑

k=1

P (Ch12
1 = bk)log2(P (Ch12

1 = bk)) = H(Ch12
1 ) (6)

Ā Z4[i] A
′

Inverse mapping

-1-3 1 3

1

3

-1

-3
0

1

2

3

1 2 3

φ : Ā → A′

φ−1 : A′
→ Ā

Regular 16-QAM The Algebraic Ring

Fig. 2. Example for the two constellations to facilitate one-to-one transfor-
mation in the A-SQGSK protocol with m = 4.

quantized channel h13. By the end of the A-SQGSK protocol,

node-j has {Ch12

j , Ch13

j } for j = 1, 2, 3. node-j unfolds the

real and the imaginary components of Ch12

j , Ch13

j , and then

uses the samples for key extraction. Henceforth, throughout

this paper, we refer to a CSR from the unfolded set of h12

as Rh12

j , and similarly, we refer to a CSR sample from the

unfolded set of h13 as Rh13

j .

B. Consensus Phase

In order to extract the secret-key, [4] proposed to run the

A-SQGSK protocol for a number of coherence-blocks, and

then used {Rh12

j } as the CSR at node-j. Subsequently, a two-

level consensus algorithm [1], with guard bands q+ ≥ 0, and

q− ≤ 0, was employed to synthesize secret bits by satisfying

the rule Q(α) = 1 if α > q+, and Q(α) = 0 if α < q−, for

any real sample α. A sample α is said to be out of consensus

if q− ≤ α ≤ q+. The guards bands were appropriately

chosen to upper bound the mismatch rate (referred to as initial

error rate), which is the fraction of bits that do not agree

between any two nodes. To achieve consensus among the three

nodes, [4] proposed all the three nodes to parse through their

quantized samples of {Rh12
1 , Rh12

2 , Rh12
3 }, and then create a

list of all the CSR samples that are lying outside the guard

bands. Subsequently, all the nodes mutually agree on common

indices and then generate the secret-key using the samples on

the common indices.

III. OPPORTUNISTIC CSR SELECTION

One of the limitations of [4] is that only the CSR

{Rh12
1 , Rh12

2 , Rh12
3 } was used to extract secret-keys. How-

ever, as depicted on the right-side of Fig. 3, it is clear

that the three nodes can opportunistically make use of both

{Rh12

1 , Rh12

2 , Rh12

3 } and {Rh13

1 , Rh13

2 , Rh13

3 } based on the

coherence-block under consideration. In particular, the follow-

ing possibilities arise on a given coherence-block: (i) Only one

of the two sets of CSR samples is out of the guard band at

all the three nodes, thereby contributing to the key. (ii) Both

the CSR sets lie in the guard band of at least one of the

nodes, thereby not contributing to the key for this coherence

block. (iii) Both the CSR sets lie outside the guard band at all

the nodes, and therefore, either of them is a good choice of

CSR. In the first case, the nodes can use the CSR which is in

consensus on a given coherence-block. As a result, there will

be improvement in the key-rate in comparison with the A-

SQGSK protocol [4]. We prove that using either of the subset

as the CSR preserves confidentiality.

Proposition 1: For a 2m-QAM constellation, when the two

CSR, Ch12

1 and Ch13

1 , are identically distributed, we have

I(Ch12
1 ;φ−1(csum)) = 0 and I(Ch13

1 ;φ−1(csum)) = 0, where

φ−1(csum) is the symbol transmitted by node-1.

Proof: Following the similar lines of the proof in [5,

Theorem 1], it can be proved that I(Ch12
1 ;φ−1(csum)) = 0

and likewise, I(Ch13
1 ;φ−1(csum)) = 0.

Using Proposition 1, it follows that choosing either of the

two CSR sets for a coherence block will not compromise the

confidentiality feature of the CSR. As seen in the third case,

on a given coherence-block, when both the CSR samples are

in consensus, we cannot use both to extract the keys as it

does not ensure confidentiality of the CSR samples as we

prove next.

Proposition 2: For a 2m-QAM constellation, when the two

complex CSR, Ch12
1 and Ch13

1 , are identically distributed,

we have non-zero value of I(Ch12
1 , Ch13

1 ;φ−1(csum)), where

φ−1(csum) is the symbol transmitted by node-1.

Proof: The expression for I(Ch12
1 , Ch13

1 ;φ−1(csum)) is

expanded in (1), where H(Ch12
1 , Ch13

1 ) is given in (2) such

that the second equality holds as Ch12
1 and Ch13

1 are statis-

tically independent. Furthermore, H(Ch12

1 , Ch13

1 |φ−1(csum))
is given in (3). (4) to (6) show that the conditional
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℧(N(µ, γ), ĀI) =

{

∫

ĀI(1)+
dmin

2

−∞

PΘ(θ)dθ,

∫

ĀI (2)+
dmin

2

ĀI (2)−
dmin

2

PΘ(θ)dθ, . . . ,

∫

∞

ĀI (2
m
2 )−

dmin
2

PΘ(θ)dθ

}

(7)

Prob
(

R
h13
2 ∈ S|Rh13

1 ∈ S̄

)

=
∑

xu∈S

̺
xu

(

∅
φ(R

h12
1 )

(

℧

(

N

(

φ
−1

(

φ(Rh12
1 )⊕ φ(Rh13

1 )

)

,
Eavgσ

2

|h12 + e
(2)
1 |2

)

, ĀI

)))

(8)

Prob
(

R
h12
3 ∈ S|Rh12

1 ∈ S̄

)

=
∑

xu∈S

̺
xu

(

∅
φ(R

h13
1 )

(

℧

(

N

(

φ
−1

(

φ(Rh12
1 )⊕ φ(Rh13

1 )

)

,
Eavgσ

2

|h13 + e
(3)
1 |2

)

, ĀI

)))

(9)

entropy, H(Ch12
1 , Ch13

1 |φ−1(csum)), is equal to H(Ch12
1 )

as follows. The first terms after summation in (3),

H(Ch12
1 , Ch13

1 |φ−1(csum) = cj), is given in (4). The probabil-

ity, P (Ch12
1 = bk, C

h13
1 = al|φ−1(csum) = cj) in (4) is given

as P (Ch12
1 = bk, C

h12
1 = φ−1(φ(al)⊖ φ(cj))) in (5). Substi-

tuting (5) in (4) gives H(Ch12
1 , Ch13

1 |φ−1(csum) = cj) in (6)

which is equal to H(Ch12

1 ) and then substituting (6) in (3)

and (3) in (1) gives I(Ch12
1 , Ch13

1 ;φ−1(Csum)) = H(Ch13
1 ).

Assuming Eve can perfectly retrieve φ−1(csum), the leak-

age at Eve is non-zero using Proposition 2. Therefore, when

{Rh12
1 , Rh12

2 , Rh12
3 } and {Rh13

1 , Rh13
2 , Rh13

3 } are in consensus

on a given coherence-block, we present a method for selecting

one of them such that the mismatch rate among the keys is

minimized.

Set of all the indices

ϕ(h12) ϕ(h13)

Orthogonal indices in consensus
when CSR is ϕ(h12)

Orthogonal indices in consensus
when CSR is ϕ(h13)

CSR is ϕ(h12)and ϕ(h13)
Common Indices in consensus when

Fig. 3. Venn diagram depicting two possibilities of channels in consensus -
(i) indices belongs to only one type of CSR, either ϕ(h12) or ϕ(h13), and
(ii) indices belong to both the CSR (shown in the intersection).

A. Likelihood Based CSR selection Strategy

We present an optimal CSR selection strategy, wherein the

facilitator first builds the likelihood functions on the CSR

observed at node-2 and node-3, and then chooses the one

that provides smaller probability of error. First, we define

notations needed to explain the technique. For a Gaussian

probability density function (PDF) PΘ(θ), denoted by N(µ, γ)
with mean µ and variance γ, the notation ℧(N(µ, γ), ĀI)
represents the probability mass function (PMF) induced on

the discrete constellation ĀI when quantizing PΘ(θ) onto the

points in ĀI . In other words, ℧(N(µ, γ), ĀI) is given in (7),

where dmin represents the minimum Euclidean distance of

the constellation ĀI , and ĀI(t) denotes the t-th component

for 1 ≤ t ≤ 2
m
2 . We use ∅s(g) to denote circular shift of the

elements of the vector g to the left by s units. For a given

PMF H on ĀI , the notation ̺p(H) denotes the probability

of the sample point p ∈ ĀI . Let ˆ̄
A

−
I and ˆ̄

A
+
I denote the set

R
h12

1 = −3

R
h13

1 = +1

φ−1(csum) = φ−1(φ(Rh12

1 )⊕ φ(Rh13

1 )) = +5

Circular subtraction by φ(Rh13

1 ) = φ(+1) = 4 units φ(Rh12

1 ) = φ(−3) = 2 unitsCircular subtraction by

Quantized PMF

Shifted PMF

Error estimation while decoding Error estimation while decodingR
h12

1 R
h13

1

Algebraic points

✵

−7 −5 −3 −1 +1 +5 +7+3

Probability of error

−7 −5 −3 −1 +1 +3 +5 +7

−7 −5 −3 −1 +1 +5 +7+3

Probability of error

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

−7 −5 −3 −1 +1 +3 +5 +7

Fig. 4. Figure depicts an example for likelihood based CSR selection at
node-1. On the left: an illustration of the computation of probability of error

when the CSR is R
h12
1 . On the right: an illustration of the computation of

probability of error when the CSR is R
h13
1 .

of PAM points in ĀI that are out of the guard band on the

negative and positive sides, respectively.

Theorem 1: On a coherence-block when both

{Rh12
1 , Rh12

2 , Rh12
3 } and {Rh13

1 , Rh13
2 , Rh13

3 } are

in consensus, the CSR of interest must be

{Rh12
1 , Rh12

2 , Rh12
3 } if Prob

(

Rh13
2 ∈ S|Rh13

1 ∈ S̄

)

≥
Prob

(

Rh12
3 ∈ S|Rh12

1 ∈ S̄

)

, or {Rh13
1 , Rh13

2 , Rh13
3 }

otherwise, where Prob
(

Rh13
2 ∈ S|Rh13

1 ∈ S̄

)

and

Prob
(

Rh12
3 ∈ S|Rh12

1 ∈ S̄

)

are given in (8) and (9),

respectively. In this context, we have S = ˆ̄
A

−
I , when

S̄ = ˆ̄
A

+
I . Similarly, we have S = ˆ̄

A
+
I , when S̄ = ˆ̄

A
−
I .

Proof: Let us consider a coherence-block for which both

Rh12

j and Rh13

j are in consensus for each j ∈ {1, 2, 3}. The

corresponding quantized versions of the complex channels

are Ch12

j and Ch13

j . At sufficiently large SNR values, and

an appropriate value of m, we have Ch12
1 = Ch12

2 and

Ch13
1 = Ch13

3 with high probability. Using Rh12
1 and Rh13

1 ,

node-1 generates the point that was broadcast to node-2 and

node-3 as µ = φ−1

(

φ(Rh12
1 )⊕φ(Rh13

1 )

)

. Using h12+e
(2)
1 as

an estimate of the channel seen between node-1 and node-2,

node-1 builds an aposteriori PDF at node-2, and in this case it

is Gaussian distributed given by N

(

µ,
Eavgσ

2

|h12+e
(2)
1 |2

)

. Further-

more, since node-2 decodes on the PAM constellation using

MAP decoder, the corresponding aposteriori PMF on the PAM
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points is given by H
R

h13
2

= ℧

(

N

(

µ,
Eavgσ

2

|h12+e
(2)
1 |2

)

, Ā

)

,

wherein the PMF H
R

h13
2

is listed on PAM points when

enumerated in the increasing order. Finally, since node-2

obtains the CSR Rh13
2 by performing a modulo subtraction

on the algebraic ring, node-1 incorporates the corresponding

changes in the PMF as H̄
R

h13
2

= ∅
φ(R

h12
1 )(H

R
h13
2

). Thus,

node-1 generates an aposteriori PMF on the CSR Rh13
2 seen at

node-2. Once the PMFs are generated, then the probability of

error at node-2 is computed by summing over the mass points

in the complementary region of the PAM constellation with

respect to the CSR Rh13
1 . By mimicking similar operations at

node-3, node-1 also generates H̄
R

h12
3

, which is an aposteriori

PMF on the CSR Rh12
3 seen at node-3, and then computes the

probability of error at node-3. Finally, the CSR that provides

lower probability of error is chosen for key generation.

Fig. 4 depicts an example for the likelihood selection

strategy at node-1 when both the CSR are in consensus. We

highlight that node-1 is able to generate the aposteriori PMFs

seen at node-2 and node-3 by using the channel realizations

available in the first four phases of the A-SQGSK protocol. As

a result, no additional communication-overheads are involved.

Furthermore, this method is optimal at moderate values of m

and mid-to-high SNR values since the quantized values of the

channels used at node-1 would be the same used at node-2

and node-3 with high probability.

B. Consensus Algorithm for Opportunistic Selection

After executing the A-SQGSK protocol over L coherence-

blocks, the three nodes have a sequence of samples. For

r ∈ {2, 3}, a CSR sample is said to come from ϕ(h1r) if

it is obtained from either the real or the imaginary part of the

quantized version of h1r on any coherence-block. To achieve

consensus, the three nodes use a generalized version of the

consensus algorithm in [1] as follows: node-2 obtains two

sets of indices, which comprises index values of the CSR

samples of ϕ(h12) and ϕ(h13) lying outside the guard band,

and then shares it to node-1. Upon receiving the indices, node-

1 computes the corresponding sets of indices in a similar

fashion for the two sets of CSR samples, and then broadcasts

the set of indices that are in consensus with node-2. node-

3 computes the corresponding sets of indices lying outside

the guard band, and then broadcasts the two sets of indices

that are in consensus with both node-1 and node-2. Let

(Rϕ(h12),Rϕ(h13)) denote the two sets of indices in consensus

among the three nodes. Then, all the three nodes generate

the set V = Rϕ(h12) ∩ Rϕ(h13), where V denotes the indices

where both {Rh12
1 , Rh12

2 , Rh12
3 } and {Rh13

1 , Rh13
2 , Rh13

3 } are in

consensus. With the likelihood based CSR selection strategy,

for the indices in V, node-1 calculates the probability of errors

at node-2 and node-3 by locally generating the distributions

at their side. Then it broadcasts the index of the chosen CSR

to both node-2 and node-3. Finally, all the nodes use the CSR

samples of ϕ(h12) and ϕ(h13) to extract a secret-key.

IV. LLR BASED RECONCILIATION WITH LDPC CODES

We present an optimal LLR generation scheme for the

CSR generated by the A-SQGSK protocol. Since node-1

observes the CSR samples from ϕ(h12) and ϕ(h13) through

probing signals, we use the key generated at node-1 as

the reference key, and then apply the LDPC reconciliation

algorithm at node-2 and node-3. As the statistics of the

underlying noise are different, the LLR generation scheme

depends on whether the reconciliation is implemented at the

(i) reciprocal node, which is the node that inherently observes

the CSR through channel reciprocity, e.g., node-2 when the

CSR is {Rh12
1 , Rh12

2 , Rh12
3 }, or the (ii) decoding node, which

is the node that learns the unseen CSR through the process of

decoding and subtraction over the ring, e.g., node-2 when the

CSR is {Rh13
1 , Rh13

2 , Rh13
3 }. We discuss the LLR generation

scheme at both these types of nodes.

A. LLR Generation at the Reciprocal Node

Let P (X,Y ) denote the joint PMF between the CSR at

node-1, denoted by X , and the CSR at the reciprocal node,

denoted by Y . For all the 2m points in ĀI , the probability that

the CSR sample at node-1 is quantized to bit 1 and bit 0 is

given by Prob1(p) =
∑

X∈Ā
+
I
P (X,Y = p) and Prob0(p) =

∑

X∈Ā
−

I
P (X,Y = p), respectively, where Ā

+
I and Ā

−
I are

the positive and negative points of ĀI , respectively, and p is

the CSR sample observed at the reciprocal node. Finally, the

LLR is computed as log
(

Prob0(p)

Prob1(p)

)

.

B. LLR Generation at the Decoding Node

For exposition, we explain the LLR generation scheme at

node-2 when the CSR is {R13
1 , R13

2 , R13
3 }. As a result, using

Rh13
2 , node-2 generates the LLR on the bit generated at node-

1 using Rh13
1 . The corresponding quantized version of the

channel with node-1, as seen by node-2, is Ch12
2 . Henceforth,

we use ˆ̄
A

+
I and ˆ̄

A
−
I to represent the positive and negative

points in ĀI , respectively, that are out of guard bands upon

quantization using Q(·).
Theorem 2: Using the CSR Rh13

2 at node-2, the probability

that node-1 quantizes its CSR Rh13
1 to bit b, for b ∈ {0, 1}, is

given in (10), where S = ˆ̄
A

−
I and S = ˆ̄

A
+
I when b = 0 and

b = 1, respectively.

Proof: node-2 intends to build an aposteriori PMF on

its samples conditioned on the hypothesis that the CSR

hh13
1 ∈ ˆ̄

A
+
I . This way, node-2 generates the likelihood of CSR

Rh13
1 being bit 1 conditioned on its CSR Rh13

2 . Similarly, using

all possible cases of hh13
1 ∈ ˆ̄

A
−
I , it generates the likelihood

of CSR Rh13
1 being bit 0 conditioned on its CSR Rh13

2 .

Henceforth, throughout this proof, we explain the steps for

generating the likelihood of CSR Rh13
1 being bit 1. Similar

steps can be followed to obtain the likelihood of CSR Rh13
1

being bit 0. Assuming CSR Rh13
1 = xu ∈ ˆ̄

A
+
I , wherein

Rh13
1 takes the u-th element of ˆ̄

A
+
I , for 1 ≤ u ≤ | ˆ̄A+

I |.
node-2 hypothesizes the point broadcast by node-1 as µxu

=

φ−1

(

φ(xu) ⊕ φ(Rh12
2 )

)

. Note that it is possible to assume



6

Probb(R
h13
2 ) =

∑

xu∈S

Prob(xu)

(

̺
R

h13
2

(

∅
φ(R

h12
2 )

(

℧

(

N

(

φ
−1(φ(xu)⊕ φ(Rh12

2 )
)

,
Eavgσ

2

|h12 + e
(1)
2 |2

), ĀI

))))

(10)

this since at mid-to-high SNR ranges, we have Rh12
1 = Rh12

2 .

Using the estimate of the channel between node-1 and node-

2, the instantaneous SNR at node-2 is
|h12+e

(1)
2 |2

Eavgσ2 . Therefore,

the PDF of the effective noise as seen by node-2 is Gaussian

distributed given by N

(

µxu
,

Eavgσ
2

|h12+e
(1)
2 |2

)

. Furthermore, since

node-2 decodes on the PAM constellation using MAP decoder,

the corresponding aposteriori PMF on the PAM points is

given by H
R

h13
2

= ℧

(

N

(

µxu
,

Eavgσ
2

|h12+e
(1)
2 |2

)

, ĀI

)

, wherein

the PMF H
R

h13
2

is listed on PAM points when enumerated

in the increasing order. Finally, since node-2 obtains the CSR

Rh13
2 by performing a modulo subtraction on the algebraic ring

using Rh12
2 , node-1 incorporates the corresponding changes

in the PMF as H̄
R

h13
2

= ∅φ(R
h12
2 )(H

R
h13
2

). Thus, node-

2 generates an aposteriori PMF on the CSR Rh13
2 under

the hypothesis that xu was the CSR at node-1. Using the

recovered CSR point Rh13
2 , node-2 evaluates the probability

using the aposteriori PMF as ̺R
h13
2 (H̄

R
h13
2

). Overall, by

considering all possible CSR points of ˆ̄
A

+
I , the probability

that the CSR point at node-1 is quantized to bit 1 is given

by Prob1(R
h13
2 ) =

∑

xu∈
ˆ̄
A

+
I

̺R
h13
2 (H̄

R
h13
2

)Prob(xu), where

Prob(xu) denotes the probability that the CSR Rh13
1 takes

the value xu. Along the similar lines, the probability that

the CSR point at node-1 is quantized to bit 0 is given by

Prob0(R
h13
2 ) =

∑

xu∈
ˆ̄
A

−

I

̺R
h13
2 (H̄

R
h13
2

)Prob(xu). Finally, the

LLR of the bit at node-1 is given by log

(

Prob0(R
h13
2 )

Prob1(R
h13
2 )

)

. Fig.

5 depicts an example for LLR generation at node-2 when it

observes Rh13
2 as the decoded CSR.

−7 −5 −3 −1 +1 +3 +5 +7

R
h12

2 = −3

CSR : Rh13

2 = +7

guard bands

−5 −3 −1 +1 +3 +5 +7−7

φ(−3) = 2Circular subtraction by units

(out of guard bands)

*

*

Hypothesis on +5 as CSR

Hypothesis on +7 as CSR

Hypothesis on -7 as CSR

Hypothesis on -5 as CSR

φ−1(φ(−3)⊕ φ(+5)) = −7

φ−1(φ(−3)⊕ φ(+7)) = −5

φ−1(φ(−3)⊕ φ(−7)) = −3

φ−1(φ(−3)⊕ φ(−5)) = −1

Quantized PMF: +5 as CSR

Quantized PMF: +7 as CSR

Quantized PMF: -7 as CSR

Quantized PMF: -5 as CSR

Shifted PMF: +7 as CSR

Shifted PMF: -7 as CSR

Shifted PMF: -5 as CSR

Shifted PMF: +5 as CSR

*

Avg. probability of bit being 1

Avg. probability of bit being 0

LLR generating probabilities

✵

✵

✵

✵

Fig. 5. Figure depicts an example for LLR generation for R
h13
2 at node-

2. The top figure illustrates the process of generating aposteriori PMFs
on the QAM symbols, whereas the bottom figure illustrates the circular
shift operation incorporating subtraction over algebraic ring, and also the
computation of LLR.

We highlight that no additional communication-overheads

are involved in LLR generation. Furthermore, this method is

also optimal at mid-to-high SNR and moderate values of m.

V. SIMULATION RESULTS

In this section, we present simulation results on the pro-

posed CSR selection as well as the LLR generation strategy.

A. Opportunistic Selection of CSR

To showcase the advantages of the opportunistic CSR

selection, we present its key-rate along with that of the A-

SQGSK protocol, wherein the CSR is fixed to ϕ(h12). In this

context, key-rate is defined as the average number of secret

bits generated among the three nodes per CSR sample. The

plots are presented in Fig. 6 for the cases when the two-

level consensus algorithm delivers secret-keys with an initial

error rate of 10−1 and 10−2. In this context, initial error

rate is defined as the upper bound on the desired mismatch

rate among the nodes when choosing the guard bands for the

quantizer Q(·). With an initial error rate of 10−1, the plots

show that the benefits of the opportunistic method is marginal,

and this observation is attributed to the fact that the number of

samples from ϕ(h12) and ϕ(h13) that are jointly in consensus

is large. However, when the initial error rate is 10−2, the

benefits are significant since the number of additional CSR

samples coming out of ϕ(h13) is large. We note that the

above observations continue to hold good for different values

of m, which captures the size of the constellation. In this

work, we have also proposed a method to choose the CSR

sample on those coherence-blocks whenever both ϕ(h12) and

ϕ(h13) are in consensus. To showcase the efficacy of the CSR

selection method, in Fig. 7, we plot the error rate offered

by our scheme on the CSR samples when both ϕ(h12) and

ϕ(h13) are in consensus. The plots show that the likelihood

based CSR selection outperforms the channel-strength based

CSR selection, wherein node-1 chooses the CSR that offers

weaker channel-strength since the weaker channel degrades

the SNR when recovering the other CSR.

B. LDPC Based Reconciliation for Algebraic-SQGSK

In the context of opportunistic A-SQGSK protocol, the CSR

samples in consensus come from either ϕ(h12) or ϕ(h13).
With respect to the CSR samples from ϕ(h12), node-2 and

node-3 generate the LLR values on the bits generated at node-

1 by following the algorithm at the reciprocal node and the

decoding node, respectively. Similarly, for the CSR samples

from ϕ(h13), node-3 and node-2 generate the LLR values on

the bits generated at node-1 by following the algorithm at

the reciprocal node and the decoding node, respectively. To

execute LDPC based reconciliation, an (N,K) binary LDPC

code characterized by the parity check matrix H of dimension

(N −K) × N is used. With x ∈ FN
2 denoting an N -length

binary key generated at node-1, let s denote its syndrome
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Fig. 6. Key-rate improvement with opportunistic selection of CSR.
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Fig. 7. Mismatch rate on CSR selected from coherence-blocks when both
ϕ(h12) and ϕ(h13) are in consensus. When the initial error rate is 10−2

and m = 10, an error rate of 0 is achieved at 25 and 30 dB.

vector s = Hx ∈ F
(N−K)×1
2 , wherein the multiplication

operation is over the field F2. Subsequently, the syndrome

vector s is broadcast to node-2 and node-3, which in turn use

it to reduce the mismatch rate by using a message-passing

algorithm [9]. In Fig. 8, we plot the performance of LDPC

reconciliation when an (N = 12,K = 9) LDPC code [10] is

employed. To generate the simulation results, we use the CSR

samples out of a two-level consensus algorithm with an initial

error rate of 10−1 and 10−2. Upon using LDPC reconciliation,

we observe that the mismatch rate among the nodes reduces

significantly. It is important to note that the benefits of the

reconciliation algorithm is attributed to the LLR generation

method at the reciprocal node and the decoding node. While

we see significant improvements in the mismatch rate in the

GSK, we believe that with the use of large block-length LDPC

codes, our LLR generation method can ensure zero mismatch

rate among the nodes. From the plots, we also remark that the

error rate values at 25 dB and 30 dB are more than that at 20

dB when the initial error rate is 10−1, and this is because the

initial error rate is only used as an upper bound.

20 22 24 26 28 30

SNR in dB

10 -2

E
rr

or
 R

at
e

Initial error rate = 10 -1 , m = 8

No LDPC

LLR-LDPC

20 22 24 26 28 30

SNR in dB

10 -2

10 -1

E
rr

or
 R

at
e

Initial error rate = 10 -1 , m = 10

No LDPC

LLR-LDPC

20 22 24 26 28 30

SNR in dB

10 -3

10 -2

E
rr

or
 R

at
e

Initial error rate = 10 -2 , m = 8

No LDPC
LLR-LDPC

20 22 24 26 28 30

SNR in dB

10 -5

10 -4

10 -3

10 -2

E
rr

or
 R

at
e

Initial error rate = 10 -2 , m = 10

No LDPC
LLR-LDPC

Fig. 8. Improvement in the mismatch rate among the keys at the three nodes
when LDPC based reconciliation is employed at node-2 and node-3.

VI. CONCLUSION

In this work, we have presented an opportunistic CSR

selection scheme to achieve a higher key-rate than the state-

of-the-art A-SQGSK scheme when synthesizing a GSK in a

three-node network. Towards guaranteeing non-zero leakage

of the CSR to an eavesdropper, we have shown that the

proposed CSR selection strategy picks the CSR that minimizes

the mismatch rate between the nodes. Finally, to facilitate

information reconciliation on the proposed opportunistic CSR

selection scheme, we have proposed a novel LLR generation

scheme that exploits the underlying noise statistics at the

nodes as well as the algebraic ring structure.
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