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Abstract—A vector sensor, a type of sensor array with six
collocated antennas to measure all electromagnetic field compo-
nents of incident waves, has been shown to be advantageous in
estimating the angle of arrival and polarization of the incident
sources. While angle estimation with machine learning for linear
arrays has been well studied, there has not been a similar solution
for the vector sensor. In this paper, we propose neural networks
to determine the number of the sources and estimate the angle of
arrival of each source, based on the covariance matrix extracted
from received data. Also, we provide a solution for matching
output angles to corresponding sources and examine the error
distributions with this method. The results show that neural
networks can achieve reasonably accurate estimation with up
to 5 sources, especially if the field-of-view is limited.

Index Terms—direction of arrival, deep neural network, vector
sensor, covariance matrix

I. INTRODUCTION

The vector sensor is a kind of array antenna that consists of
two lumped orthogonal triads of scalar sensors that measure
the electric and magnetic field components. Its received data is
a vector corresponding to the complete electric and magnetic
fields rather than the scalar electric field or magnetic field
only. Such a sensor can offer greater observability for direction
of arrival (DoA) estimation, and requires a smaller array
aperture. Earlier work [1] introduced the cross product for the
single signal case, and Cramer-Rao lower bound (CRLB) [2]
for the estimation error. Dimensionality Reduction MUltiple
SIgnal Classification (DR-MUSIC) [3] improves the MUSIC
algorithm by reducing the computation from a single four-
dimensional peak search to two sequential two-dimensional
peak searches, but neither of them reliably estimates up to
5 sources nor reaches the theoretical limit of five sources.
Additionally, the Estimation of Signal Parameters via Rota-
tional Invariance Techniques (ESPRIT) [4] requires another
time delayed snapshot to estimate up to 5 sources with single
tone modulation.

Moreover, a lot of work has been studied around the
application of machine learning on the Uniform Linear Array
(ULA) or Uniform Circular Array (UCA), which includes
the k-nearest neighbor (KNN) algorithm [5] and Support-
Vector Machine (SVM) [6]. In particular, [7] applied neural
network to DoA estimation of one signal source using received
signal correlation matrix as the input, however, it is not
mentioned how to estimate several sources at the same time,
and detailed evaluation over low SNR. Another branch of
machine learning method, decision tree, is also applied to
indoor positioning with Extreme Gradient Boost (XGB) [8].

Besides the covariance matrix, the input data also can be
images [9], or characteristics of signals like the difference
of angles [10], and the knowledge of trajectory [11].

To the end, this paper investigates the behavior of the
covariance matrix, and applies them to a neural network to
predict multiple DoAs on the vector-sensor. We evaluated
several neural networks training options, and applied the
sorting method to fix the identification issue and evaluate the
estimation error over different angles.

II. SYSTEM MODEL

The problem is to determine the number of sources and
then estimate all directions of arrival, azimuth θ and elevation
φ, based on received signals on 6 antennas. The auxiliary
polarization angle γ and polarization phase difference η are
assumed non-zero constant and are not of interest here.

A. Vector sensor signal model

The received signal X6×N can be described by the model
in Wong‘s work[4], which is represented as X = AS + n.
where A6×K is the array manifold, SK×N is the source
signal, n is noise, K is the number of signal source ranging
1 to 5, and N is the number of snapshots. Meanwhile,
A = [a(θ1), a(θ2), ...a(θN )], and calculate steering vector
a(θ) by

ak =


cos θk cosφk − sinφk
cos θk sinφk cosφk
− sin θk 0
− sin θk − cos θk cosφk
cosφk − cos θk sinφk

0 sin θk


[
sin γke

jηk

cos γk

]
, (1)

where θk ∈ [0, π) , and φk ∈ [0, 2π). The non-correlated
source signal could be single-tone or digital, with any sort of
modulation or pulse shaping.

B. Flowchart of the classification and estimation system

Fig. 1 show how the NN classifier and estimator works.
Raw data is converted into feature data by a feature-extraction
block then they are fed into a trained NN classifier which
estimates the number of sources K present in the data. Finally,
the system outputs the angle estimations. Note that the training
and test datasets are uniformly distributed over the sphere,
instead of over a Cartesian plane. This is because if the data
clusters near the poles, the estimation problem becomes more
difficult.
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Fig. 1. Processing flow of classifier and estimator for overall DoA estimator
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Fig. 2. Covariance matrix keeps its shape at high SNR. Longer snapshots
also make the shape more robust to noise

C. Data compression by covariance matrix

The covariance matrix (CM) Z is introduced to extract the
features related to DoA, as well as a way to compress the data,
since the received data X6×N is too big to directly feed into
the neural network. It is defined as

Z = XXH

= (AS + n)(AS + n)H

= A(SSH)AH + δ2I
= AAHδ2sI + δ2 I,

(2)

where δ is noise level and AAH is the only item dependent
DoA. We take the right upper triangle of the matrix and split
complex into real and imaginary, then convert them into a
vector to be fed into NNs later. The covariance matrix can
suppress additive white Gaussian noise (AWGN), and remove
the dependence of the modulation schemes, pulse shaping or
carrier frequency. It is also adopted as the first step in MUSIC
and ESPRIT. The longer snapshot N , the more precise the
covariance matrix is. A practical rule about the relationship
between snapshot length and signal-to-noise ratio (SNR) is

that 10 timers longer snapshot length can make up for a 3dB
increase in SNR. Fig. 2 demonstrates CM with a different
number of samples and SNR, where the blue line is the
real part and the red is imaginary ones. Note that the SNR
decreases from high to low for different rows and the number
of snapshots increases from left to right for each column. More
snapshots are related to a more robust covariance matrix at
lower SNR. e.g. 100 snapshots would soon degrade from 10dB
to 5dB, while 106 snapshots can hold its shape as low as -5dB.
The figure also shows the imaginary part also carries valuable
information about angles.

D. Fingerprints validation

The basic idea of all machine learning methods is based on
the fingerprint matching system, which is widely used in the
DoA estimation and indoor positioning. A basic rule of such
a system is the one-to-one mapping property. This property
includes two aspects: On the one hand, a similar label should
have a similar feature, which is shown in Fig. 3. On the
other hand, a label has to be associated with a unique feature
(namely a fingerprint) and the label has to be unique to the
feature as well, so that when a new feature is observed we can
estimate the label by referring to the neighbors with the most
similar features. Fig. 4 shows that similar features result in
similar DoA values allowing the NN to learn values it hasn’t
seen.
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Fig. 3. Feature vector of target and its 3 nearest neighbors, Nsig = 5

E. Neural network

From the view of a neural network, the problem is to
estimate the DoA of raw data, (θ̂1, φ̂1) = fNN (RXX), and
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Fig. 4. DoA of target and its 3 neighbors, Nsig = 5

here fNN (.) is the approximate function given by a neural
network. At the training stage, the training data is fed into the
neural network and the output provides temporary estimation.
The corresponding ground label value is provided to calculate
the loss, and the weight of the neural network is updated
according to the loss function. The update will repeat many
times until the loss reaches a certain minimum. Then at the
test stage, the neural network has to predict angles the data it
has never seen.

Several options of the neural network are evaluated here: (i).
Levenberg-Marquardt (LM), which has been designed to work
specifically with loss functions that take the form of a sum of
squared errors. However, LM requires large memory to com-
pute its Jacobian matrix, especially when the datasize is large.
(ii). Scaled Conjugate Gradient (SCG): this approach performs
the search along with conjugate directions which produce
generally faster convergence than regular gradient descent
directions. (ii). Radial Basis Function (RBF), it claims that
by increasing the dimension for easier separation by changing
the activation function to a radial form as φ(r) = e−(σ(r−c))2 ,
where c is center vector determined by kNN method. (iv).
Bayesian normalization (BNN), to add the weights to overall
loss function to restrict the weights from growing too large to
prevent overfitting, it does not need validation data but requires
a maximum epoch terminate its training.

To better train the NN and prevent overfitting, several
training techniques are adapted here: (i) Early-stopping, it
splits a validate data set that never trained, but for validation at
each epoch, it compares the loss of training and validation each
epoch, and stops when these two values diverge. (ii) Drop-out,
to avoid a layer relying too much on a few of its inputs, where
value grows too large while others are suppressed to zeros.
Drop-out method can randomly drop a small part of the input
to break the high reliance. (iii) Batch Normalization, it allows
each layer of a network to learn by itself a little bit more
independently of the other layers. It normalizes the output of
a previous activation layer by subtracting the batch mean and
dividing by the batch standard deviation.

F. Impact of Field-of-View

Despite outliers from strong noise, the estimated perfor-
mance may vary over different angles or sphere regions. We

investigated several aspects when field of view affecting the
performance. (i). Elevation near the z-pole, or DoA facing the
z-pole: when the object is near the z-axis pole with elevation
near 0◦ or 180◦, it is harder to estimate the angles. The reason
is that, for the same distance error d on the unit sphere, we
have

d = (r − r̂)2

= 2(1− sin(θ)sin(θ̂)cos(φ− φ̂)− cos(θ)cos(θ̂))
= 2(1− sin(θ)sin(θ + ∆θ)cos(∆φ)−
cos(θ)cos(θ + ∆θ)).

(3)

Assuming fixed ∆θ, the higher the elevation θ, the distance
produces a greater error in ∆φ meaning larger azimuth error.
Notice the elevation only negatively impacts the estimation
of the azimuth. (ii). azimuth near 0◦ or 360◦, or DoA facing
positive x-pole: these angles nearby get similar CM features
that can confuse the NN. For example, the estimator brings
azimuth 359◦ given the truth 1◦, which only results in 2◦

error in reality, while in evaluation the error can be mistaken
as a large one. (iii). azimuth φ and φ + 180◦: the feature of
two angles is similar to each other, despite a few points being
the opposite value to each other. (iv). angles near k π4 : which
bring more zero points in the CM. It is significant in one signal
while not obvious with multiple sources, in that zero points
adding non-zero points result in non-zeros points and ease the
problem.
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Fig. 5. Quiver plot of 2nd DoA estimation error over elevation-azimuth space,
Nsig=2 , the head of each arrow means truth and tail means estimation

The effect of Field-of-view is shown in Fig. 5. The estima-
tion performance over the elevation-azimuth space is shown,
where the longer and brighter the arrow, the larger estimation
error. We found the large error mainly comes from DoAs with
azimuth angles near 0◦ and 360◦, or elevation angles near 0◦

and 180◦. Notice since we sort the elevation, so the second
DoA in the plot has more angles near 180◦.

G. Angle identification

In the case of multiple sources, we only care about the
DoA value and the association of azimuth and elevation, but



not specific which pair of angles belong to which source.
Without decoding the source signal information, there is no
way to determine the association based on features. For
example, there are 2 sources with angles (θ1 = 30◦, φ1 =
60◦; θ2 = 20◦, φ2 = 50◦), its feature vector is exactly same
as that of (θ1 = 20◦, φ1 = 50◦; θ2 = 30◦, φ2 = 60◦). The
commutativity would cause a lot of confusion to the NN,
especially when calculating the loss function. To this end,
we do a simple sort of the elevation on all the dataset , and
associated azimuth is sorted simultaneously with elevation.
Also the NN will output angle pairs with the elevation sorted,
taking care to sort the test data in the same fashion.

H. Customized loss function

By default, the loss function is defined as the mean square
error (MSE) of angles L(θ, θ̂) = 1

N

∑N
1 (θ − θ̂)2, but it does

not match the physical meaning of error. In fact, the estimation
error should be the distance over the sphere L(θ, θ̂) =
1
N

∑N
1 (u− û)2, and u = (ux, uy, uz) by Cartesian-Sphere

conversion. We take this metric in defining the loss function
of NN.

III. PERFORMANCE EVALUATION

For the synthesized dataset, we assume ideal channel condi-
tions where no channel fading, no multiple paths, no interfer-
ence except white noise, and perfect array geometry without
offset. The number of samples is 4000, the signal source is
digital, and polarization angles are fixed here. Azimuth and
elevation are both simultaneously randomly generated at float
value over the sphere surface. Although the neural network
does not require a resolution setting like that in MUSIC, it
still expects sufficient data to make interpolation more accurate
and error lower. We used MATLAB to generate a dataset, and
Python implements a neural network algorithm. For multiple
sources, 512×5 hidden layers feed-forward neural network is
implemented and trained on a dataset of size 1.6×105. Means
Square Error (MAE) and Root Mean Square Error(RMSE) in
degrees are adapted here as the major metrics for estimation
error.
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Fig. 6. Confusion matrix of NN classifier, random power ratio [-3,3]dB, SNR
[0,20]dB

A. Number of source classification
The performance of source classification is presented in

Fig. 6, it is based on covariance matrix dataset of size 4×106,
SNR in [0, 20]dB, and random power ratio [−3, 3]dB related
to the first source signal. The classifier can get pretty high
accuracy and robust to strong noise. The error mainly comes
from distinguishing 4 and 5 sources.

B. Training options
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Fig. 7. RMSE of different NN-based estimator for one signal

We compare different NN training options here. The BNN
maximum epoch is set as 40. All these models are training with
the same data and models are saved down, and then evaluated
on the same testing data. The results are shown in Fig. 7, with
cross-product and CRLB as the baseline. BNN performs the
best and then followed by LM, RBF, and SCG. All neural-
network methods get an advantage over the decision-tree
method XGB (extreme gradient boost tree), which accelerates
the training speed by gradient descent algorithm. The top three
of them can reach 1-degree error after 5dB and close to the
cross-product method. Also estimation on elevation is better
than azimuth in our settings. Regarding the training time, SCG
is fastest with GPU acceleration, and XGB is fastest with CPU
only. Hence for larger datasets and more sources case, SCG
is preferred afterward.

C. Impact of Field-of-View
Fig. 8 shows that the outliers mainly gather at k π4 points

in the one signal case. While for multiple sources, it mainly
degrades when the DoA faces z-pole and x-pole. In Fig. 9,
word (limited or full) before hyphen mean which data the
model is trained on, and word after hyphen mean which data
the model is tested on, and here the limited-range we choose
azimuth in range [30◦, 330◦] and elevation in [10◦, 170◦].
Among these cases, the performance on limit-view test data,
based on the model trained on limit-view trained data, is
significantly better than others, and we take the limit-view
dataset for multiple sources evaluation below.



Fig. 8. Scatter plot, Nsig =1, no noise, outliners come from k π
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Fig. 9. Scatter plot of 1st azimuth estimation, Nsig =5, SNR [0,20]dB

D. Angles estimation with multiple sources
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Fig. 10. Mean Absolute Error of NN estimator where both trained and tested
on data with limited field of view

The NN performance of multiple sources is shown in Fig. 10
along with corresponding noiseless cases, which is both trained
and tested on the same size data with a limited field of view.
We found the more sources, the harder it is for NN to learn

to estimate the angles of arrivals and the larger the error. As
the SNR goes up, the performance becomes steady after 2dB
and comes near its corresponding noiseless case. The NN can
reach 5-degree accuracy for both azimuth and elevation with
up to 5 sources. Also estimation error of elevation is smaller
than that of azimuth.

IV. CONCLUSIONS AND FURTHER WORK

In this paper, we have shown that deep neural networks
can be used to predict the number of sources and the angle
of arrival for a vector sensor with satisfactory accuracy. The
covariance vector is sufficient to represent the information
about angles regardless of the modulation and is robust to
noise, while highly reducing the data size needed by the neural
network. Additionally, we propose the sorting of input DoAs
during training to allow proper identification. Further, we
found that the field of view strongly impacts the performance.
Our method will be further examined to compare with the
ESPRIT and MUSIC methods. Moreover, if the test data keeps
its consistency over time, our model could be extended with
a recurrent structure to predict an object’s trajectory as well.
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