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Abstract—With increasing network complexity, intelligent
mechanisms to efficiently achieve the required quality of service
of wireless-enabled applications are being developed, especially
for industrial environments due to the onset of the fourth indus-
trial revolution. In this paper, the potential benefits of wireless
channel quality prediction for two of the three major use cases
supported by 5G viz. enhanced Mobile BroadBand (eMBB) and
Ultra-Reliable Low Latency Communication (URLLC) are quan-
tified in an industrial indoor environment through simulations.
Our analysis shows that the ability to perform perfect prediction
improves the 10th user throughput percentile by up to 125%
for eMBB use case and decreases the 90th resource utilization
percentile by up to 37% for URLLC use case. Furthermore, the
maximum tolerable prediction inaccuracy is found to be up to 5
dB and 0.35 dB for eMBB and URLLC use cases, respectively.

Index Terms—Industrial IoT, Networking, Factories of the
Future, 5G

I. INTRODUCTION

Wireless communication plays an essential role in realiz-
ing the vision termed ‘Factories of the Future’ (FotF) [1].
The applications envisioned within FotF (industrial indoor
environment) have (a combination of) different quality of
service (QoS) requirements such as ultra-high reliability, low
latency and high throughput. However, the industrial indoor
environment has proven to be harsh and to have different
propagation characteristics from other indoor environments [2]
(e.g. office or residential environments), highlighting the need
for intelligent techniques to achieve FotF applications’ QoS
requirements.

Predicting the quality of wireless channels ahead of time
leads to better resource allocation which improves the perfor-
mance of the network. Because of its overarching benefits,
channel quality prediction (CQP) has been an interesting
research topic for more than a decade. As a result, several
researchers have proposed CQP methods, which can be clas-
sified based on the technique used (such as polynomial fitting
[3], Gaussian process regression [4], deep learning [5]) and/or
the environment in which such techniques are applied (such as
industrial [6], urban [4], highway [5]). Each of them reports
the observed accuracy of their prediction while only a few

include the performance improvement due to CQP for a chosen
application. The true impact (or usefulness) of CQP for an
application operating in a particular environment can only
be gauged when the accuracy of CQP is linked with the
corresponding performance improvement of the application.
For example, a CQP method might claim a very high accuracy
for a particular environment but it may turn out that the
performance of the application of interest only increases by
a very small margin. In such scenarios, the usefulness of the
CQP, due to its modest impact, becomes debatable.

Although there are numerous works dedicated to predicting
the channel quality, very few works determine its potential and
limitations in an in-depth performance study. A notable work
is by Zappone et al. [7] which discusses the usefulness of deep
learning in network design. The problems associated with net-
work design are mathematically modelled and the usefulness
is evaluated. To the best of the authors’ knowledge, research
on the impact of CQP on the performance of application is
unavailable.

This paper quantifies the impact of CQP in a 5G industrial
indoor environment for enhanced Mobile BroadBand (eMBB)
and Ultra-Reliable Low Latency Communication (URLLC)
use cases. For eMBB, the impact of CQP is measured in
terms of throughput enhancement. For URLLC, the reduc-
tion in resource utilization (RU), as opposed to latency or
reliability, is chosen as the metric for estimating the impact
of CQP because the state of the art techniques achieve the
latency & reliability constraint but utilize greater amount of
resources. Therefore if CQP has to be impactful for URLLC
use case, it has to reduce the amount of resources utilized,
in addition to achieving the latency and reliability constraints.
The benchmark chosen to evaluate our work is the state of
the art link adaptation technique, as explained in Section II-B.
Furthermore, the sensitivity of performance improvement w.r.t.
prediction accuracy is analyzed. The major contributions of
this paper are:

1) Quantifying the potential gain obtainable by CQP in a
5G industrial indoor environment for both eMBB and
URLLC use cases;
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2) Deriving the maximum tolerable prediction inaccuracy
for CQP to be beneficial.

The outline of the paper is as follows. The system model
and assessment methodology used to achieve the mentioned
objectives are presented in Section II. Subsequently, the results
are presented and discussed in Section III. Finally, the derived
conclusions are summed up in Section IV.

II. METHODOLOGY

The simulation setup is explained in Section II-A. The
benchmark for our study is explained (in Section II-B) before
explaining the methodologies in Section II-C.

A. Simulation Setup

To gauge the potential of CQP in industrial in-
door environments, a factory hall of size 50m×50m×6m
(length×width×height) is simulated. The base station (BS)
is fixed on the centre of the simulated factory hall’s ceiling.
Simulations are repeated with varying User Equipment (UE)
positions such that, every pixel in a 50×50-meter grid with
a pixel size of 1×1-meter at a height of 1.5 m from the
floor of the factory hall is covered. The channel model is
generated using the quasi-deterministic radio channel gener-
ator (QuaDRiGa) [8] applying the propagation parameters for
industrial indoor scenarios [9]. The simulation conditions are
presented in Table I.

The two types of use cases analyzed are: 1) eMBB and
2) URLLC. Both are modelled as downlink traffic. For the
modelled eMBB use case, a full transmit buffer is considered.
Since a single-UE scenario is considered, full carrier band-
width is available for the single UE. The Key Performance
Indicator (KPI) for such an use case is the 10th user throughput
percentile.

The URLLC use case is modelled as a flow of 32-byte
packets generated every 1 ms. The reliability constraint for
URLLC is that at least 99.999% packets be successfully
transmitted with a maximum radio transmission delay of 1
ms. Hence, the target Block Error Rate (BLERtarget) is set to
10−5 . In this study, 5G numerology characterised by a 15 kHz
sub-carrier spacing and a 1 ms slot duration is assumed. This
implies that any retransmission of URLLC packets will result
in a violation of latency constraint. As a consequence, the
latency constraint is inherently achieved for every successfully
transmitted packet. Therefore, effectively, the KPI observed
for URLLC is the 90th RU percentile when the reliability
constraint is satisfied.

B. Outer Loop Link Adaptation

In its basic operation, each UE reports the observed channel
quality to the BS in the form of Channel Quality Indicator
(CQI) at periodic intervals (CQI periodicity). The CQI depends
on the signal to noise ratio (SNR) measured by the UE. The
BS processes the CQI reports received from the UE and selects
the Modulation and Coding Scheme (MCS) corresponding to
the reported CQI for downlink transmission. However, the
reported CQIs may be inaccurate because there is an inherent

TABLE I
SIMULATION PARAMETERS

Parameter Value (range)
Carrier frequency 3.5 GHz
Bandwidth 5 MHz
5G numerology 0 (sub-carrier spacing = 15 kHz)
Transmit power 21 dBm

OLLA step sizes (θ) [10−7, 10−6, 10−5, 10−4,
10−3, 10−2, 10−1, 1, 2, 3, 4]

UE speeds [ 0.1, 0.3, 1, 3, 10] m/s
CQI periodicity [2, 5, 10, 20, 40, 80] ms
Use Cases eMBB URLLC
BLERtarget 10−1 10−5

KPI 10th user throughput
percentile

90th resource utiliza-
tion percentile

CQI levels Table 5.2.2.1-3 (up to
256QAM) [10]

Table 5.2.2.1-2 (up to
64QAM) [10]

delay between the moment in which the UE measures the
SNR and the moment that the correspondingly derived MCS
is selected by the BS [11]. The channel quality can change
during this delay leading to either unsuccessful or inefficient
transmissions. If the BS chooses an MCS greater than that
corresponding to the channel condition, the subsequent trans-
missions are likely to be unsuccessful. On the other hand, if
the BS chooses a lower MCS, the subsequent transmissions
are likely to be successful but inefficient. To overcome this,
the BS uses another form of feedback received from the UEs
viz., the ACK/NACK messages. A technique called the Outer
Loop Link Adaptation (OLLA) combines the two mentioned
feedbacks to help efficiently achieve the BLERtarget set by
the use case.

OLLA introduces an offset (∆) which is either increased
by ∆up upon successful transmission or decreased by ∆down

upon unsuccessful transmission. This offset is added to the
CQI and then the resulting value is used for MCS selection
[11]. In this study, the individual values for ∆up and ∆down

are chosen as (1 − BLERtarget) × θ and BLERtarget × θ,
respectively, where θ is the OLLA step size. Therefore, the
value of OLLA offset applied to the (t+ 1)st transmission,

∆t+1 =

{
∆t + (BLERtarget × θ), if ACK
∆t − ((1−BLERtarget)× θ), if NACK.

The step size θ has been proven to have significant effect
on OLLA’s performance [11] which is illustrated in Figure
1, where the 10th user throughput percentile for eMBB use
case is plotted against θ for UEs moving at a speed of
0.3 m/s and 1 m/s with a CQI periodicity set to 40 ms.
The throughput increases with an increase in the OLLA step
size θ up to a certain point and then starts to decrease.
Initially, as θ increases, OLLA’s throughput increases because
OLLA is able to quickly converge to an optimal ∆ for that
particular scenario. However, after a certain value, an increase
in θ causes the throughput to decrease because the ∆ then
tends to alternate between over- or undershooting w.r.t. the
optimal value due to the greater step size θ. Furthermore,
the maximum throughput values for the two scenarios plotted
in Figure 1, are obtained for different values of θ because
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of different scenarios (UE speed in this case) and hence
different degrees of outdatedness that the OLLA needs to
compensate. This effect is also relevant for URLLC use case
where overshooting and undershooting result in packet loss
and greater RU, respectively. Therefore, the value of θ which
maximizes the KPI for a particular use case, UE speed and
CQI periodicity, is referred to as ‘Optimal θ’. In our study,
the simulations are run for the step sizes mentioned in Table I
and the behaviour of OLLA with optimal θ for each scenario
is chosen and used as the benchmark (referred to as Optimal
OLLA). For instance, when the UE speed is 0.3 m/s, OLLA’s
performance with θ = 1 is chosen as Optimal OLLA for the
eMBB use case.

Fig. 1. Influence of the OLLA step size (θ) on the 10th user throughput
percentile (eMBB use case) for different UE speeds.

C. System Model

CQP algorithms predict the channel quality experienced by
the UE with varying degrees of accuracy. For our study, pre-
diction inaccuracies are modelled by artificially adding errors
to the actual channel conditions within the simulation. These
errors are considered to be zero-mean normally distributed
around the actual channel quality. Therefore,

SNRpredicted = X + SNRactual,

where, SNRpredicted is the predicted channel quality,
SNRactual is the actual channel quality, X represents a
random variable which is normally distributed (N (0, σ2)) with
zero mean and a standard deviation of σ. The BS chooses an
MCS depending on SNRpredicted.

The potential of prediction can be observed when the
prediction algorithms are 100% accurate. In other words, when
σ = 0, the BS knows (by prediction) the channel quality
perfectly and hence it can choose the highest MCS leading
to a BLER not exceeding the BLERtarget. This scenario
is referred to as Perfect Prediction. The difference between
the KPI value observed with Perfect Prediction and Optimal
OLLA is referred to as ‘Prediction Potential’.

For each use case (eMBB and URLLC) and scenario (a
combination of UE speed and CQI periodicity), the standard
deviation of prediction error σ, is varied and the corresponding
KPI is observed. The value of σ at which the KPI of prediction
is lower than that of Optimal OLLA is termed as ‘Maximum
Tolerable Prediction Inaccuracy’ (MTPI).

In our study, the speed of the user and CQI periodicity
are varied. The faster the UE moves, the more quickly the
channel conditions will vary. Longer CQI periodicity signifies
then more outdated channel knowledge at the BS and a
lower number of CQI reports. Therefore, a slow moving UE
with short CQI periodicity correspond to small difference
between the channel knowledge at the BS and the actual
channel conditions; and greater signalling overhead due to
CQI reporting. In this paper, the difference between the actual
channel condition and that known by the BS is referred to
as channel outdatedness. The analysis is performed for UE
speeds up to 10 m/s which covers most practical scenarios
within a factory [12].

III. RESULTS & DISCUSSION

The prediction potential and MTPI values for eMBB and
URLLC use cases are presented and explained in Sections
III-A and III-B respectively.

A. eMBB use case

Prediction Potential: The potential of channel prediction de-
pends on the degree of channel outdatedness which, in turn
depends on the UE speed and the CQI periodicity. In general,
an increase in the degree of channel outdatedness decreases
the throughput for Optimal OLLA. The difference between
the 10th user throughput percentile of Perfect Prediction and
Optimal OLLA equates to the prediction potential (throughput
gain) of CQP. Therefore, with an increasing degree of channel
outdatedness, the prediction potential increases as shown in
Figure 2.

It is observed that for slow moving UEs, the throughput gain
of Perfect Prediction over Optimal OLLA is minimal. However,
configuring the UE to report CQI every 2 ms introduces
significant network overhead [13]. CQP reduces this overhead.
Considering two scenarios with the same UE speed but differ-
ent CQI periodicity, CQP’s impact on signalling overhead can
be explained. For an UE speed of 3 m/s, configuring the CQI
periodicity to 20 ms instead of 2 ms would not only provide
60% throughput gain but also reduces the number of control

Fig. 2. Throughput gain (eMBB) of Perfect Prediction in relation to Optimal
OLLA.
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Fig. 3. Influence of prediction error on the 10th user percentile throughput
(eMBB) for UE Speed = 3 m/s.

Fig. 4. MTPI for different scenarios considering eMBB use case.

packets required tenfold, theoretically. For fast moving UEs,
Optimal OLLA is forced to choose a less aggressive MCS to
cope with the channel outdatedness resulting in low throughput
for the Optimal OLLA case, consequentially, the prediction
potential is greatly positive.
MTPI: Naturally, the CQP techniques might not be 100%
accurate. The more inaccurate they are, the less beneficial
they become, as evident from Figure 3 where the 10th user
throughput percentile of prediction is plotted against a range
of standard deviation (σ) along with that of Optimal OLLA
for different CQI periodicities when the UE speed is 3 m/s.
The 10th user throughput percentile of Optimal OLLA does
not depend on σ hence, the flat lines in Figure 3. However,
as the CQI periodicity increases, the 10th user throughput
percentile achieved by corresponding Optimal OLLA reduces
because the OLLA takes longer time to converge than when
the degree of channel outdatedness is lower. As σ increases,
the prediction error increases and consequently, the 10th user
throughput percentile decreases. For a UE moving at a speed
of 3 m/s, a CQP technique with σ ≤ 1.5 dB, would perform
better than Optimal OLLA operating with a CQI periodicity of
10 ms. Thus, the MTPI equals 1.5 dB for this scenario.

Figure 4 presents the MTPI for different scenarios. This
series follows a similar trend as the prediction potential. When
the degree of channel outdatedness is low, the CQP has to be

Fig. 5. Difference in resource utilization (URLLC) between Perfect Prediction
and Optimal OLLA.

more accurate (σ = 0.5 dB) for it to be beneficial. On the other
hand, when the degree of channel outdatedness is moderately
high, a CQP technique with higher σ can outperform Optimal
OLLA.

B. URLLC use case

Prediction Potential: The difference between the 90th RU
percentile of Perfect Prediction and that of Optimal OLLA
to achieve the same BLERtarget is shown in Figure 5 (Note:
the X and Y axes’ sequence of Figure 5 are different from
that of the other figures). As in the case of eMBB, the KPI
observed for Perfect Prediction is not influenced by the degree
of channel outdatedness for URLLC use case either. However,
as the degree of channel outdatedness increases, there is a
steep increase in resources required by OLLA to achieve the
BLERtarget resulting in an increased difference in resource
utilization between Optimal OLLA and Perfect Prediction. The
reason is explained as follows. The Optimal OLLA, in an
attempt to achieve the BLERtarget, chooses a lower/robust
MCS for transmission in order to overcome the outdated
channel knowledge, resulting in an increased utilization of
resources to transmit the same amount of data. The difference
in RU tends to plateau because, the total number of CQI (and
therefore, MCS) levels available are finite.
MTPI: Recall that the MTPI for URLLC use case is the
maximum value of σ of prediction error that utilizes fewer
resources while achieving the reliability constraint (99.999%).
For URLLC use case, as the σ increases the reliability
achieved decreases and, simultaneously, the RU increases. This
effect is shown in Figure 6, where the influence of σ over
reliability and RU for a UE speed of 3 m/s, is plotted. The
increase in RU of prediction over the shown σ interval is
insignificant when compared with the RU of Optimal OLLA
for different CQI periodicities. In other words, from an RU
perspective, prediction is always beneficial. However, the
reliability of prediction drops with an increase in σ, and when
σ > 0.35 dB, the BLERtarget is not achieved. Therefore,
although the RU remains lower for higher values of σ, the
MTPI for the scenario when UE speed is 3 m/s, is 0.35 dB.
The prediction algorithms are required to be very accurate to
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Fig. 6. Influence of prediction error on the 90th resource utilization percentile
(URLLC) and reliability (URLLC) for UE speed = 3 m/s.

Fig. 7. MTPI for different scenarios considering URLLC use case.

an extent that the σ is expected to be between 0.25 and 0.35 dB
as represented in Figure 7. It is interesting to note that when
the degree of channel outdatedness is low, the prediction is
required to be (slightly) more accurate than when the degree
of channel outdatedness is high.

IV. CONCLUSIONS

Usefulness of CQP is analyzed for different UE speeds,
CQI periodicity, and use cases. CQP is useful for eMBB in
increasing the 10th user throughput percentile (up to 125%)
and reducing the number of CQI reports depending on the
degree of channel outdatedness. Similarly, with URLLC use
case, it is always beneficial to predict the wireless channel
because it reduces the amount of resources required for
communication (up to 37%). However, the CQP needs to be
very accurate (σ ≤ 0.35 dB) to reap the benefits, which is
significantly more demanding than for eMBB use case where
the CQP can be relatively inaccurate (σ ≤ 5 dB). The results
obtained serve as a guide to researchers in understanding the
potential of CQP and thereby, aid in ascertaining the usefulness
of novel ideas such as [14].
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