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Abstract—Millimeter wave (mmWave) based multiple-input
multiple-output (MIMO) capable user-centric (UC) ultra-dense
(UD) networks are suggested to facilitate high throughput
requirements of future networks. Due to the high blockage
susceptibility of mmWave, the connections may drop frequently.
Hence efficient and fast beam management in initial access (IA)
is essential. Current cellular systems use beam sweeping based
IA mechanisms. UC UD concept requires all of its access points
(APs) to perform IA. This leads to a shortage of orthogonal radio
resources. Nonorthogonal resource allocation causes interference
which leads to a higher misdetection probability. In this paper, we
propose a novel deep contextual bandit (DCB) based approach
to perform fast and efficient IA in mmWave based UC UD
networks. The DCB model uses one reference signal from the
user to predict the IA beam. The reduced use of reference signals
improves beam discovery delay and relaxes the requirement
for radio resources. Ray-tracing and stochastic channel model-
based simulations show that the suggested system outperforms
its beam sweeping counterpart in terms of probability of beam
misdetection and beam discovery delay in mmWave based UC
UD networks.

Index Terms—Initial access, 5G and beyond, mmWave, user-
centric, MIMO, deep contextual bandits, beam prediction

I. INTRODUCTION

To support futuristic applications like virtual reality and
autonomous driving, wireless communication systems of the
future require at least a 1000-fold increase of throughput
[1f]. Over the past cellular generations, increased throughput
requirements have been met by network densification; the
number of access points (APs) deployed in a unit area is
increased [2]. However, it is suggested that network densi-
fication is reaching its limit due to the increased inter-cell
interference and uncoordinated AP transmissions of the current
systems [_2], [3]. The user-centric (UC) network topology is a
novel concept proposed as an alternative to the cellular system
to facilitate the massive throughput requirements of future
networks [3]], [4]. The UC topology includes an ultra-dense
(UD) AP distribution, massive multiple-input multiple-output
(MIMO) capable APs, and a cooperative user serving system,
to meet the demands of the future. The users in UC systems
would be simultaneously served by a subset of available APs
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to improves throughput and reliability by creating diversity.
Current 5th generation (5G) and future wireless communica-
tion systems are set to use the millimeter wave (mmWave)
and sub-terahertz (THz) bands for communications to meet
the throughput requirements. Nevertheless, mmWave and THz
channels have a higher susceptibility to blockages due to
the high penetration losses it experiences compared to lower
frequency bands [3].

The inevitable loss of connections in mmWave channels
calls for fast and efficient beam management tools to maintain
reliable wireless communications. The initial access (IA) pro-
cess is responsible for establishing the connection between
the APs and the users. The beam management in the TA
process selects the best beam from a predefined quantized
beam codebook for an AP to serve a user. IA systems deployed
in current and past cellular systems depend on exhaustive
or iterative search based beam sweeping mechanisms. The
exhaustive search approach conducts a full-beam sweep by
transmitting all the beam in the codebook one after the other.
Users select the beam providing the best signal-to-noise ratio.
Iterative search is a two-stage beam sweeping strategy where
at stage one, APs transmit a set of wider beams to narrow
down the search area. Subsequently, in stage two, a beam
sweep is carried out within the identified area to fine-tune the
beam selection. Fig. [T| presents an abstract idea of how these
beams are transmitted in iterative and exhaustive beam search.
IA system in 5G employs an iterative search based approach
[6]]. Beams are transmitted using orthogonal resources to avoid
interference that would result in beam misdetection at the user.

Authors in [7] discuss and compared IA approaches sug-
gested for 5G networks such as iterative, and exhaustive
search. The authors of [8] propose an algorithm that dynam-
ically scales the resources allocated to beam sweeping direc-
tions to optimize the beam management of the IA procedure
in 5G mmWave networks. Recently, machine learning (ML)
based approaches have been explored as alternatives to replace
conventionally non-ML bases systems in communication sys-
tems [9]-[11]]. Work in [9] presents a discussion on possible
implementations of ML in future wireless communication
systems to meet the requirements of the network. Authors
of [9] suggest that ML will be vital in accommodating the
increasing demand for connectivity. The work in [11]] presents
an TA algorithm called DeeplA which uses a deep neural
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Fig. 1: Beam transmissions in the iterative, and exhaustive search
approaches.

network (DNN) for faster prediction of the IA beam. Instead
of using all the beams in the codebook, DeeplA proposes to
use only a subset of beams for beam sweep. SNR reports from
the users are used as the input for the DNN that predicts the
IA beam. The DeeplA algorithm improves on the two-stage
iterative beam sweeping strategy by substituting the second
stage with a DNN. However, the beam discovery delay caused
multiple message transfers: beam transmissions and user re-
ports, by beam sweeping based methods, can not be reduced.
Authors in [[10] present a solution that simultaneously solves
beamforming, power allocation, and interference management
based on deep reinforcement learning for cellular systems. The
algorithm given in [[10] assumes access to real time knowledge
of interference and received power experienced at the users.
The implementation of [[10] would require high fronthaul and
backhaul capacities which would lead to a lack of feasibility
in UC UD networks.

The motivation for this work comes from trying to answer
the following two questions regarding IA beam management
in MIMO enabled UC UD networks based on mmWave. a)
Does the system have enough orthogonal resources to support
beam sweeping of the scale required by the MIMO capable UC
UD networks? b) Can the beam discovery delay be reduced
by reducing the number of message transfers needed for
IA beam identification? Based on the discussion above, this
work proposes a novel deep contextual bandit (DCB) based
approach to perform fast and efficient IA for mmWave based
UC UD networks. The proposed approach reduces the number
of messages transferred between the APs and the users to
lower the beam discovery delay and radio interference. The
DCB model in the proposed approach is trained to predict
the beamforming vector using only one reference signal from
the user. The performance of the suggested IA scheme is
evaluated using stochastic and ray-tracing based methods.
Simulation results show that the proposed system is capable
of maintaining beam misdetection probability close to zero for
the considered network topology.

The rest of this paper is organized as follows. Section
[ explains the system model used in our work. Section [II|
provides a quick primer on the beam sweeping based IA
scheme used in 5G and how it could be extended to the UC UD
case. Section [[V|introduces the DCB ML model and formally
presents the DCB based IA scheme proposed in this work.

CPU

Fig. 2: The sysié;{l model of a user-centric ultra-dense network where
a subset of the available APs would jointly serve a user [3]].
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Sectionm presents the simulation model and numerical results,
while this work is concluded in Section [VII

Notations: (.)7, and (.)¥ denote transpose and Hermitian
transpose, respectively. R(x) and Z(x) represents the real and
imaginary parts of x, respectively. ||.||, and |X'| denotes the
euclidean norm and the cardinality of the set X, respectively.

II. SYSTEM MODEL

Consider a UC UD network topology with a set I of K
single-antenna users are served by subsets of M APs. The
user selects the best M APs providing the best signal powers
out of M [J3]]. The entity managing the APs is referred to as
the central processing unit (CPU). The system model of a UC
UD network is presented in Fig. 2} APs are equipped with N
element uniform rectangular planar antenna arrays (URPA).

The channel is modeled using a clustered mmWave model
[12]] with J clusters. Each cluster is generated with L paths
which are parameterized by path loss, fading, and array gain
at the AP. The channel from an user to an AP, g € CNx1 g
presented as

J L
ZZ ]lh]la ]l7¢jl) (D
where p;; € C is the path loss, h;; € C is the small-scale
fading gain, and a(0;,, ¢;;) € CV*! is the AP’s array gain,
where 0;; and ¢;; are the azimuth and elevation angles of
arrival, respectively. Here, the subscript notations j = 1,...,.J
and [ = 1,..., L represent cluster and path index, respec-
tively. Channel reciprocity is assumed; all mmWave channels
proposed in the frequency region 2 for 5G and future systems
use time division duplexing [13|]. Hence the channel from the
AP to the user is g?.

Beams for IA are chosen from a predefined beam codebook
C and they are assumed to be implemented with a network of
quantized phase shifters. The bth entry of C, i.e., fp, is given
by
USRS

fb = ) (2)
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Fig. 3: Iterative beam transmissions in 5G IA procedure over time.
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where Oy, is the quantized phase shift corresponding to the
nth antenna in the bth entry.

The mmWave channels generated using a commercial ray-
tracing software called Wireless Insite [14] allows performance
analysis in a realistic environment. However, it is practically
infeasible to study the effects of the time-varying nature of the
channel on performance using a ray-tracing based approach.
Hence, simulations based on stochastic channel models are
also considered.

III. EXTENSION OF 5G IA TO USER-CENTRIC SYSTEMS

IA in 5G systems uses a beam management strategy based
on an exhaustive search [6]. IA beams in the codebook are
transmitted using synchronization signal blocks (SSBs) in a
predetermined order over time as seen in Fig. 3] Beams are
evaluated at the user in terms of the signal-to-interference-
plus-noise ratio (SINR). The beam with the best SINR per-
formance is reported back to the respective AP. The user then
associates itself with the AP that provided the aforementioned
best beam.

Applying the 5G IA approach to the single-user single-
AP case is straightforward. The goal of this problem is to
maximize the SNR experienced at the user by appropriate
selection of the IA beam. The SNR at the user is expressed
as
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where P is the total transmit power of the AP, g/ is the
channel from the AP to the user, f is the beam chosen by the
user to be served from the AP, and o2 is the noise power at
the user. This case is similar to IA in traditional systems, and
the maximization problem is presented as

SNR

feC.

IA approach in 5G is extended to the multi-AP setting of
the UC UD network architecture with some minor changes.
Since the UC concept allows multiple APs to cooperatively
serve the users, each AP has to perform the IA procedure
despite the high AP density of 40-200 APs per km? [15], [16]
. After evaluating the beam SINRs, users have to select the
best beam for each AP. The user then associates itself with the

maximize
f “4)

subject to

best M APs which provide the highest total SNIR. The goal
of this problem is to maximize the sum of SINR received at
the user by selecting the best beam from each AP. The total
SINR received at kth user is presented as,

M
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where P, j, is the transmit power allocated to kth user at mth
AP, gfl,k is the channel from the mth AP to the kth user,
fm k is the beam chosen by the mth AP to serve the kth user,
and o7 is the noise power at kth user. Beam transmissions use
orthogonal SSBs to avoid interference. Due to the high density
of APs, UC UD networks need a higher number of resources.
The limited radio resources could be either reused frequently
or shared using nonorthogonal allocation schemesﬂ However,
this causes interference which affects the beam misdetection
probability. We define the probability of a beam interfering
with another beam at a user as ¢;. The interference power
caused at kth user is Ii. This problem is presented as

maximize SINRy
f1 ;- Mk (6)
subject to  fjx €C Vm.

IV. DEEP CONTEXTUAL BANDIT BASED PROPOSED
APPROACH FOR TA

This section provides an introduction to DCB and introduces
the main contribution of this work—the novel DCB based
approach to perform IA in mmWave based UC UD networks.

A. Primer On Deep Contextual Bandits

The architecture of a deep contextual bandit (DCB) machine
learning model is presented in Fig. ] The software entity
which interacts with the environment is called an agent. The
agents use actions (a) from a set action-space to interact with
the environment. The state of the environment is characterized
by context X. The agent is then provided with feedback on
this interaction in the form of a reward . The agent’s goal is
to select actions to maximize the received reward. Hence, the
agent has to learn the mapping function that maps a context
to an action that gives the maximum received reward. This is
done by building a model to predict the probability of receiving
the highest reward for each action given the context; the
model learns the probability set {Pr {vy|a, X}} Vv,a, X [17].
For problems with small action-spaces, and discrete X, the
simplest model is a reward table which contains the v for each
action-context pair. Maintaining a reward table for problems
with continuous X and large action-spaces is infeasible [[18]].
Hence, the mapping function is approximated using a deep
neural network (DNN).

DCB agents are deployed without prior training and they
have to learn on the job. Hence deciding the compromise
between exploitation and exploration policies is a dilemma

'For the practical deployment of mmWave channels, specifications in [6]
define a maximum of 64 SSBs. Considering the high-density nature of the UC
UD network, this number is inadequate for all the APs to perform interference
free beam sweeping. This lack of radio resources causes beam interference.
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Fig. 4: Abstract structure of the deep contextual bandit algorithm.
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in DCBs [17]]. The agent takes random actions to explore the
environment under exploration to learn more about the envi-
ronment. However, the agent could follow exploitation, i.e.,
greedy policy, and use its current knowledge to select actions
to maximize rewards. This work adopts a diminishing e-greedy
policy where the agent follows exploration and exploitation
policies with the probabilities of € and 1-¢, respectively [19].
Initially, € is set to 1, and it is diminished by a factor of €4 at
each training episode until it reaches a predefined minimum,
i.e., €min. Defining €,,;, is important since it allows the model
to evolve with changing environmental conditions even after
the initial learning period.

The (X, a,~) triplets are saved as experiences in the agent’s
memory. At each training session, a certain number of experi-
ences are chosen randomly and used as the training data. This
is called experience-replay and it promotes the convergence of
the DCB model [19].

B. Proposed Approach

The proposed approach finds the beam for IA using just
one reference signal from the user. This reduction in the use
of reference signals helps to lower the beam discovery delay.
It further improves on the efficiency by maintaining a low
probability of beam misdetections. Each AP will rely on the
DCB agent deployed in them to identify the best IA beam.

Unlike 5G IA, the user initiates the IA procedure by broad-
casting one reference signal. This transmission is received by
the nearby APs and it is used by the DCB agents to predict
the IA beam. The received signal at the AP y € CNVx1 g
presented as

Y= g +w, (7)
kek

where w = [wy ... wy]T, px is the transmitted power of kth
user, and gy is the channel g from kth user to the AP. Here
K C K denotes the set of users requesting IA, and {w,} are
independent and identically distributed circularly-symmetric
complex Gaussian noise at nth antenna of the URPA. The
noise has a mean of zero, and a variance of o2 per dimension.
The reference signal broadcasted by kth user is denoted as 2y,
and assume that ||€%;]|* = 1 and || Q.|| = 0 Vj # k. Each
AP follows a pilot matched channel estimation method [4] to
recover the channel matrix from kth user to the AP, and it is
presented as

gk = Yy

®)
= Pr8k + kaJ?

where g € CV*! is the estimated channel. The real and the
imaginary parts of the normalized g, R (gx) € RV*! and

(b) Top view

(a) South-eastern view
Fig. 5: Simulation environment of the ray-tracing model.

T (8k) € RV*1, respectively, are separated and then merged
to create the input context X € R2V*! and it is given by

T

1
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The action-space of the DCB agent and the beam codebook
C has a one-to-one mapping; each action corresponds to a

beam in C. Hence, the number of total actions equals |C|.
After selecting an action, the AP uses the corresponding
beam f for the downlink transmissions. The user receiving
evaluates the downlink SNR and sends a report back to the
AP. The reward calculation for the DCB model is based on
this SNR report. Apart from f, the SNR depends on many
factors such as channel from the AP to kth user hy, € C*V,
shadowing, and noise at the user. The reward ~y is supposed to
give feedback to the agent only about their actions. Hence, the
direct usage of the received SNR as the reward might confuse
the agent. Normalizing the SNR with ||hy||? and AP transmit
power can remove some of the dependencies. However, hy
is not available at the AP. We assume that the uplink and
downlink transmissions occur within the channel coherence
time, and therefore, the reciprocity still holds. Hence, hy is
approximated using g{j . The reward metric ~y is presented as

2
L (10)
opllg |17
After saving this experience, the DCB model performs an
experience-replay to train itself as explained in Section [V-A]
Hence the IA process is concluded.

V. PERFORMANCE ANALYSIS

This section presents the details about the simulations and
demonstrates the numerical results.

A. Simulation Model

A carrier frequency of 28 GHz with a channel bandwidth
of 15 MHz is considered. Each AP is equipped with a 4 x 4
URPA. The beam codebook consists of 16 beams, i.e, |C| =
16. The maximum transmit power of the APs, and the users
are set to 43 and 23 dBm, respectively. It is assumed that
every IA related message, i.e., reference signals, user reports,
and beam transmissions, transferred between APs and users
take 0.01 ms. The processing time required for prediction is
negligible compared to message transfer time. We assume the
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Fig. 6: Average beam discovery delay, vs. training episodes for the
ray-tracing based channel model.

probability of a beam transmitted in a beam sweep causing
interference to another beam is ¢;. Simulations are performed
for different g; values. The proposed approach relies on just
one reference signal from the user for beam prediction. Here in
order to detect the user reference signal at the APs, a minimum
SNR threshold of 0 dB is considered.

Simulations are repeated independently for 10° iterations to
ensure the statistical significance of the results. Performance
is evaluated in terms of beam discovery delay and beam mis-
detection probability. Beam discovery delay relates to the time
required by the IA process to associate the user by providing
an IA beam. Beam misdetection probability concerns with the
quality of the beam choice; if the selected beam is unable to
produce at least 95% of the power delivered by the best beam
choice, it is considered as a misdetection.

1) Ray-tracing channel model: All antenna gains and the
noise figures are set to 5 and 3 dB, receptively. An indoor
sports stadium is chosen as the environment as shown in Fig.
[} It is an ideal candidate for early deployment and testing of
mmWave UC UD networks due to a number of possible future
application scenarios relating to live sports entertainment. The
environment is modeled using Wireless Insite ray-tracer [14].

A 60 m x 30 m skating rink is situated in the middle of
the 100 m x 50 m stadium. All walls, ceiling, and floor are
concrete structures and they are modeled using ITU 28 GHz
compliant material models [14]. The perimeter walls around
the stadium extend from the floor to the ceiling. The seating
area has an elevation angle of 30 degrees. APs are located 2 m
apart facing down in a grid formation on the ceiling which is
15 m above the floor. A gird of 20 m x 10 m with a resolution
of 0.25 m on the seating area is defined as the set of possible
user locations. AP and possible user locations are shown in
green and red color cubes in Fig. [5] In each simulation, 30
users are randomly placed on the grid.

2) Stochastic channel model: A simulation area of 200 m
x 200 m is considered. The number of APs in a simulation
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Fig. 7: Probability of beam misdetection for the proposed approach,
against the training episodes, for the ray-tracing based channel model.

iteration depends on the AP density which is set between 40
and 200 APs per km?. At each iteration, 30 users are uniformly
placed in the simulation area. The channel parameters for path
loss, shadowing, angular dispersion, and spatial clusters are
selected based on [12].

3) DCB model: The DCB agent is implemented using the
Keras [20] library. DNN model of the DCB agent has 4
hidden layers where the Relu activation function and Adam
optimizer are used. The first three hidden layers have 50
neurons each while the last hidden layer has 16 neurons. Input
and output layers contain 32 and 16 neurons, respectively,
corresponding to the size of a context and the action-space.
Past experiences are held in a first-in-first-out queue of length
50,000. The values for €4.. and €,,;, are set to 0.99995 and
0.01, respectively. Initially, 10,000 random guesses are made
to explore the environment. After this stage, an e-greedy policy
is followed where e decays by a factor of €4... Experience-
replay uses 64 randomly selected experiences from the queue.

B. Results

Fig.[6l and[7]show beam discovery delay, and the probability
of misdetection for the indoor sports stadium simulation
setting where the channel is modeled using ray-tracing. An
ultra-dense setting of 200 APs per km? is considered. Fig. [6]
depicts the key advantage of the proposed approach-the low
beam discovery delay. In addition to the proposed approach,
an interference-free case for the beam sweeping mechanism
is considered. The proposed DCB based approach is able to
maintain a very small average beam discovery delay compared
to the beam sweeping approach; the proposed approach uses
only one reference signal from the user for the beam predic-
tion. The best case for beam sweeping, i.e., an interference-free
scenario, has to transmit 16 beams and receive a report from
the user to choose the IA beam for the user. Hence, the beam
sweeping method incurs a beam discovery delay of at least
0.17 ms.
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stochastic channel model.

Fig. [7] illustrates how the proposed approach improves its
prediction capability over time. The DCB model in the pro-
posed approach can reach well below 10~2 for the probability
of beam misdetection even under ultra-dense conditions. Ray
tracing based realistic simulations show that the proposed
approach can support [A in mmWave based UC UD networks
while maintaining satisfactory beam discovery delay, and the
probability of beam misdetection.

Fig. [8] demonstrates how the effects of beam interference in
the mmWave based UC UD networks dominate the probability
of misdetection performance of the beam sweeping based
approaches. We consider scenarios from almost no interfer-
ence, i.e.,, ¢; = 0.001, to some interference, i.e., ¢; = 0.1.
The proposed approach remains unaffected by such beam
interference and continues to show increase performance with
the density. For the low-density case of the proposed approach,
the probability of the reference signal from the user not reach
the sparsely located APs is high due to the characteristic
of mmWave propagation. However, in the high-density case,
the impact of this becomes less, and the proposed approach
performs better than the best beam sweeping case, i.e., the
scenario with almost no interference

The proposed approach exhibits a low average beam discov-
ery delay while maintaining a satisfactory probability of beam
misdetection, compared to beam sweeping based methods.
This feat is achieved through the main difference in the
proposed approach—the IA process is performed using just one
reference signal from the user.

VI. CONCLUSION

In this paper, we have applied deep contextual bandits
(DCB) to the initial access (IA) problem in millimeter wave
(mmWave) based user-centric (UC) ultra-dense (UD) net-
works. First, we have studied beam sweeping based IA proce-
dures used in current systems. Furthermore, we identified two
problems with the extension of these methods to the UD UC

network setting: high beam discovery delay, and lack of radio
resources to perform beam sweeps using large codebooks.
Then, we propose a DCB based solution to perform fast and
efficient IA by reducing the message transfers between the
access points and the users. The DCB model predicts the
beam for IA using a single reference signal from the user.
Simulations were performed using geometric ray-tracing and
stochastic models to evaluate the performance. The simulation
results show that the proposed system can predict the IA
beam with a small beam discovery delay compared to the
beam sweeping method while maintaining a low probability
of beam misdetection. The proposed approach outperforms
beam sweeping systems in the user-centric ultra-dense net-
works. Hence, with the evolution of communication systems
to mmWave based UC UD networks, the beam sweep based
IA strategies will become obsolete—due to the higher beam
discovery delay and misdetection probability caused in beam
sweeping systems. Work in this paper can be extended to
several research directions: investigating the performance of
the proposed approach under low received SNR setting, its
extension towards coordinated beamforming, and fine-tuning
the hyper-parameters in the machine learning model.
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