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Abstract—While intelligent reflecting surfaces (IRSs) and non-
orthogonal multiple access (NOMA) techniques have shown
great potential to boost the spectral and energy efficiency for
future wireless networks, unmanned aerial vehicles (UAVs) are
committed for enhancing the wireless connectivity with fast and
flexible deployment. In this regard, we study an integration of
an IRS in UAV-enabled wireless relaying system using NOMA
transmissions. We also count on the impacts of residual hardware
impairments (HIs) in user devices and imperfect successive
interference cancellation (SIC) in NOMA, which are inevitable
in practical system implementation. We analyze the system
performance by deriving the closed-form expressions of outage
probability (OP) and system throughput over the line-of-sight
(LoS) Rician fading channels for the aerial links. We further
pursue asymptotic OP analysis to reveal useful insights on the
achievable diversity order. Above all, we present a deep neural
network (DNN) framework for OP prediction with a short
execution time under the dynamic stochastic environment. Our
results validate the theoretical proposition and accentuate the
performance advantages of the proposed UAV-borne IRS relaying
NOMA system.

Index Terms—Deep neural network (DNN), intelligent re-
flecting surface (IRS), non-orthogonal multiple access (NOMA),
outage probability, unmanned aerial vehicle (UAV).

I. INTRODUCTION

Intelligent reflecting surfaces (IRSs) are proliferating as
a revolutionary technology for the sixth generation (6G)
wireless networks, owing to their potential to intelligently
reconfigure radio propagation environment with a low-cost
implementation [1], [2]. An IRS is equipped with multiple
passive reflective elements that can be controlled by software
to provide reflecting paths for radio communication signals
in the desirable directions. Thereby, the IRS can achieve
reduced energy consumption and efficient spectrum utilization
in contrast to the traditional cooperative relaying technique
[3]. Various research works have been conducted on the
performance analysis of IRS-assisted transmission in order to
take cognizance of the relaying operation (see [4], [5] and the
references cited therein).

On the other hand, non-orthogonal multiple access (NOMA)
has been emerged as a promising technology that enables
multiple users to share the same code, time and spectrum
resources [6]. Basically, it applies superposition coding in the
power domain at the transmitter and successive interference

cancellation (SIC) at the receiver to serve the multiple users. A
series of research works have elucidated that the integration of
NOMA with IRS can boost the spectral and energy efficiency
for future wireless networks. A comparative performance in-
vestigation of NOMA over orthogonal multiple access (OMA)
in the IRS-aided downlink communication system has been
conducted in [7]. Authors in [8] have studied the performance
of an IRS-NOMA system using coherent and random discrete
phase shifting methods. An IRS-assisted NOMA networks
with imperfect SIC has been analyzed in [9] by exploiting 1-
bit coding scheme. The IRS is employed with millimeter wave
NOMA communications in [10] and with wireless powered
NOMA Internet-of-Things (IoT) networks in [11]. Considering
an IRS-assisted NOMA downlink communication system,
deep learning and reinforcement learning approaches have
been applied for the optimization of NOMA user partitioning
and IRS phase shifting in [12], and for the performance
investigation over fading channels in [13].

The aforementioned research works considered the IRS
transmissions in anticipation with fixed relaying infrastructure.
An unmanned aerial vehicle (UAV) can facilitate flexible
relaying through aerial domain to extend the coverage of base
station, and provide on-demand services to the ground users
by changing its location in real time. In addition, the UAV-
based relaying establishes a spatial diversity path over and
above the direct communication link between the transmitter
and receiver. More importantly, a UAV-borne IRS system can
proficiently subside the on-board UAV energy consumption
by holding the UAV’s transceiver in idle mode and allowing
the IRS transmissions to serve the ground users. To this end,
authors in [14] investigated the performance of an integrated
UAV-IRS relaying for a single user system. The authors in
[15] employed an IRS to improve the coverage performance
between a mobile UAV and a ground user. In [16], authors
have explored reinforcement learning for the optimization
of the location of a UAV-IRS system so as to maximize
the downlink transmission capacity. However, these research
works did not consider NOMA transmissions with the UAV-
mounted IRS relaying system. Further, in view of practical
IoT implementation, the transmitter and receiver devices are
built with low-cost hardware and hence liable to residual
hardware impairments (HIs), which are attributed to partial
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Fig. 1: A UAV-borne IRS relaying NOMA system.

compensation against several non-ideal factors such as in-
quadrature-phase imbalance, amplifier nonlinearity, and phase
noise [17], [18]. Also, the perfect SIC condition for the
NOMA-based networks is quite difficult to realize in practice
considering error propagation and complexity scaling. Note
that the effects of residual HIs in user devices and imperfect
SIC in NOMA may incur limitations on the capacity of the
UAV-IRS relaying NOMA system, strikingly for the high rate
applications.

Actuated by the above discussion, in this paper, we study
a UAV-borne IRS relaying NOMA system under the influ-
ence of residual HIs and imperfect SIC. As the UAV-IRS
is usually deployed in a position with line-of-sight (LoS)
to both transmitter and receiver, we adopt the Rician fading
model coupled with UAV propagation characteristics for the
aerial channels and non-LoS Rayleigh fading for the terrestrial
channels. We analyze the system performance by deriving
closed-form expressions for outage probability (OP) of NOMA
users and system throughput. We also pursue an asymptotic OP
analysis to reveal the impact of key parameters on the system
performance. Recognizing the complexity in derivations of OP
metrics, we prosper a deep neural network (DNN) framework
for OP prediction with low computational complexity and
short execution time, with the goal of realizing a real-time
UAV-IRS relaying NOMA network configuration.

II. SYSTEM MODEL

Fig. 1 shows a UAV-borne IRS relaying system, where
source (S) communicates with two NOMA users (U1 and U2)
with the assistance of a UAV-IRS relay (R). As we consider
U1 as the far user and U2 as the near user, the user U1 receives
signal transmitted from source via direct link as well as via
UAV-IRS relay link, while the user U2 receives the signal
from source via direct link only. There is no communication
link between the R and U2 due to relatively weaker path [8]
and blocking obstacles. The source and the users are equipped
with a single antenna. The IRS is mounted on the UAV and
is equipped with N reconfigurable reflecting elements whose
phase shifts can be intelligently adjusted through a controller

[8], [9] to maximize the received signal power at the user U1.
The N ×N diagonal phase-shifting matrix at the IRS is given
by

Φ = diag
(
β1e

jφ1 , β2e
jφ2 , ..., βNejφN

)
, (1)

where βn ∈ (0, 1] is the nth amplitude-reflection coefficient,
with βn = 1 implies lossless reflection, and φn ∈ [0, 2π) is
the nth phase-shift variable.

With three-dimensional (3-D) Cartesian coordinates, the
locations of ground nodes S, U1, and U2 are represented
by vs = (Xs,Ys, 0), vu1 = (Xu1 ,Yu1 , 0), and vu2 =
(Xu2

,Yu2
, 0), respectively. It is assumed that the UAV will

travel in a circular trajectory with radius ru, at height Hu such
that Hu ∈ [Hmin

u ,Hmax
u ], and constant velocity, where Hmin

u

and Hmax
u are the lowest and highest permissible altitudes,

respectively. Let ϕu be the angle at which the UAV is
now located within the UAV circle with reference to x-axis.
Consequently, vu = (ru cosϕu, ru sinϕu, Hu) can be used to
represent the location of the UAV. With two-dimensional (2-D)
Cartesian coordinates, the location of S, Ui, i ∈ {1, 2}, and the
UAV can be represented as ws = (Xs,Ys), wui = (Xui ,Yui),
and wu = (ru cosϕu, ru sinϕu), respectively. The elevation
angles (in rad) from ground nodes S and U1 are given
by θs = arctan

( Hu

|wu−ws|
)

and θu1 = arctan
( Hu

|wu−wu1
|
)
,

respectively.

A. Channel Model

The communication links between the UAV and ground
nodes (S and U1) may have LoS or non-LoS depending upon
the elevation angle and environment. Thus, the probability of
LoS in their pertinent links is given by

PL(θj) =
(
1 + εj exp

(
− ξj(θj − εj)

))−1

, (2)

where εj and ξj , with j ∈ {s, u1}, denote the environment
parameters fetched from the curve fitting using Damped Least-
Squares (DLS) method [19]. The corresponding path-loss
exponent is given by

αr,j(θj) = PL(θj)κj + νj , (3)

where κj and νj , with j ∈ {s, u1}, represent constants that
depend on the uplink and downlink environment [19]. Let us
denote the N × 1 aerial channel vector between the source
and the UAV-IRS by gs and that between the UAV-IRS and
user U1 by gu1 . Since the UAV-IRS is usually deployed at a
location that has LoS to both S and U1, it is enviable to adopt
Rician fading model for gs and gu1

as

gj =

√
Kj

Kj + 1
ḡj +

√
1

Kj + 1
g̃j , for j ∈ {s, u1}, (4)

where Kj denotes the Rician factor, ḡj and g̃j represent the
normalized LoS and non-LoS components, respectively. We
further assume Ωj be the average power of the corresponding
Rician channel gain, for j ∈ {s, u1}. The distance of the
link between S and R is dsr =

√
|wu −ws|2 +H2

u and
that between R and U1 is dru1 =

√
|wu −wu1 |2 +H2

u, and



the corresponding aerial path-loss exponents are αr,s(θs) and
αr,u1(θu1).

On the contrary, as there is no LoS path between source
S and user Ui, we assume that the terrestrial channel coef-
ficient hui

between S and Ui, modelled as CN (0,Ωsui
), for

i ∈ {1, 2}, undergoes Rayleigh fading. Also, we consider that
dsui = |ws − wui |2 and αsui be the distance and path-loss
exponent of the corresponding terrestrial channel.

B. Signal Model

In the purview of NOMA, source S applies a superposition
of the unit-power message signals x1 and x2 for the intended
users U1 and U2, respectively, with corresponding power
allocation factors as δ1 and δ2, satisfying δ1 > δ2 and
δ1 + δ2 = 1. The source S then broadcasts the superimposed
signal with its transmit power Ps. The signal received at U1,
via both direct and UAV-IRS relaying links, can be given by

yu1 =


 hu1√

d
αsu1
su1

+
gH
u1
Φgs√

d
αr,s(θs)
sr d

αr,u1
(θu1

)
ru1




× (
√
δ1Psx1 +

√
δ2Psx2 + ηts) + ηru1 + υu1 , (5)

and the signal received at U2, via the direct link only, can be
given by

yu2
=

hu2√
d
αsu2
su2

(
√
δ1Psx1 +

√
δ2Psx2 + ηts) + ηru2

+ υu2
,

(6)

where υu1 and υu2 represent additive white Gaussian noise
(AWGN) at the respective nodes, modeled as CN (0, N0).
Herein, ηts ∼ CN (0, λ2

tsPs) denotes the distortion noise
caused by HI at the transmitter section of source S, ηru1

∼
CN

(
0, λ2

ru1
Ps

∣∣∣ hu1√
d
αsu1
su1

+
gH
u1

Φgs√
d
αr,s(θs)
sr d

αr,u1 (θu1 )
ru1

∣∣∣
2)

and ηru2
∼

CN
(
0, λ2

ru2
Ps

|hu2 |
2

d
αsu2
su2

)
denote the distortion noises caused by

HIs at the receiving nodes U1 and U2, respectively, with λts,
λru1 , and λru2 representing the levels of HIs that can be
measured as error vector magnitudes (EVMs) [17].

Let us consider βn = β ∀n without loss of generality, and
assume that gs,n and gu1,n be the n-th elements of gs and
gu1 , respectively. Then, based on the perfect knowledge of
the channel phases ψu1

of hu1
, ψs,n of gs,n, and ψu1,n of

gu1,n, the IRS can adjust its phase shifts φn as

φn = −ψu1
+ ψs,n + ψu1,n, (7)

so that the received signal at the user U1 can be expressed as

yu1 = e−jψu1

(
a1|hu1 |+ b1

N∑
n=1

|gu1,n| |gs,n|

)

× (
√
δ1Psx1 +

√
δ2Psx2 + ηts) + ηru1 + υu1 , (8)

where a1 = 1/
√
d
αsu1
su1 and b1 = β/

√
d
αr,s(θs)
sr d

αr,u1 (θu1 )
ru1 .

Capitalizing on the NOMA scheme, the far user U1 detects
its message x1 by treating the near user’s message x2 as

interference. Thus, the signal-to-interference-plus-noise ratio
(SINR) at U1 is given by

γu1,x1
=

δ1 ρs

(
a1|hu1

|+ b1
∑N

n=1 |gu1,n| |gs,n|
)2

(δ2+λ2
su1

)ρs

(
a1|hu1

|+b1
∑N

n=1 |gu1,n| |gs,n|
)2

+1
,

(9)

where λ2
su1

= λ2
ts + λ2

ru1
elucidates the aggregate HI level at

the user U1 and ρs =
Ps

N0
denotes the transmit signal-to-noise

ratio (SNR).
Whereas, at near user U2, the signal x1 of U1 is decoded

first, and the corresponding SINR is given by

γu2,x1 =
δ1 ρsa2|hu2 |2

(δ2 + λ2
su2

) ρsa2|hu2
|2 + 1

, (10)

where a2 = 1/d
αsu2
su2 and λ2

su2
= λ2

ts+λ2
ru2

which captures the
aggregate HI level at the user U2. Then, after striking out the
signal x1 using SIC, U2 decodes its own message x2. Thus,
the corresponding SINR is given by

γu2,x2 =
δ2 ρsa2|hu2 |2

δ1 ρsa2|�2|2 + λ2
su2

ρsa2|hu2
|2 + 1

, (11)

where �2 accounts for the imperfect SIC error, modelled
as CN (0, ζΩ2). Herein, ζ ∈ (0, 1] refers to the level of
residual interference arising due to imperfect SIC, with ζ = 0
corresponds to the perfect SIC case.

III. PERFORMANCE ANALYSIS

In this section, we first evaluate OP performance of the
system, and then present an asymptotic OP analysis to disclose
useful insights. We also analyze a system throughput measure.

A. OP Evaluation

The OP is evaluated as the probability that the SINR falls
below a predefined outage threshold.

1) OP for User U1: Using (9), the OP for U1 can be
evaluated for a target rate Rth1 as

Pu1 = Pr{γu1,x1 < γth1}

= Pr
{(

a1|hu1
|+ b1

N∑
n=1

|gu1,n| |gs,n|
)2

<
γth1

δ1 ρs − (δ2+ λ2
su1

)ρsγth1

}
, (12)

where γth1 = 2Rth1 − 1. As the exact closed-form evaluation
of Pu1 in (12) is intricate, we present a tight approximated
expression in the following lemma.

Lemma 1: The OP Pu1
for the proposed UAV-IRS relaying

NOMA system is given by

Pu1
=

1

2

[
1 + erf

(√
w − b1Nµ1√
2b21Nσ2

1

)]

− 1

2
√
c̃1

e−
(
√

w−b1Nµ1)2

2c1

[
1 + erf

(√
w − b1Nµ1√
2b21Nσ2

1 c̃1

)]
, (13)



for γth1 < δ1
δ2+λ2

su1

, where w =
γth1

δ1 ρs−(δ2+λ2
su1

)ρsγth1
, c̃1 =

c1
a2
1Ωsu1

with c1 = b21Nσ2
1 + a21Ωsu1

, and

µ1 =
π
√

ΩsΩu1

2

[
1F1

(
−1

2
; 1;−Ks

)
1F1

(
−1

2
; 1;−Ku1

)]
,

σ2
1 = 4ΩsΩu1

(1 +Ks)(1 +Ku1
)

− π2ΩsΩu1

4

[
1F1

(
−1

2
; 1;−Ks

)
1F1

(
−1

2
; 1;−Ku1

)]2
.

where 1F1(.) is the Confluent Hypergeometric function [20].
Proof: See Appendix A.

Note that, for γth1 ≥ δ1
δ2+λ2

su1

, the Pu1 in (12) becomes unity
and the user U1 is said to suffer from a ceiling effect.

2) OP for User U2: For a target rate Rth2 , the OP for U2

can be evaluated as

Pu2
= Pr{γu2,x1

< γth2 or γu2,x2
< γth2}

= 1− Pr
{
γu2,x1 > γth2 , γu2,x2 > γth2

}
, (14)

where γth2 = 2Rth2 . We proficiently solve (29) to present the
result in the following lemma.

Lemma 2: The OP Pu2 for the proposed UAV-IRS relaying
NOMA system is given by

Pu2
= 1− e

− w22
2Ωsu2

[
1− e−

w21−w22
w12ζΩ2

]
− 1

ζΩ2

( w22

Ωsu2

+
1

ζΩ2

)−1

× e
− w22

2Ωsu2 e
−
(

w22
Ωsu2

+ 1
ζΩ2

)(
w21−w22

w12

)
, (15)

for γth2 < δ1
δ2+λ2

su2

, where w21 =
γth2

δ1a2ρs−(δ2+λ2
su2

)a2ρsγth2
,

w12 =
δ1γth2

δ2−λ2
su2

γth2
, and w22 =

γth2
δ2a2ρs−λ2

su2
a2ρsγth2

.
Proof: See Appendix B.

Forγth2>
δ1

δ2+λ2
su2

,Pu2
attains unity, implying the ceiling effect.

B. Asymptotic OP Evaluation

To extract more insights, we examine the asymptotic OP
behavior of each user at high SNR (ρs → ∞). For the case of
user U1, we apply the inequality (u+ v)2 ≥ u2 + v2 in (12)
and solve the convoluted probability term to obtain

Pu1 
 1

Γ(A+ 1)

(
1

A+ 1

)(
1

b1B

)A+1
A+1

2∑
m=0

(A+1
2

m

)
(−1)m

×
(
w11

ρs

)A+1
2 −m (

1

a21Ωsu1

)−m

Υ

(
m+ 1,

w11

ρsa21Ωsu1

)
,

(16)

where w11 =
γth1

δ1−(δ2+λ2
su1

)γth1
, A =

Nµ2
1

σ2
1

− 1, B =
σ2
1

µ1
, Γ(·)

and Υ(·, ·) denote the complete Gamma function and lower
incomplete Gamma function, respectively. Further, applying
the fact that Υ(α, x) 


x→0

xα

α and considering the first term in
the series in (16) as the dominant term at ρs → ∞, we obtain

Pu1

 1

Γ(A+1)

(
1

A+1

)(
1

b1B

)A+1
1

a21Ωsu1

(
w11

ρs

)A+3
2

. (17)

From (17), one can infer that the achievable diversity order
for user U1 is A+3

2 =
Nµ2

1

2σ2
1
+ 1. It depends on the number of

reflecting elements of IRS and the Rician fading parameters.
For the user U2, we apply the approximation e−x 


x→0
1− x in

(15) to get the asymptotic behavior of Pu2
at high SNR as

Pu2 
1−
(w21−w22

w12ζΩ2

)(
1+

w21

Ωsu2

)
− 1

ζΩ2

( w12

Ωsu2

+
1

ζΩ2

)−1

×
(
1− w22

Ωsu2

)[
1−

( w12

Ωsu2

+
1

ζΩ2

)(w21−w22

w12

)]
. (18)

It can be inferred from (18) that U2 attains no diversity gain.

C. System Throughput

The system throughput infers the average spectral efficiency
for the proposed UAV-IRS relaying NOMA system. It can
be quantified as the sum of individual target rates for both
users U1 and U2 that can be achieved successfully over the
considered fading channels. From the derived OP expressions,
system throughput can be formulated as

ST = (1− Pu1)Rth1 + (1− Pu2)Rth2 . (19)

Letting Rth1 = Rth2 = R in (19), we get 2R as the maximum
achievable system throughput which could be attained under
ideal system conditions, when each user’s OP goes to zero.

IV. DEEP NEURAL NETWORK DESIGN

To overcome the difficulty and time consumption of math-
ematical analysis and Monte Carlo simulations, this section
offers the DNN framework for estimating the OP with little
computational complexity and quick run time.

A. Method for Generating Datasets

The OP functions in (12) and (14) are used to build the
dataset for this study since they are connected to the system
parameters like SNR (ρs ∈ [0, 60]), target rate (Rth1 = Rth2 ∈
[0.1, 1]), HIs level (λts = λru1 = λru2 = λ0 ∈ [0, 0.4]),
power factor (δ1 ∈ [0.51, 0.99]), level of residual interference
(ζ ∈ [0, 0.5]), and reflecting elements (N ∈ [1, 20]). Based on
the network size, each system parameter is created uniformly
and used as an input variable for a training sample. The gen-
erated dataset D contains 10× 105 samples in total, of which
80% are used for training (Dtrn) and the remaining 20% are
equally divided between validation (Dval) and testing (Dtes).
We have realized that in the majority of cases, this number of
samples is sufficient to obtain quite accurate estimates.

B. Learning Model for DNN

A typical DNN is a feed-forward neural network with one
input layer, numerous hidden layers, and one output layer. The
six neurons in the input layer correspond to the six parameters
provided in Section IV-A. For each input parameter m at each
hidden layer, a threshold operation is carried out using an
exponential linear unit (eLU) activation function. Any value
below zero is scaled up to zero. Here is an illustration of how
eLU functions:

eLU(m) =

{
� (em − 1), if m < 0,
m, if m ≥ 0,

(20)



where � is a constant with the value 1. The eLU activation
function has a number of advantages over the other activation
functions because it has a near-linear form. The output layer
just has one neuron because the regression problem predicts
numerical values directly, without any later modification or
activation function. We consider a layer that is completely
connected, where the activation Fp

q of the q-th neuron in the
p-th layer is coupled to activation in the (p− 1)-th layer as

Fp
q = eLU

( Up−1∑
i=1

Wp
q,i F

p−1
i + Cp

q

)
, (21)

where Up−1 is the (p− 1)-th layer’s total number of neurons.
The weight that links to the (i)-th neuron is denoted by Wp

q,i

in the (p − 1)-th layer, while a scalar bias is denoted by Cp
q

in the (p)-th layer.

C. OP Real-Time Prediction

The DL architecture includes two stages: training and pre-
diction. The adaptive moment estimation (Adam) optimization
strategy, which tries to optimise set of parameters based
on the dataset, is used to train the neural network offline
while learning input-output correlations. Adam is used to
compute/update the DNN model’s weights and biases during
the backpropagation process. Let Md and M̄d reflect the
actual and expected output values for the (d)-th testing datasets
of the DNN model. The following loss function can be used
to compute the mean-square error (MSE) between estimated
and predicted values:

Loss
(
Md,M̄d

)
=

1

Dtes

Dtes∑
d=1

(
Md − M̄d

)2
. (22)

The following formula is used to calculate RMSE:

RMSE =

√√√√ 1

Dtes

Dtes∑
d=1

(
Md − M̄d

)2
, (23)

where Dtes stands for the overall sample size in the test-set.

D. Complexity Analysis of DNN model

The suggested DNN model’s computational complexity is
measured in terms of floating-point operations (FLOPs) per
second, which depends on the amount of weights and bias
in the network. As a result, the estimated DNN model has
roughly 91k (91, 801) parameters and 182k (182, 851) FLOPs.

In the next section, we exemplify the execution times for
OP prediction through the DNN evaluation in contrast to the
mathematical analysis and Monte Carlo simulation.

V. NUMERICAL AND SIMULATION RESULTS

In order to verify our theoretical aspects, we conduct
numerical analysis for the proposed UAV-IRS relaying NOMA
system in this part as well as exploit Monte-Carlo simulations
in MATLAB version R2022a. Unless otherwise provided, we
set numerous system parameters as ru = 0.3 km, ϕu = π,
Hu = 0.1 km, vs = (−1, 0, 0) km, vu1 = (1, 0, 0) km,
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Fig. 2: OP performance of user U1.
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Fig. 3: OP performance of user U2.

vu2 = (0,−1, 0) km, Ωs = Ωu1 = 0.5, Ωsu1 = Ωsu2 = 1,
Ω2 = 0.1, and Ks = Ku1

= 1. In addition, we take
εs = εu1

= 20, ξs = ξu1
= 0.5, κs = κu1

= −1.5,
νs = νu1

= 3.5, and αsu1
= αsu2

= 2.5 just like in
[19] to validate the results that were produced. We also set
λts = λru1 = λru2 = λ0 as the level of HIs such that
λsu1 = λsu2 =

√
2λ0, and β = 1 for the lossless reflection.

Python 3.7.13, in conjunction with Keras 2.8.0 and Ten-
sorFlow 2.8.0, are used to build a DNN model with four
hidden layers and 150 hidden neurons per layer. The weights
of the DNN are randomly initialized using the Adam optimizer
and a gradient decay value of 0.95 during the duration of 70
epochs of training. It starts out with a learning rate of 10−3

(after 20 epochs fall 90%). A computer equipped with i7-7700
processor, GPU of 8 GB GeForce GTX 1080, and 16 GB of
RAM was used for all of the testing.

Fig. 2 depicts the OP versus SNR curves for user U1 using
two different values of target rates i.e., Rth1 = 0.5 bps/Hz and
Rth1 = 1 bps/Hz under both perfect (ideal) hardware (λ0 = 0)
and the imperfect hardware (λ0 = 0.3). We select appropriate
δ1 and δ2 values, complying with the condition as stated in
Section III. In order to make comparisons, the OP curves are
also provided for the UAV-IRS OMA-based relaying scheme.
We can see that the analytical and simulated curves are tightly
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Fig. 4: Impact of N and ζ on users U1 and U2.

wedged over the operating SNR region. In the high SNR
region, the asymptotic curves are also well aligned with the
theoretical and simulated curves. Additionally, we can observe
that for the fixed target rate, the UAV-IRS NOMA system
outperforms the UAV-IRS OMA system. This is because the
UAV-IRS OMA system needs two-time slots to complete
its operation, and thereby the corresponding SINR threshold
becomes higher than that for the NOMA counterpart (with
the same target rate). We can also see that as the target rate
increases, the U1’s performance suffers with the imposition of
the HIs. Although the presence of HIs (λ0 = 0.3) impairs the
U1’s performance, its effects are more apparent at a higher
target rate. It is important to observe that the HIs have a
larger impact on the UAV-IRS NOMA system, which is more
noticeable at the higher target rate. It is worthwhile to mention
that the DNN prediction results are aligned with the simulation
as well as the analytical formulation given in (13).

The OP performance of user U2 is shown in Fig. 3 for
the imperfect SIC case. Here, we vary the target rate as
Rth2 = 0.5, 1 bps/Hz and the level of HIs as λ0 = 0, 0.3. To
start, it is possible to confirm that the simulated and analytical
curves are perfectly aligned throughout the whole SNR region.
In the high SNR region, the asymptotic curves are also well
aligned with the theoretical and simulated curves. We can
see from the plot that the UAV-IRS NOMA system performs
better than the UAV-IRS OMA system for the fixed target rate.
Additionally, the performance loss caused by HIs for UAV-IRS
OMA system is less noticeable than that for UAV-IRS NOMA
system. The results of the DNN predictions are accurately
comparable to those of the analytical and simulation results,
proving the superior prediction ability of the DNN.

We depict Fig. 4 by altering the values of N and ζ in order
to thoroughly analyse the respective effects of the number of
reflecting elements and imperfect SIC on the OP performance
of users U1 and U2, respectively. As the values of the number
of reflecting elements increase (N = 1, 5, and 10), the OP
performance of U1 becomes better. Also, as the level of
imperfect SIC declines (ζ = 0.99, 0.5, and 0.001), it is evident
that the OP performance of U2 considerably improves.
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Fig. 5: System throughput versus SNR plots.

In order to get insight into the average spectral efficiency
of the UAV-IRS relaying NOMA system, Fig. 5 highlights
the system throughput curves based on the deduced analyt-
ical expression in Section III-C. Here, we plot the system
throughput versus SNR for two different values of the target
rate (Rth1 = Rth2 = 0.5, 1 bps/Hz). The relevant graphs
show that, in the low SNR region, system throughput declines
as the target rate rises. For the set target rate, however, the
system throughput grows up to a specific SNR value before
becoming saturated. For the specified target rate, this saturated
level is referred to as the maximum throughput that can be
achieved. For a higher value of the target rate, this throughput
saturation occurs at a relatively high SNR. This is because
outage performance at higher target rates is generally worse
than outage performance at lower target rates. Additionally,
one can observe that system throughput falls as the level of
HIs arises from λ0 = 0 to λ0 = 0.3.

Above all, the DNN evaluation, mathematical analysis, and
Monte Carlo simulation for the proposed system are contrasted
in terms of execution times. The outcomes show that the DNN
prediction method requires just 0.0197 seconds to obtain OP
values. The mathematical evaluation takes 0.0406 seconds,
whereas the Monte Carlo simulation needs 6.0927 seconds
to obtain the OP values. The RMSE is determined as 0.0072
using the mathematical analysis and DNN prediction results.

VI. CONCLUSION

We have conducted outage performance evaluation and
DNN analysis for a UAV-borne IRS relaying NOMA system
under the impacts of transceiver HIs and imperfect SIC. The
pertinent channel characteristics of the UAV/IRS-to-ground
links with LoS Rician fading are explored to describe the
system performance. The closed-form expressions for OP of
NOMA users and system throughput are derived for perfor-
mance evaluation. To acquire more understanding, asymptotic
approximations in the high SNR regime are presented to
determine the diversity order for each user. It is shown
that the Rician fading parameters and the number of IRS
reflecting elements have an impact on the diversity order.
Numerical results illustrated that the UAV-IRS NOMA system



can perform better than its competitive OMA counterparts
while accommodating non-ideal system imperfections like
transceiver HIs and imperfect SIC. The DNN framework is
created to counter the analytical complexity of OP evaluation
and to predict the OP accurately with a short execution time.

APPENDIX A
Letting X1 = |hu1 | and Y1 =

∑N
n=1 |gu1,n| |gs,n|, we can

define Z = a1X1 + b1Y1, and hence express Pu1
in (24) as

Pu1
= Pr{Z2 < w} = Pr{Z <

√
w} = FZ(

√
w). (24)

Hereby, as X1 follows Rayleigh distribution with parameter
Ωsu1

, the probability density function (PDF) and cumulative
distribution function (CDF) of X1 are given, respectively, by

fX1
(x) =

x

Ωsu1

e
− x2

2Ωsu1 (25)

and FX1
(x) = 1− e

− x2

2Ωsu1 . (26)

Whereas, according to central limit theorem (CLT), Y1 can
be approximated as a Gaussian random variable i.e., Y1 ∼
N (Nµ1, Nσ2

1), and hence, the PDF of Y1 is given by

fY1
(y) =

1√
2πNσ2

1

e
− (y−Nµ1)2

2Nσ2
1 , (27)

where µ1 = E{|gu1,n| |gs,n|} and σ2
1 = var{|gu1,n| |gs,n|} are

deduced after (13). Now, we can evaluate the CDF of Z as

FZ(z) = Pr{Z < z} = Pr{a1X1 + b1Y1 < z}

=

∫ z
b1

−∞
FX1

(
z

a1
− b1

a1
y

)
fY1

(y)dy. (28)

On using (26) and (27) in (28) and solving the integral, we
obtain the result which is applied in (24) to get (13).

APPENDIX B
On using (10) and (11), and doing some manipulations, we

can further evaluate (14) as

Pu2 = 1− Pr
{
|hu2 |2 > w21, |hu2 |2 > w12|�2|2 + w22

}

= 1− Pr
{
|hu2 |2 > max{w21, w12|�2|2 + w22}

}
︸ ︷︷ ︸

Pu2

, (29)

We can split the probability term Pu2 into two parts to express
Pu2

= P21 + P22, where P21 and P22 are evaluated as

P21 = Pr
{
|hu2

|2 > w21, w21 > w12|�2|2 + w22

}

=

∫ w21−w22
w12

0

∫ ∞

w21

f|hu2 |2(x)f|�2|2(y) (30)

P22 = Pr
{
|hu2

|2 > w12|�2|2 + w22, w21 < w12|�2|2 + w22

}

=

∫ ∞

w21−w22
w12

∫ ∞

w12y+w22

f|hu2 |2(x)f|�2|2(y). (31)

Under Rayleigh fading, |hu2
|2 and |�2|2 follow exponential

distributions with parameters Ωsu2
and ζΩ2, respectively.

Thus, on inserting their PDFs into (30) and (31), solving the
involved integrals, and inserting the obtained results for Pu2

in (29), we reach at the OP expression as presented in (15).
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