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Abstract—The sixth-generation mobile communication system
proposes the vision of smart interconnection of everything, which
requires accomplishing communication tasks while ensuring the
performance of intelligent tasks. A joint source-channel coding
method based on semantic importance is proposed, which aims
at preserving semantic information during wireless image trans-
mission and thereby boosting the performance of intelligent tasks
for images at the receiver. Specifically, we first propose semantic
importance weight calculation method, which is based on the
gradient of intelligent task’s perception results with respect to
the features. Then, we design the semantic loss function in the
way of using semantic weights to weight the features. Finally,
we train the deep joint source-channel coding network using the
semantic loss function. Experiment results demonstrate that the
proposed method achieves up to 57.7% and 9.1% improvement
in terms of intelligent task’s performance compared with the
source-channel separation coding method and the deep source-
channel joint coding method without considering semantics at
the same compression rate and signal-to-noise ratio, respectively.

Index Terms—joint source-channel coding, semantic impor-
tance, semantic preservation, semantic loss function, intelligent
task perception results

I. INTRODUCTION

Modern communication systems employ the separate

source-channel coding method (SSCC) for the transmission of

image data. SSCC first use the source coding algorithm (such

as JPEG, WebP, BPG) to compress the image, and then use the

source-independent channel coding method (such as LDPC,

Polar, Turbo, etc.) to encode the bit stream, which is completed

under the guidance of Shannon’s separation theorem [1]. This

theorem shows that when transmitting infinite bits, it is optimal

to split the communication task into (i) removing the redundant

information of the source as much as possible and (ii) re-

introducing redundant information for message reconstruction

in the presence of channel noise. However, in practice, a finite

number of bits is transmitted, which can not satisfy infinite

bits’ assumption of Shannon’s separation theorem. In fact, the

signal quality at the receiver is affected by the joint influence

of source coding distortion and channel coding error [2], so

it is necessary to jointly consider source coding and channel

coding. In addition, the rapid development of deep learning
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Fig. 1: The relationship among pixel-level, feature-level and

semantic-level information.

technology enables the joint consideration of source coding

and channel coding. Deep learning-based joint source-channel

coding (deep JSCC) refers to use deep neural networks to

implement source encoding and channel encoding by end-to-

end (E2E) semantic communication framework. Deep JSCC

uses the powerful learning ability of the neural network to

learn how to remove the redundancy of source information

and how to resist the channel noise [2].

At the same time, 6G (sixth generation) puts forward the

vision of smart interconnection of everything. On the one hand,

efficient coding methods are required. On the other hand, the

deep integration of communication and artificial intelligence

(AI) is required, and research on semantic communication for

intelligent tasks [3] has become a trend. Therefore, deep JSCC

considering intelligent tasks has gained extensive attention.

Deep JSCC methods for image data can be divided into two

categories: One is task-oriented without reconstructing the

image. The encoder only encodes the semantic information

related to the intelligent task, and the decoder directly per-

forms the intelligent task [4]–[7]. This type of work jointly

considers communication and intelligence tasks, and explores

semantic information extraction for different intelligence tasks.

Specifically, Gunduz et al. [4] extracted semantic information

for image retrieval tasks. Liu et al. [5] extracted semantic in-

formation for classification tasks using feature clipping. Wang

et al. [6] extracted semantic information for various tasks,

considering both detection and segmentation tasks. However,

this type of work can not apply to the applications that

require image reconstruction. The other is that the receiver

completes the image reconstruction. The encoder extracts the

http://arxiv.org/abs/2302.02287v1


global semantic information, and the decoder reconstructs the

image according to the received semantic information [8]–

[11]. Specifically, Gunduz et al. [8] designed deep JSCC for

image reconstruction, which can surpass SSCC methods in

terms of image clarity. Kurka et al. [9] designed the deep

JSCC with channel signal feedback. Yang et al. [10] designed

a rate-adaptive deep JSCC. Xu et al. [11] designed the deep

JSCC based on attention, which can flexibly adapt to different

SNR (signal-to-noise ratio) conditions. However, all of the

above deep JSCC methods for image reconstruction aim at

optimizing the visual quality of the image at the receiver.

They only focus on the accurate transmission of pixel-level

information, while ignoring the semantic information required

by downstream AI tasks.

The semantic information of the image refers to final

perception results understood by the downstream AI task,

which directly affects the performance of the downstream

AI task. Fig 1 shows the relationship among pixel-level,

feature-level, and semantic-level information. As shown in

Fig 1, feature-level information is the intermediate data of

the downstream AI task, while semantic-level information is

the object’s category and their locations (e.g. dog, bicycle,

car). Semantic-level information is further extracted from

pixel-level information and feature-level information, and clear

pixel-level information is likely to extract correct semantic-

level information. However, existing researches show that the

relationship among them is not strictly linear, and that means

keeping the accurate transmission of pixel-level information

does not guarantee the correct understanding of downstream

AI tasks [12]. It is worth mentioning that in the field of

image compression, some studies have considered content

information [13], downstream AI task’s performance [14] and

feature-level information [15]. However, on the one hand,

these studies only consider the source coding, and in the

actual communication process, channel conditions and channel

coding need to be considered. On the other hand, these studies

do not directly utilize semantic-level information, and can not

guarantee consistency of the semantic-level information during

transmission. In summary, neither the existing deep JSCC

method for image reconstruction nor the image compression

method considers communication tasks and the semantic-level

information of downstream AI tasks jointly.

To solve the above problems, a semantic importance based

deep joint source-channel coding (SD-JSCC) method is pro-

posed for wireless image transmission. By designing the

semantic loss function, the image at the receiver can retain

the semantic information needed by the downstream AI task,

so as to be understood correctly. For downstream AI tasks,

image’s feature-level information provides different degrees of

contribution to its semantic-level information. Based on this,

the main contributions are as follows:

• We design the gradient-based [16] semantic importance

weight module to calculate semantic weights. This mod-

ule takes the perception results of the downstream AI

task as input and uses its gradient with respect to feature

maps to represent the contribution of feature maps to the

Fig. 2: JSCC system model diagram considering AI tasks. Top:

deep JSCC method. Bottom: SD-JSCC method.

perception results.

• We design the semantic loss function calculation module

to calculate the difference of semantic-level information

between images at the transmitter and the receiver. We

use the difference of weighted features by semantic

weights as semantic-level loss function.

• We use the semantic loss function to train the deep

joint source-channel codec network in an end-to-end

manner, and obtain significant improvement on tasks’

performance.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System Model

Fig 2 shows an end-to-end communication system for wire-

less image transmission considering the downstream AI task.

An input image x ∈ Rn of dimension n is to be transmitted,

where R denotes the set of real numbers, and the transmitter

maps the input image x into a complex-valued symbolic vector

e after the JSCC encoder E, which can be expressed as:

e = E (x, θ1) ∈ C
s, (1)

where s denotes the dimension of e, C denotes the set of

complex numbers, and θ1 denotes the parameters of the JSCC

encoder E. The symbol vector e after encoding is transmitted

over a noisy AWGN channel, which can be expressed as:

e′ = e + N ∈ Cs, (2)

where N ∈ Cs denotes the noise of the channel. The noise is

obtained by sampling from CN
(

0, σ2I
)

, where σ2 denotes the

noise power, and CN(·, ·) is a complex Gaussian distribution.

The receiver map e′ to the reconstructed image x′ through the

JSCC decoder D, which can be expressed as:

x′ = D(e′, θ2) = D (E (x, θ1) + N, θ2) , (3)

where the reconstructed image x′ ∈ Rn is an estimate of the

original image x and θ2 is the parameter of the JSCC decoder

D. Then, the reconstructed image x′ is passed through the

downstream AI task T, and perception results are obtained,

which can be expressed as:

y = T(x′) , (4)



where y =
[

y1, y2, . . . , yC
]

, yc(c ∈ {1, . . . , C}) denotes the

c-th perception result and C is the total number of perception

results.

B. Problem Description

The existing deep JSCC methods [8]–[11] use the pixel-

level difference between x′ and x as the loss function to

train the joint source-channel codec network, which can be

expressed as:

Ldeep JSCC = d (x, x′) = ‖x− x′‖
2
. (5)

Ldeep JSCC enables x′ to obtain a clear visual quality that is

close to the original image x. This approach only maintains

the pixel-level consistency during image transmission, without

considering the perception results of the downstream AI task.

In addition, there are some deep learning-based source

coding methods [14] that use feature-level differences to train

source coding networks, which can be expressed as:

Lsource = d(F(x),F(x̃)) = ‖F(x)− F(x̃)‖2, (6)

where F(·) denotes the feature-level information, and x̃ de-

notes the reconstructed image obtained only by source coding

and decoding. On the one hand, this is a source coding

approach, which does not consider channel coding and the

actual communication process. The network can not learn the

features of the channel and can not learn how to resist the

channel noise. On the other hand, Lsource only aims at the con-

sistency of feature-level information. However, feature-level

information has different semantic importance for downstream

AI tasks.

Therefore, in order to jointly consider the performance of

communication tasks and downstream AI tasks, it is necessary

to consider the semantic-level information and perception

results of the image at the receiver. Studying JSCC that

preserves the semantic information of downstream AI tasks

during image transmission is meaningful.

III. SD-JSCC METHOD

As shown in Fig 2, in order to preserve the semantic-

level information for the downstream AI task, the SD-JSCC

method uses the perception results of the downstream AI

task to calculate the semantic loss function and guide the

joint source-channel codec module. As shown in Fig 3, SD-

JSCC’s architecture consists of two major modules, namely,

the semantic loss function calculation module and the joint

source-channel codec module. First, we propose the semantic

loss function calculation module, which can characterize the

semantic-level distortion between x′ and x. Then, the semantic

loss function is used to train the joint source-channel codec

module.

The semantic loss function calculation module is the core

of the SD-JSCC method. The feature-level information of

the AI task provides different degree of contribution to its

semantic-level information. Therefore, the semantic loss func-

tion is constructed using semantic weights to weight feature-

level information, so that can preserve the semantic-level

information of the downstream AI task. Semantic weights

are obtained through the gradient-based semantic importance

weight (GSW) module, which draws on ideas related to the

field of neural network interpretability [16]. It is acknowledged

that using gradient to measure the semantic importance for

explaining the neural network learning process.

Specifically, first, we use the GSW module to calculate the

semantic weights W′. Then, we calculate the semantic loss

function using W′ to weight the feature-level information.

Finally, we use the semantic loss function Ldeep JSCC to train

the joint source-channel codec module.

A. GSW Module

This section designs the GSW module for semantic weights

W′ calculation and gives the formula representation of W′.

As shown in Fig 3, the GSW module is designed to

calculate the semantic weights to quantify the importance of

the feature map to downstream AI task’s semantic information.

The GSW module calculate the gradient of perception results

with respect to the feature map, which can naturally represent

the contribution of the feature map to the semantic information

understood by the downstream AI task.

First, the network of downstream AI tasks is pre-trained

to extract feature-level information and provide input for the

semantic weights calculation, which can be expressed as:

F (θ0, x) = {f
1
, f

2
, . . . , f

K
} ∈ RK×M×N, (7)

where f k(k ∈ {1, 2, . . . ,K}) denotes the k-th feature map, θ0
denotes the fixed parameters of the feature extraction network,

and M, N, K denote the width, height and number of feature

maps, respectively.

Next, the gradient of the perceptual results with respect to

the feature-level information is used to quantify the semantic

importance. The gradient of the c-th perception result yc to the

k-th feature map f k can be denoted as
∂yc

∂fk
. The average value

over the width M and height N dimensions can be expressed

as:

wc
k =

1

M× N

M
∑

m=1

N
∑

n=1

∂yc

∂f k

, (8)

where f k ∈ R
M×N. To represent the comprehensive influence

of feature map f k on all perception results y, the average value

of wc
k over all perception results is calculated, which can be

expressed as:

wk =
1

C

C
∑

c=1

wc
k. (9)

Then, the semantic weight vector W = {w1,w2, . . . ,wK} ∈
RK is obtained, and wk(k ∈ {1, 2, . . . ,K}) represents the

semantic importance of the k-th feature map f k.

However, the value of W is too small to be directly used

in loss function, since it may cause the slow convergence.

Therefore, we utilize the parameters τ and r, and map W to

W′ by:

W′ = r× SoftMax(τ ×W), (10)
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Fig. 3: SD-JSCC network architecture diagram

where τ is a temperature hyper-parameter and r is a constant.

The semantic weights W′ are appropriate for semantic-level

loss function. The temperature hyper-parameter τ can control

the distribution of the semantic weights W′. The constant r

can make the final semantic-level loss value at a reasonable

magnitude, which will not affect gradient updates.

Note that since the design of the GSW module, the semantic

weights are specific to the downstream AI task, and therefore

SD-JSCC is also task-specific.

B. Semantic Loss Function

We introduce this section to formulate semantic-level loss

function LSD-JSCC for wireless image transmission.

The feature-level information of the downstream AI task at

the transmitter and receiver are extracted respectively by:

F (θ0, xb) =
{

f b
1
, f b

2
, . . . , f b

K

}

, (11)

F (θ0, x′b) =
{

f
b′

1
, f

b′

2
, . . . , f

b′

K

}

, (12)

where xb is the b-th image at the transmitter, and x′

b is the b-th

image at the receiver. f b
k is the k-th feature map of image xb ,

and f
b′

k is the k-th feature map of image x′b, k ∈ {1, 2, . . . ,K}.
Then, the semantic loss function is calculated using the

semantic weights W′ = {w′

1,w′

2, . . . ,w′

K} ∈ R
K derived from

the GSW module to weight feature-level information, which

can be expressed as:

LSD-JSCC (θ1, θ2) =
1

B

B
∑

b=1

K
∑

k=1

w′

k ×
∥

∥

∥
f b′

k − f b
k

∥

∥

∥

2

, (13)

where B (batch size) is the number of images per iteration.

C. Training Joint Source-Channel Codec Module

The architecture of the joint source-channel codec network

is shown in Fig 3. The encoder consists of convolution layers

and residual blocks, and the decoder consists of upsampling

layers, convolution layers and residual blocks. First, the image

is encoded by the joint source-channel encoder. Then the

noise in the wireless channel is simulated. Finally, we use

the joint source-channel decoder to decode and recover the

image. For convenience, e = E (θ1, x), q = Q(E (θ1, x)),
d = D(Q (E (θ1, x)) + N, θ2) are used to denote the output

of the encoder, quantizer, and the decoder, respectively. E(·)
is the joint source-channel encoder network for encoding

the image into a hidden layer representation with parameters

θ1. Q(·) is the quantizer. D(·) is the joint source-channel

decoder network from recovering the image from the hidden

layer representation with parameters θ2. Note the quantizer is

designed to reduce the transmitter’s cost [17], and can map

each element ei,j of the encoder output e to 0 or 1, which can

be expressed as:

Q(ei,j) =

{

1, ei,j > 0.5
0, ei,j ≤ 0.5

(14)

This end-to-end process is trained using the semantic loss

function so that the semantic information beneficial to the

downstream AI task is retained.

We summarize the steps of SD-JSCC as Algorithm 1. In step

1, we pre-train the downstream AI task’s network. In step 2,

we obtain the semantic weights. In step 3-9, we compute the

semantic loss function LSD-JSCC. In step 10, we use LSD-JSCC

to train the joint source-channel codec network.

IV. EXPERIMENT

A. Evaluation Metrics and Comparison Methods

This section evaluates the distortion of semantic informa-

tion, the distortion of pixel information, and compression

degree, respectively. We use the downstream AI task’s per-

formance at the receiver to evaluate the distortion of semantic

information. For classification tasks, we use accuracy (ACC)

and F1-score. For object detection tasks, we use mean Average

Precision (mAP). To evaluate the distortion of pixel informa-

tion, we use the peak signal-to-noise ratio (PSNR) and the

structural similarity index measure (SSIM). To evaluate the



Algorithm 1 SD-JSCC method

Input: An image dataset
{

x
1, ...,xn

}

with n images.

Parameter: Encoder parameter θ1, decoder parameter θ2.

Output: Parameters θ1 and θ2, images x′ at receiver, hidden

feature maps q.

1: Pre-train the downstream AI task’s network with parame-

ter θ0, and fixed θ0 in the following operation.

2: Obtain the semantic weights W′ using GSW.

3: Initialize encoder and decoder’s parameter θ1, θ2.

4: while not converged do

5: Image Encoding: e← E(θ1, x).
6: Quantization: q← Q(e).
7: Noise channel and image decoding: x′ = d ←

D(θ2, q + N).
8: Calculate feature maps according to equation (11), (12).

9: Calculate the semantic loss function LSD-JSCC.

10: Update θ1 and θ2 according to LSD-JSCC.

11: end while

12: return The optimal model.

degree of compression, we use the compression rate (bit per

pixel, bpp). The traditional SSCC scheme and the existing

mainstream JSCC scheme are compared respectively. For the

SSCC scheme, JPEG, WebP and BPG are used as the source

coding method. LDPC is used as the channel encoding mode,

and LDPC codes is (1458, 1944), corresponding to rate 3/4.

16-QAM is used as the modulation method. For the JSCC

scheme, the deep JSCC method proposed by Gunduz et al [8]

is used for comparison. For fair comparison, SD-JSCC uses the

same experimental conditions with deep JSCC except for the

loss function, including the encoder-decoder network structure

and quantization method.

B. Implementation Details

For classification tasks, we adpot STL and a split of Ima-

geNet as datasets. For object detection task, we adpot Pascal

VOC dataset. For channel, We consider AWGN. In order to

reduce training costs and promote extensibility, the SD-JSCC

model is trained using a two-stage approach. In the first stage,

the deep JSCC model is pre-trained with 3-4×105 steps using

a batch size of 32 and a learning rate of 1×10−5. In the second

stage, parameters obtained in the first stage are loaded, then

we finetune the network using the SD-JSCC method with 2-

3×104 steps, where the batch size is 32 and the learning rate

is 1×10−5.

The original image in the subsequent experiment results

refers to the original image in the dataset. The compression

rate of the original image is 15.38bpp and 4.61bpp on STL and

ImageNet, respectively. For SSCC methods (e.g. JPEG, WebP,

BPG), the compression rate can not be assigned directly and

an approximate bpp value is obtained. For the JSCC method,

the exact compression rate can be assigned by changing the

dimension of the encoder’s output e.

Fig. 4: Performance comparison of downstream AI tasks using

different methods on STL at 0.25bpp.

C. Performance Evaluation and Analysis

1) SD-JSCC Overall Performance Assessment: Fig 4 gives

the variation curve of ACC with SNR of different methods,

which is done on STL at 0.25bpp. SNR train=5dB indicates

the SNR at training is 5dB, and SNR test indicates the SNR

value at testing. As shown in Fig 4, SD-JSCC can achieve

significant performance improvement under low SNR. For

example, ACC is improved by 9.1% and 57.7% compared

with the deep JSCC method and the SSCC method at 5dB,

respectively. This is due to the semantic loss function designed

by the SD-JSCC method, which can retain semantic informa-

tion that is beneficial to downstream AI tasks, and deservedly

can obtain competitive ACC values. The SSCC method per-

forms well under high SNR, but when the SNR falls below

a threshold, ACC decreases sharply, which is called ”cliff

effect” [8]. JPEG method’s ACC has been kept at the lowest

level since the image restoration quality of JPEG method

is particularly poor at 0.25bpp. JPEG method can recover

the image only when the compression rate is above 0.75bpp

on STL. WebP and BPG can not assign compression rate

directly, and the estimation value is 0.27bpp and 0.269bpp in

practice, respectively. Table 1 compares the task performance

(ACC, F1-score) and pixel-level metrics (PSNR, SSIM) of the

different methods. This experiment is completed on ImageNet

at 0.125bpp under good channel conditions. As shown in table

1, ACC and F1-score are more competitive using SD-JSCC.

For example, ACC achieves 10.94% and 2.59% improvement

compared to deep JSCC method and the best SSCC method

(BPG), respectively. The SD-JSCC approach is designed with

a semantic loss function that enables the network focus on

semantic consistency during transmission directly, rather than

pixel-level consistency. Therefore, SD-JSCC can achieve better

task performance although pixel-level metrics are slightly poor.

Due to the cliff effect under low SNR, the PSNR and SSIM of

SD-JSCC method will exceeding these SSCC method. At the

same time, ACC and F1-score are close to each other, which

is due to the balanced distribution of categories on dataset.

Therefore, it is sufficient to refer to one of them to evaluate

the performance of classification task, and subsequently only

use ACC for evaluation.

Fig 5 compares the image at the receiver of different

methods. As shown in Fig 5, there are subtle differences



TABLE I: Comparison of multiple evaluation metrics using

different methods on ImageNet at 0.125bpp.

Method ACC F1-score PSNR SSIM

original 89.42% 0.8937 - 1

JPEG 39.78% 0.3954 22.00 0.5299

WebP 74.50% 0.7448 27.83 0.6885

BPG 79.57% 0.7953 29.39 0.7318

deep JSCC 71.22% 0.7125 28.89 0.8403

SD-JSCC 82.16%82.16%82.16% 0.8214 27.02 0.7641

on images, but totally different perception results. Pixel-level

consistency cannot guarantee the consistency of downstream

AI task’s perception results, and some tiny distortions at the

pixel level may cause false perception results.

2) SD-JSCC Ablation Experiment: The core of the SD-

JSCC method is the semantic loss function calculation mod-

ule, and the GSW module is a part of the semantic loss

function calculation module. In order to further explore the

contribution of the GSW module to the SD-JSCC method,

we design an ablation experiment. We evaluate ACC for

wireless image transmission when the GSW module fails,

subsequently expressed as SD-JSCC w/o GSW. Fig 6 gives

the variation curve of ACC with compression rate on STL

dataset with SNR train=SNR test=20dB. As shown in Fig 6,

compared with SD-JSCC w/o GSW method, SD-JSCC method

has higher ACC value under the same compression ratio.

Conversely, under the same ACC, that is, the same semantic

distortion, the SD-JSCC method can compress more. This is

because the semantic weights of all feature maps in the SD-

JSCC w/o GSW method are equal to 1, and the semantic

weights obtained by GSW module can correctly represent the

importance degree of feature maps. The ablation experiments

show that the overall performance advantage of the SD-JSCC

method consists of two parts in the semantic loss function

calculation module, one part is the GSW module, and the other

part is the feature extraction network.

To assess the influence of the temperature hyper-parameter

τ , the variation curve of ACC with τ for the SD-JSCC

method is shown in Fig 7, which is done on ImageNet at

0.5bpp with good channel conditions. As shown in Fig 7,

with τ increases, the trend of ACC is first up, then down,

then up and down again. This is because the hyper-parameter

τ can control the dispersion degree of semantic weights

distribution, and extremely concentrated (τ =1 and τ =10000)

or decentralized ( τ =2000) semantic weights can degrade

the performance. Excessively concentrated semantic weights

make the importance degree of different feature maps almost

the same, so SD-JSCC degenerates to SD-JSCC w/o GSW.

Excessively decentralized semantic weights are equivalent to

deleting some feature maps, resulting in the missing of some

feature information. Only appropriate degree of dispersion can

obtain good performance improvement. The optimal value of

τ varies with model structure and dataset.

3) SD-JSCC Robustness Analysis: In order to explore the

robustness of SD-JSCC method to channel conditions, Fig

8 shows the variation curve of ACC with SNR, which is

TABLE II: Task performance comparison of object detection

SNR JPEG WebP BPG deep JSCC SD-JSCC

1 dB - - - 45.79% 51.11%

5 dB - - - 52.70% 53.70%

10 dB - 0.20% 0.48% 58.99% 62.53%

11 dB - 23.02% 41.62% 59.25% 62.89%

15 dB 35.44% 65.94% 73.47% 64.91% 66.42%

20 dB 35.44% 65.94% 73.50% 66.63% 68.34%

performed at 0.5bpp on STL dataset. Each curve represents

SD-JSCC method’s acc optimised under SNR train and de-

ployed under SNR test. It can be seen from Fig 8 that SD-

JSCC is robust to channel quality fluctuation. When SNR test

is worse than SNR train, the SD-JSCC method does not

suffer from cliff effect of the SSCC method, and shows a

gradual performance degradation as the channel conditions

deteriorate. Similarly, as SNR test increases above SNR train,

the quality of the image at the receiver gradually improves, and

when SNR test increases to a certain value, the performance

eventually saturates. This is because the neural network maps

similar image features to nearby points in the original image

feature space. Thus, under low SNR, the decoder can still

obtain a reconstruction of the original image, and there is no

cliff effect.

4) SD-JSCC Generalizability Analysis: To investigate the

generalisation performance of the SD-JSCC method on differ-

ent tasks, we chose object detection task as the downstream

AI task. Table 2 compares mAP of different methods under

different SNR, which on Pascal VOC0712 dataset at 0.25bpp

using RFBNet-300. As shown in Table 2, mAP of SD-JSCC

method still exceeds deep JSCC method and SSCC method

under low SNR. This is because the semantic information

learned by the SD-JSCC method on the classification task is

still effective for object detection task. BPG method outper-

forms SD-JSCC method at high SNR, since SSCC method

has more compression space and better performance for high

image resolutions. To further improve the performance of

object detection task, the semantic-level information of object

detection task can be used to train the joint source-channel

codec network in the future.

V. CONCLUSION

In order to improve the downstream AI task’s performance

of image at the receiver in the wireless image transmission

system, we propose SD-JSCC module, and give its network

structure and algorithm. SD-JSCC method extracts semantic

weights by GSW module and designs semantic loss function

using downstream AI task’s perception results. Therefore, the

image at the receiver retains the semantic information needed

by the downstream AI task, so as to be understood correctly.

The experimental results show that SD-JSCC method signifi-

cantly improves the performance of downstream AI tasks, and

can be used for a wide range of AI tasks. The drawback of

SD-JSCC is that it increases training overhead, which can be

mitigated by fine-tuning on the pre-trained model. However,

there is no additional testing overhead. In the future, we will

consider other downstream AI tasks, and simplify the network

to facilitate deployment.
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Fig. 5: Comparison of images and their perception results of classification task at the receiver. From left to right are original

image, reconstruction image using JPEG, WebP, BPG, deep-JSCC, SD-JSCC, respectively.

Fig. 6: Performance comparison of the downstream AI task

using different compression rate on STL.

Fig. 7: Performance of the downstream AI task under different

temperature hyper-parameters on ImageNet at 0.5bpp.
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