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Abstract—Security and energy efficiency have become crucial
features in the modern-era wireless communication. In this paper,
we consider an energy-efficient design for intelligent reflecting
surface (IRS)-assisted multiple-input multiple-output multiple-
eavesdropper (MIMOME) wiretap channels (WTC). Our objec-
tive is to jointly optimize the transmit covariance matrix and the
IRS phase-shifts to maximize the secrecy energy efficiency (SEE)
of the considered system subject to a secrecy rate constraint at the
legitimate receiver. To tackle this challenging non-convex problem
in which the design variables are coupled in the objective and
the constraint, we propose a penalty dual decomposition based
alternating gradient projection (PDDAPG) method to obtain an
efficient solution. We also show that the computational complexity
of the proposed algorithm grows only linearly with the number
of reflecting elements at the IRS, as well as with the number
of antennas at transmitter/receivers’ nodes. Our results confirm
that using an IRS is helpful to improve the SEE of MIMOME
WTC compared to its no-IRS counterpart only when the power
consumption at IRS is small. In particular, and a large-sized IRS
is not always beneficial for the SEE of a MIMOME WTC.

Index Terms—Intelligent reflecting surface, MIMOME, penalty
dual decomposition, secrecy energy efficiency, physical layer
security.

I. INTRODUCTION

As the fifth-generation (5G) wireless communication net-
works are being rolled out by different mobile service
providers worldwide, the research community has started
looking for the next breakthrough in beyond-5G (B5G) cellular
standard requiring new goals of B5G. The intelligent reflecting
surface (IRS) [1] is one such a technology that has the poten-
tial to cater to the demand of supporting an exponentially-
increasing number of devices within the extremely-congested
sub-6 GHz spectrum. It has been verified that IRSs can
significantly enhance the spectral and/or energy efficiency
of a wireless communication system [2], [3]. Meanwhile,
the unprecedentedly increased dependence of our day-to-day
life on wireless communication over the last decades has
raised serious concerns about the security- and privacy-related
issues of these services [4]. On this front, different from the
technologies that are implemented on the higher layers, the
IRSs have shown considerable potential to facilitate secure
communication from the physical-layer perspective [5], [6].

This publication has emanated from research conducted with the financial
support of Science Foundation Ireland (SFI) and is co-funded under the
European Regional Development Fund under Grant Number 17/CDA/4786.

Although achievable (secrecy) rate has been an important
figure of merit in previous-generation wireless standards,
maximizing the energy efficiency (EE) has become another
crucial performance measure for the next-generation wireless
networks [7], [8]. Some of recent publications related to the
EE maximization in IRS-assisted wireless systems include [3],
[9]–[11]. On the other hand, there are only a couple of
works available dealing with the problem of EE maximization
for IRS-assisted secure communications. For instance, the
authors in [12] considered the problem of secrecy energy
efficiency (SEE) maximization for an IRS-assisted multi-
input single-output single-eavesdropper (MISOSE) spectrum
sharing system, where a suboptimal solution was obtained
adopting an alternating optimization (AO) based approach, in
conjunction with an iterative penalty-function-based algorithm
and a difference-of-convex (DC) functions method. For a non-
cognitive MISOSE system along with a dedicated friendly
jammer, the authors in [13] considered the problem of SEE
maximization, where a suboptimal solution was obtained using
semidefinite programming (SDP) and Dinkelbach’s method.

Although MISO systems are of particular interest in many
applications, including those in the Internet-of-Things (IoT),
MIMO systems remain to be an integral part of B5G standard.
It is important to note that since MIMO systems enjoy a larger
diversity and multiplexing gain over that of MISO systems,
they are more suitable for applications that require very-
high data rate, ultra-reliability and secrecy as well, such as
healthcare and military applications. The existing solution(s)
for the SEE maximization mentioned above for IRS-assisted
MISOSE WTC systems are not directly applicable to a general
MIMOME setting. Therefore, in this paper we consider the
problem of SEE maximization in an IRS-assisted MIMOME
system, which to the best of our knowledge has not been inves-
tigated earlier. The formulated optimization problem is highly
non-convex, making it challenging to solve, and therefore
deserves a separate thorough study. The main contributions
in this paper are listed below:

• We propose a simple, yet efficient, numerical solution
for the active and passive beamforming design problem
to maximize the SEE of the IRS-MIMOME system. In
particular, we propose a a penalty dual decomposition
based alternating gradient projection (PDDAGP) method
to obtain a stationary solution to the formulated non-
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Fig. 1. An IRS-MIMOME system.

convex optimization problem.
• We also provide a detailed computational complexity

analysis for the proposed PDDAPG method which con-
firms that the complexity of our proposed method grows
only linearly with respect to (w.r.t.) the number of re-
flecting elements at the IRS, as well as the number of
antennas at the transmitter/receivers.

• We provide extensive numerical results to evaluate the
performance of the proposed method. Additionally, we
compare the performance of the proposed method with
a baseline scheme adopting zero-forcing method for the
input covariance and a Gaussian randomization for the
IRS phase shifts. Especially, for the special case of the
IRS-MISOSE system, our proposed algorithm is shown
to be superior to that proposed in [13], both in terms of
average SEE and average runtime.

Notations: We use bold lowercase and uppercase letters to de-
note column vectors and matrices, respectively. The Hermitian
transpose and (ordinary) transpose operators are respectively
denoted by (·)† and (·)T. We use CM×N (RM×N ) to denote
the vector space of complex-valued (real-valued) matrices of
size M ×N . diag(·) denotes the square diagonal matrix and
vecd(Y) represents the column vector with elements taken
from the main diagonal of Y. I specify an identity matrix.
We denote the trace, determinant, and Frobenius norm of the
matrix Y by tr(Y), |Y|, and ‖Y‖, respectively. The complex-
valued gradient of a function f(·) with respect to (w.r.t.) X∗ is
denoted by ∂

∂X∗ f(·) = 1
2

(
∂f(·)
∂<(X) +j ∂f(·)

∂=(X)

)
, and � represents

the Hadamard (i.e. entry-wise) product. By A � (resp. �) B
we mean A − B is positive semidefinite (resp. definite). We
define [x]+ , max{x, 0}. The Euclidean projection of y onto
a feasible set Y is denoted by ΠY(y) , argminỹ∈Y ‖ỹ − y‖.
O(·) represents the Bachmann–Landau notation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we describe the system model and formulate
the SEE maximization problem for the system under consid-
eration.

A. System Model

Consider an IRS-MIMOME system shown in Fig. 1, con-
sisting of one transmitter (Alice), one legitimate receiver
(Bob), and one eavesdropper (Eve). The number of antennas
at Alice, Bob, and Eve are denoted by NA, NB, and NE,
respectively, and the IRS is assumed to be manufactured with

NS low-cost passive reflecting elements. The complex-valued
channel matrices for the Alice-IRS, IRS-Bob, IRS-Eve, Alice-
Bob and Alice-Eve links are denoted by HAS ∈ CNS×NA ,
HSB ∈ CNB×NS , HSE ∈ CNE×NS , HAB ∈ CNB×NA ,
and HAE ∈ CNE×NA , respectively. Following the arguments
in [2], [3], [5], [6], [9]–[12], [14], it is assumed that all these
channel matrices are quasi-static and perfectly known at all of
the nodes.1

The received signals at Bob and Eve are, respectively,
expressed as

yB =(HAB + HSBZ(θ)HAS)x + wB,

yE =(HAE + HSEZ(θ)HAS)x + wE,
(1)

where x ∈ CNA×1 is the transmitted signal vector from
Alice (intended for Bob); wB ∼ CN (0, σ2

BI) and wE ∼
CN (0, σ2

EI) are the additive white Gaussian noise (AWGN) at
Bob and Eve, respectively. For ease of presentation, in the rest
of the paper we assume σB = σE = σ =

√
N0B, where N0

is noise power spectral density and B is the signal bandwidth.
With a slight abuse of notation and without loss of generality,
in the sequel of the paper, we normalize the involving channels
appropriately with the noise power, i.e., we define HAB ←
1
σHAB, HSB ← 1

σHSB, HAE ← 1
σHAE, and HSE ← 1

σHSE,
and thus the resulting equivalent noise has a unit variance.
In (1), Z(θ) , diag(θ), where θ , [θ1, θ2, . . . , θN ]T ∈
CNS×1, θi = ejφi , i ∈ NS , {1, 2, . . . , NS}, and φi ∈ [0, 2π)
denotes the phase shift induced by the i-th reflecting element
at the IRS.2

B. Problem Formulation

Denoting the transmit covariance matrix at Alice by X ,
E
{
xx†

}
� 0, the achievable secrecy rate (in nats/s/Hz)

between Alice and Bob is given by
C(X,θ) = [ln

∣∣I + HBXH†B
∣∣− ln

∣∣I + HEXH†E
∣∣]+, (2)

where HB , (HAB + HSBZ(θ)HAS), HE , (HAE +
HSEZ(θ)HAS). On the other hand, the total power consump-
tion to achieve the secrecy rate given in (2) is expressed
as (c.f. [3])

Ptotal =
tr(X)

α
+ PA + PS + PB, (3)

where PA , PS, and PB are the constant circuit power con-
sumption at Alice, IRS and Bob, respectively, and α ∈ (0, 1]
is the power amplifier efficiency at Alice. Following the
arguments in [3], the power consumption at the IRS is modeled
as PS = NSPe, where Pe is the circuit power consumption at
each of the reflecting element in the IRS. Note that in (3), we
do not consider the circuit power consumption at Eve. Such a
scenario is justified where Eve is a node external to the main
system. Then the SEE (in nats/s/Joule) for the IRS-MIMOME
system can be defined as

E(X,θ) , BE(X,θ) = B
C(X,θ)

Ptotal
, (4)

1The results in this paper serve as theoretical performance upper bounds
for the IRS-MIMOME system with imperfect channel state information in
practice.

2Although various models for IRS phase-shifts have been introduced
recently [15], the unit-modulus model is the most frequently used in liter-
ature [2], [3], [5], [6], [9]–[12], [14] for research investigation.



where B is the total available bandwidth and E(X,θ) is the
SEE in nats/s/Hz/Joule. In this paper, our objective is to maxi-
mize the SEE of the IRS-MIMOME system, the corresponding
optimization problem can be formulated as follows:

maximize
X, θ

{
E(X,θ) =

C(X,θ)

Ptotal

}
(5a)

subject to C(X,θ) ≥ Cth, (5b)
tr(X) ≤ Pmax, (5c)
|θi| = 1,∀i ∈ NS, (5d)

where Pmax is the maximum transmit power budget at Alice,
and Cth is the threshold secrecy rate to maintain a minimum
required quality of service (QoS) at Bob. Note that E(X,θ)
is the SEE of the system under consideration, the constraint
in (5b) ensures the secrecy QoS at Bob, and those in (5c)
and (5d) refer to the transmit power constraint at Alice and
unit-modulus constraints at the IRS, respectively. We further
define the feasible set for the optimization variables X and
θ as SX , {X ∈ CNA×NA : X � 0, tr(X) ≤ Pmax} and
Sθ , {θ ∈ CNS×1 : |θi| = 1, i ∈ NS}, respectively.

III. PROPOSED SOLUTION

A. Algorithm Description

It can be observed that the problem in (5) is non-convex
due to the coupling of X and θ in both (5a) and (5b),
and the non-convexity of the constraints in (5d). In order to
solve a similar optimization problem for a system consisting
of a multi-antenna Alice, one single-antenna Bob, multiple
single-antenna Eve, and one multi-antenna friendly jammer,
the authors in [13] proposed an AO-based algorithm using
SDP and Dinkelbach’s method. It is important to note that
due to the existing coupling of the optimization variables
in both objective function and optimization constraints, the
proposed AO-based algorithm in [13] cannot guarantee a
stationary solution to the optimization problem involving the
use of Gaussian randomization to recover the rank-one matrix,
and thus normally results in an inferior system performance.
Furthermore, the complexity of the proposed solution in [13]
is excessively high due to the use of SDP. Motivated by
these drawbacks, in this paper, we propose a low-complexity
PDDAPG method to find a stationary solution to (5). A similar
method was recently shown to be effective for the achievable
rate maximization problem in an IRS-assisted MIMO underlay
spectrum sharing system in [14].

In order to deal with the non-convex coupling constraint
in (5b), we adopt the penalty dual decomposition method [16].
For this purpose, we define f(X,θ, Cth, ς) , Cth−C(X,θ)+
ς . It is straightforward to note that for some ς ≥ 0, (5b) is
equivalent to f(X,θ, Cth, ς) = 0. Following the arguments
in [16], for a given Lagrangian multiplier ν and a penalty
parameter ω ≥ 0, an augmented Lagrangian function corre-
sponding to (5a) can be defined as follows:

Êν,ω(X,θ, ς) , E(X,θ)− νf(X,θ, Cth, ς)

− ω

2
f2(X,θ, Cth, ς). (6)

Therefore, for fixed ν and ω, we arrive at the following
equivalent optimization problem:

maximize
X,θ,ς

Êν,ω(X,θ, ς) (7a)

subject to ς ≥ 0, (5c), (5d). (7b)
It is noteworthy that the coupling of X and θ is now included
in the augmented objective and the constraints are decoupled
in (7). Therefore, to obtain a stationary solution to (7),
we apply a simple, yet efficient, numerical technique based
on alternating gradient projection (APG) method.3 For this
purpose, we first find ∇XÊν,ω(X,θ, ς) as follows:
∇XÊν,ω(X,θ, ς) =

[
1

Ptotal
+ ν + ωf(X,θ, Cth, ς)

]
×∇XC(X,θ)− C(X,θ)

P 2
total
∇X tr(X). (8)

Using (8) and [17, eqns. (6.207), (6.195) and Table 4.3], a
closed-form expression for ∇XÊν,ω(X,θ, ς) is given by (9),
shown at the top of the next page. On the other hand, using [2,
eqn. (17a)] and [17, Table 4.3 and eqn. (6.153)], a closed-form
expression for ∇θÊν,ω(X,θ, ς) is given by (10), shown at the
top of the next page.
Algorithm 1: Gradient Projection Algorithm to
solve (7) for fixed ν and ω.
Input: X0, θ0, ς0, τ0, µ0, ν, ω
Output: Xn, θn

1 n← 1
2 repeat
3 Xn = ΠSX(X̂n ,

Xn−1 +τn∇XÊν,ω(Xn−1,θn−1, ςn−1));
4 θn = ΠSθ (θ̂n ,

θn−1+µn∇θÊν,ω(Xn,θn−1, ςn−1));
5 ςn = max{0, C(Xn,θn)− Cth};
6 n← n+ 1;
7 until convergence;

The gradient projection algorithm to solve (7) for fixed
ν and ω is given in Algorithm 1, where τn and µn are
the step size corresponding to X and θ, respectively. More-
over, in line 3, for a given X̂n, its projection onto the
set SX, i.e., ΠSX(X̂n) can be shown to admit a water-
filling solution. On the other hand, in line 4, for a given
θ̂n = [θ̂n,1, θ̂n,2, . . . , θ̂n,NS

]T, its projection onto the set Sθ,
i.e., ΠSθ (θ̂n) is given by [θn,1, θn,2, . . . , θn,NS ]T, where

θn,i=

{
θ̂n,i/|θ̂n,i|, if θ̂n,i 6= 0

exp(jφ), φ ∈ [0, 2π), otherwise
,∀i ∈ NS. (11)

Note that (11) ensures |θn,i| = 1,∀i ∈ NS, and when
|θ̂n,i| = 0, θn,i is chose randomly from the interval [0, 2π).
After updating X and θ in Algorithm 1, we update ς in
line 6. Appropriate values of τn and µn in each iteration
can be obtained using a backtracking line search routine as
suggested in [2, Sec. IV-C]. Once the convergence is achieved
in Algorithm 1, we update the Lagrange multiplier ν and the
penalty parameter ω. The overall description of the proposed

3Following the arguments in [16], it can be shown that a stationary solution
to (7) is indeed a stationary solution to the original problem in (5) at the
convergence.



∇XÊν,ω(X,θ, ς) =
[

1
Ptotal

+ ν + ωf(X,θ, Cth, ς)
][

H†B
(
I + HBXH†B

)−1
HB −H†E

(
I + HEXH†E

)−1
HE

]
− C(X,θ)

P 2
total

I. (9)

∇θÊν,ω(X,θ, ς) =
[

1
Ptotal

+ ν + ωf(X,θ, Cth, ς)
]
× vecd

{
H†SB

(
I + HBXH†B

)−1
HBXH†AS

−H†SE
(
I + HEXH†E

)−1
HEXH†AS

}
. (10)

Algorithm 2: The PDDAGP Method.
Input: X0, θ0, ς0, τ0, µ0, ν, ω, η < 1
Output: X?,θ?

1 repeat
2 Solve problem (7) using Algorithm 1;
3 X? ← Xn, θ? ← θn, ς? ← ςn;
4 ν ← ν + ωf(X?,θ?, Cth, ς

?);
5 ω ← ω/η;
6 until convergence;

PDDAGP method to find a stationary solution to (7) is outlined
in Algorithm 2. The convergence of Algorithm 2 can be
proved following the similar line of arguments as provided
in [14, Sec. III-C].

B. Complexity Analysis

In this subsection, we present the complexity analysis of
our proposed PDDAGP method. In this context, we use
O(·) notation to present the per-iteration complexity of Al-
gorithm 2, where we count the total number of required
complex-valued multiplications. It is important to note that
the per-iteration complexity of Algorithm 2 is dominated by
that of the Algorithm 1.

We first calculate the complexity of computing Xn (line 3)
in Algorithm 1. For this purpose we need to compute
∇XÊν,ω(Xn−1,θn−1, ςn−1).whose computational complexity
is given by O(N3

B+N3
E+NBN

2
A+NEN

2
A+N2

BNA+N2
ENA+

NSNANB + NSNANE). The complexity for obtaining an
appropriate value of τn and projecting X̂n onto SX results
in an additional complexity of O(N3

A).
Next, we calculate the complexity associated with the

computation of θn (line 4) in Algorithm 1. Note that the
complexity associated with the computation of an appropriate
µn and the projection of θ̂n will be negligible as compared
to that of computing ∇θÊν,ω(Xn,θn−1, ςn−1), and therefore,
the complexity of computing θn will be the same as that
of ∇θÊν,ω(Xn,θn−1, ςn−1), given by O(NBN

2
A +NEN

2
A +

NSN
2
A + NAN

2
B + NSN

2
B + NSN

2
E + NAN

2
E + NSNANB +

NSNANE).
The complexity of computing ςn (line 5) in Algorithm 1

is negligible compared to that of Xn and θn. Therefore, the
per-iteration complexity of the Algorithm Algorithm 2 is
given by O(N3

A + N3
B + N3

E + NBN
2
A + NEN

2
A + NSN

2
A +

NAN
2
B + NSN

2
B + NAN

2
E + NSNANB + NSNANE). We

note that in a practical IRS-MIMOME system we should have
NS � max{NA, NB, NE}. Therefore, the complexity of the
proposed algorithm can be approximated by O(NSNA(NB +
NE)), meaning that the computational complexity of the
proposed PDDAGP algorithm increases linearly with NS. We

remark that for the IRS-assisted MISO WTC case, the com-
plexity of the proposed algorithm is reduced to to O(NSNA),
which is notably lower than that of the SDP-based algorithm
proposed in [13] and the former is more suitable for practical
implementation.

IV. NUMERICAL ANALYSIS

In this section, we first describe the simulation parameters
considered in this paper. The center of the Alice’s, Bob’s
and Eve’s uniform linear array is assumed to be located at
(0, lA, hA), (dB, lB, hB), and (dE, lE, hE), respectively. The
center of the IRS is denoted by (dS, 0, hS). The inter-antenna
separation at Alice, Bob, and Eve, and the distance between
any two of the neighboring reflecting elements at IRS is
assumed to be equal to λ/2; here λ denotes the wavelength
of the carrier waves.

The Alice-Bob and Alice-Eve channels are defined as
HAJ =

√
(κ+ 1)−1ΞAJ �

(√
κHAJ,LoS + HAJ,NLoS

)
,

J ∈ {B,E}, where the elements in HAJ,LoS given by
e−j2πlp,q/λ corresponds to the line-of-sight (LoS) compo-
nent, HAJ,NLoS ∼ CN (0, I) represents the non-line-of-sight
(NLoS) component, lp,q denotes the distance between the p-
th antenna at the transmitter (Alice) and the q-th antenna at
the receiver (Bob/Eve), and κ is the Rician factor. More-
over, the elements in ΞAJ ∈ RNJ×NA correspond to the
free-space path loss (FSPL) coefficients and are given by
((4π/λ)2l3p,q)

−1/2. Similarly, the IRS-Bob and IRS-Eve links
are modeled as HSJ =

√
(κ+ 1)−1ΞSJ � (

√
κHSJ,LoS +

HSJ,NLoS). The elements in HSJ,LoS are given by e−j2πlk,q/λ,
HSJ,NLoS ∼ CN (0, I), the elements in ΞSJ are given by
(ΥJlJ(4π/λ)2l3k,q)

−1/2, lk,q is the distance between the k-
th reflecting element at the IRS and the q-th antenna at
Bob/Eve and ΥJ = 2 is the antenna gain at Bob/Eve. The
Alice-IRS channel is modeled as HAS =

√
(κ+ 1)−1ΞAS �

(
√
κHAS,LoS + HAS,NLoS), where the elements in ΞAS given

by (ΥAlA(4/λ)2l3p,k)−1/2 represent the FSPL coefficients, the
elements in HAS,LoS are given by e−j2πlp,k/λ, HAS,NLoS ∼
CN (0, I), lp,k is the distance between the p-th antenna at
Alice and the k-th reflecting element at the IRS, and ΥA = 2
is the antenna gain at Alice.

Unless stated otherwise, in this section we consider κ = 1,
lA = 20 m, hA = 10 m, dB = 350 m, lB = 10 m, hB =
2 m, dE = 352 m, lE = 15 m, hE = 2 m, dS = 30 m,
hS = 5 m, Pmax = 40 dBm, N0 = −174 dBm/Hz, α =
0.833, B = 20 MHz, λ = 0.15 m, PA = PB = 10 dBm and
Pe = 0.01 dBm. We performed the numerical experiments
using the MATLAB (R2022a) on a 64-bit Windows machine
with 16 GB RAM and an Intel Core i7 3.20 GHz processor.
Note that in Fig. 4-7, the average rum time/average SEE is
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computed over 1000 independent channel realizations and the
Fig. 2,3 are constructed based on single channel realization.

We now present the numerical results to evaluate the
performance of the proposed method for the IRS-MIMOME
system under consideration. In Fig. 2, we show the con-
vergence results of Algorithm 2. It is evident from Fig. 2
that the augmented objective function Êν,ω(X,θ, ς) and the
original objective function E(X,θ) converge to the same
value, indicating that the regularized term becomes zeros at
convergence, which is in-line with the theory of penalty-
based optimization schemes. Note that for fixed ν and ω,
we consider Êν,ω(X,θ, ς) to be converged when the rel-
ative difference in Êν,ω(X,θ, ς), i.e., [Êν,ω(Xn,θn, ςn) −
Êν,ω(Xn−1,θn−1, ςn−1)]/Êν,ω(Xn−1,θn−1, ςn−1) becomes
less than or equal to the tolerance value (ε = 10−4). After
this, we update the Lagrangian multiplier ν and the penalty
parameter ω. Finally the algorithm is considered convergent
when |E(Xn,θn) − Êν,ω(Xn,θn, ςn)|/Êν,ω(Xn,θn, ςn) ≤ ε.
We remark that Algorithm 2 aims to maximize the augmented
objective function Êν,ω(X,θ, ς), and thus for fixed values of
ν and ω, Êν,ω(X,θ, ς) increases monotonically.

In Fig. 3 we compare the performance our proposed algo-
rithm with that of [13, Algorithm 1]. It is important to note that
since [13, Algorithm 1] is applicable only for IRS-MISOSE
system, in Fig. 3 we consider NB = NE = 1. It is evident
from the figure that both the proposed PDDAGP and [13,
Algorithm 1] takes almost the same number of iterations to
achieve the convergence, however, the proposed PDDAGP
method attains a higher SEE. The main reason for the inferior
performance of the method proposed in [13, Algorithm 1],
which is based on AO, is its way in handling the coupling
between the optimization variables in the constraint. It is well
known that AO-based algorithms can be easily trapped in
ineffective solution due to poor initialization. The involved
Gaussian randomization is another reason for the inferior
performance of [13, Algorithm 1]. Note that in the case of
PDDAGP algorithm, the coupling in the constraint is brought
to the objective in the form of a penalized term. This move
makes optimization variables decoupled, which results in a
superior performance as demonstrated.

We now numerically shown that the proposed algorithm
also outperforms [13, Algorithm 1] in terms of the required

runtime, which validates the complexity analysis presented
in preceding section. To this end, in Fig. 4 we compare the
average runtime of Algorithm 2 and [13, Algorithm 1] w.r.t.
NS. It is clearly evident from the figure that the proposed
PDDAGP algorithm takes significantly less time to converge
on average compared to that for [13, Algorithm 1]. This
is because the complexity of our proposed algorithm grows
only linearly w.r.t. NS, where the complexity of SDP-assisted
Dinkelbach’s method in [13, Algorithm 1] is excessively high.

In Fig. 5, we compare the average SEE performance versus
NS for the proposed PDDAGP algorithm with that of a
baseline scheme which we refer to as ZFrand. In this ZFrand
scheme, for a fixed θ we find X ∈ SX that maximizes (5)
while satisfying HEXH†E = 0 (which is essentially the zero-
forcing precoder) and (5b). Due to the ZF constraint, problem
(5) can be reformulated as a convex program and thus X
can be found exactly. Then for a given X, to update θ, we
follow a procedure similar to Gaussian randomization, i.e.,
randomly many θs and select the one that gives the best
objective . It is noticeable that our proposed PDDAGP method
outperforms the ZFrand scheme, which is expected because
of the suboptimality of ZF beamformer and as well as that of
selecting the random θ.

In Fig. 6, we show the impact of the number of reflecting
elements at the IRS, i.e., NS. Note that increasing NS increases
both C(X,θ) and Ptotal, resulting in a non-trivial trade-off
for the SEE. In the figure, we consider different values for
the circuit power consumption per IRS element, i.e., Pe. It
is observed from Fig. 6 that for a small value of Pe, the
IRS-MIMOME system can achieve a significantly higher SEE
compared to its non-IRS counterpart. On the other hand, a
large value of Pe may result in a performance degradation in
terms of average SEE in an IRS-MIMOME system compared
to the non-IRS counterpart. Therefore, it can be concluded that
for a given Pe, there exists an optimal value of NS to maximize
the benefit of using an IRS in terms of average SEE.

In Fig. 7, we compare the average SEE of the system
under the consideration with its non-IRS counterpart, for two
different scenarios: (i) optimal power allocation and optimal
IRS phase-shifts (i.e., (5)), and (ii) full power allocation
and optimal IRS phase-shifts (i.e., (5) with (5c) modified to
tr(X) = Pmax). We note that C(X,θ) is the logarithmic
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function while Ptotal is a linear function w.r.t. to X. So, in
the case of full power allocation, for small values of Pmax,
the average SEE first increases with increasing values of Pmax

because the rate of increase of C(X,θ) is larger than that of
the Ptotal. However, for large values of Pmax, Ptotal increases
at a much faster rate compared to C(X,θ), resulting in a loss
in SEE. On the other hand, for the case of optimal power
allocation, the system uses full power (Pmax) for small values
of Pmax, however, it uses a smaller transmit power than the
maximum available Pmax for large value of Pmax. Specifically,
for the case of optimal power allocation in the large Pmax

regime, tr(X) becomes strictly less than Pmax, irrespective of
the value of Pmax which results in a constant value of both
C(X,θ) and Ptotal. This in turn results in a saturated value
of SEE, i.e., E(X,θ) for increasing value of Pmax.

V. CONCLUSION

In this paper, we considered the problem of the SEE
maximization in an IRS-MIMOME system, subject to a trans-
mit power constraint (at the transmitter), a target secrecy
rate constraint (at the legitimate receiver), and unit-modulus
constraints at the IRS. We proposed a PDDAGP method to find
a stationary solution to the challenging non-convex optimiza-
tion problem of the SEE maximization. Extensive numerical
experiments were performed to evaluate the performance of
the proposed algorithm, and the superiority of the PDDAGP
method was also established over that of an SDP-assisted
Dinkelbach’s method for the special case of IRS-MISOSE
system. We also showed that the per-iteration complexity of
the proposed PDDAGP method grows as linearly w.r.t. the
number of reflecting elements at the IRS, that is appealing for
practical implementation.
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