
ar
X

iv
:2

20
8.

10
00

7v
1 

 [
ee

ss
.S

P]
  2

2 
A

ug
 2

02
2

A Weighted Random Forest Based Positioning

Algorithm for 6G Indoor Communications

Yang Wu1, Yinghua Wang2, Jie Huang1,2, Cheng-Xiang Wang1,2*, Chen Huang2,1

1National Mobile Communications Research Laboratory, School of Information of Science and Engineering,

Southeast University, Nanjing 210096, China.
2Pervasive Communication Research Center, Purple Mountain Laboratories (PML), Nanjing 211111, China.

*Corresponding Author: Cheng-Xiang Wang

Email: wu yang@seu.edu.cn, wangyinghua@pmlabs.com.cn,

{j huang, chxwang}@seu.edu.cn, huangchen@pmlabs.com.cn

Abstract—Due to the indoor none-line-of-sight (NLoS) prop-
agation and multi-access interference (MAI), it is a great
challenge to achieve centimeter-level positioning accuracy in
indoor scenarios. However, the sixth generation (6G) wireless
communications provide a good opportunity for the centimeter-
level positioning. In 6G, the millimeter wave (mmWave) and
terahertz (THz) communications have ultra-broad bandwidth
so that the channel state information (CSI) will have a high
resolution. In this paper, a weighted random forest (WRF) based
indoor positioning algorithm using CSI-based channel fingerprint
feature is proposed to achieve high-precision positioning for 6G
indoor communications. In addition, ray-tracing (RT) is used
to improve the efficiency of establishing channel fingerprint
database. The simulation results demonstrate the accuracy and
robustness of the proposed algorithm. It is shown that the
positioning accuracy of the algorithm is stable within 6 cm in
different indoor scenarios with the channel fingerprint database
established at 0.2 m intervals.

Index Terms—6G, indoor positioning, channel state informa-
tion, random forest, ray-tracing.

I. INTRODUCTION

Although the continuous development of global positioning

system has allowed outdoor positioning with satisfactory ac-

curacy, there are great difficulties in performing high-precision

indoor positioning. There are strong attenuation of radio waves

caused by the building material and structure, complex indoor

scenarios, and high personnel flow. These factors result in

serious NLoS propagation and MAI in indoor environments.

Meanwhile, 6G wireless communications put forward indoor

positioning accuracy of centimeters and response time of

milliseconds [1], [2]. To figure out these challenges, there are

two ideas as below.

The first one is summarized as geometric positioning

method in this paper, i.e., using geometric principles based

on channel characteristics to estimate the position. It contains

power measurement method based on received signal strength

(RSS), time measurement method based on time of arrival

(ToA) or time difference of arrival (TDoA), and angle mea-

surement method based on angle of arrival (AoA). This kind

of method is generally vulnerable to the interference of NLoS

and MAI, leading to the low positioning accuracy.

The second is fingerprint-based positioning method (FPM),

first proposed in [3]. FPM generally contains two stages:

offline and online. In the offline stage, FPM establishes the

channel fingerprint database by means of the actual measure-

ment or simulation of the signal data in the positioning area.

In the online stage, FPM compares the measured signal data

with the channel fingerprint database to estimate the actual

position of the terminal.

Owing to the convenience and low cost of obtaining RSS,

traditional FPM generally collects RSS as channel fingerprint

feature [4], [5], but there is serious NLoS propagation indoors,

resulting in the instability of RSS. Although preprocessing

methods such as Kalman filtering have been used to alle-

viate this instability [6], it still fails to avoid large errors

when the received signal fluctuates heavily. Therefore, the

FPM based on RSS cannot satisfy the requirements of high-

precision positioning either. Since the orthogonal frequency

division multiplexing (OFDM) technology was used as the

physical layer standard of IEEE 802.11a, CSI can be used to

characterize the channel information of each subcarrier [7].

As a signal feature of the physical layer, CSI has higher

granularity and stronger stability than RSS and can truly reflect

multipath information. However, the previous researches on

CSI-based FPM just use its amplitude and phase information

directly, which cannot give full play to the potential of CSI.

The positioning algorithm in the online stage is mainly

divided into the deterministic algorithm represented by the

weighted k-nearest neighbor (WKNN) [8], the probabilistic

algorithm represented by Bayesian estimation [9], and the

machine learning (ML) algorithm which is more popular

recently. The accuracy of the Bayesian estimation depends

heavily on whether the assumed probability distribution con-

forms to the true data distribution. As a simplest supervised

ML algorithm, WKNN predicts the results generally fairly and

accurately, but its stability is poor for it cannot reflect the

implicit relationship between the fingerprints and coordinates.

To solve this problem, more superior ML algorithms have

been used for indoor positioning, including support vector ma-

chines (SVM) [10], random forest (RF), deep neural networks

(DNN) [11]– [14], etc. However, SVM does not perform well
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on multi-classification problems and DNN relies on a large

number of sample sets and is difficult to train.

RF, as an integrated ML algorithm based on decision tree,

has an excellent performance and been widely researched in

the fields of artificial intelligence, classification prediction, and

data modeling [15], [16]. It can handle high-dimensional data

without data deletion or normalization and its training speed

is fast, so RF is greatly suitable for multi-classification prob-

lems, such as indoor positioning. Therefore, in this paper, we

propose WRF positioning algorithm using CSI-based channel

fingerprint feature so that the positioning accuracy and speed

can satisfy the the requirements of 6G.

However, as a FPM, the proposed algorithm will still

consume huge manpower, material resources, and time to build

channel fingerprint database. To solve this problem, RT is

applied. As a deterministic modeling method, RT can obtain

the channel parameters quickly and accurately [17].

Above all, in this paper we focus on a high-precision indoor

positioning algorithm which can satisfy the requirements of

6G. The main contributions are as below.

• CSI-based channel fingerprint feature is proposed and

RT simulation is applied to analyze and demonstrate the

feasibility and superiority of it.

• WRF-based positioning algorithm is proposed and RT

simulation is applied to analyze and demonstrate the

accuracy and robustness of it.

The remainder of this paper is organized as follows. Sec-

tion II briefly introduces the characteristics of 6G indoor

channel and the theory of CSI, then puts forward a CSI-based

channel fingerprint feature. Section III proposes WRF-based

positioning algorithm based on RF and WKNN. Section IV

provides the simulation results based on RT and demonstrates

the predominant performance of the proposed algorithm. Fi-

nally, conclusions are drawn in Section V.

II. CSI-BASED CHANNEL FINGERPRINT FEATURE

A. 6G Indoor Channel Characteristics

The 6G-oriented wireless channel will be a full-bands

channel, mainly including sub-6 GHz, mmWave, THz, and

optical bands. In this paper, we mainly focus on the mmWave

and THz.

Since the wavelength of mmWave and THz is short and

close to the roughness of an ordinary object surface, when

electromagnetic wave is incident on such a plane, not only

specular reflection but also a large amount of diffuse scattering

will be generated. Whether specular reflection or diffuse

scattering, each reflection brings a great loss. Thus in the

mmWave and THz bands, it is difficult for multiple reflection

paths to reach the minimum detectable power at the receiver,

so the number of reachable paths is greatly reduced compared

with the lower frequency bands. In general indoor communi-

cation scenarios, the transmitted paths are severely attenuated

and hardly contribute to the received signal. Moreover, the

diffracted paths are weak as well. As a result, mmWave

and THz have a good propagation direction and the effective

propagation paths are mainly line-of-sight (LoS) [18], [19].

Combined with mmWave and THz channel characteristics

and based on RT technique, a unified multi-ray channel model

of mmWave and THz bands is proposed in [20]. The channel

impulse response of this model can be described as below

h(t) = αLoS δ (t− τLoS ) ILoS +

NRef
∑

p=1

α
(p)
Ref δ

(

t− τ
(p)
Ref

)

+

NSca
∑

q=1

α
(q)
Sca δ

(

t− τ
(q)
Sca

)

+

NDif
∑

u=1

α
(u)
Dif δ

(

t− τ
(u)
Dif

)

(1)

where ILoS is the indicator function to determine whether the

LoS path exists, 1 for the presence and 0 for the absence, αLoS,

α
(p)
Ref, α

(q)
Sca, and α

(u)
Dif are the attenuation amplitudes of the LoS

path, the pth reflection path, the qth scattering path, and the

uth diffraction path, andτLoS , τ
(p)
Ref , τ

(q)
Sca , and τ

(u)
Dif represent

the time delay of the LoS path, the pth reflection path, the

qth scattering path, and the uth diffraction path, respectively.

This model combines the LoS, reflection, scattering, and

diffraction paths and the accuracy of this model is verified

by experimental measurements (0.06–1 THz).

After the Fourier transform is performed on (1), the channel

frequency response (CFR) is obtained, then we discretely

sample it with t = ⌈(τ/Ts)] + k · Ts⌉, where Ts denotes

the sampling interval and ⌈�⌉ denotes the rounding function.

Finally, we obtain the CSI, i.e., CSI is the discrete sampling

form of CFR with different carrier frequencies of OFDM as

frequency points. In OFDM, the CSI model is expressed as

Y = HX + ζ (2)

where X denotes the transmitted signal vector, Y denotes the

received signal vector, ζ denotes the Gaussian white noise

vector, and H is the CSI matrix.

B. CSI Feature Estimation

CSI can characterize multidimensional signal features, in-

cluding AoA, propagation delay, and path loss. This can be

obtained by super-resolution detection algorithms, such as

multiple signal classification (MUSIC) estimation algorithm,

spatial smoothing (SS) algorithm, etc. To overcome the defect

of MUSIC that cannot distinguish coherent signals and SS

that fails to address coherence in complex environments, a

CSI-based forward-backward spatial smoothing algorithm is

proposed for joint estimation of AoA and ToA.

C. Maximum Power Path Extraction

As the analysis in the previous subsection, mmWave and

THz have a severe indoor propagation loss. Therefore, it is a

significant difference between the power of the different paths

detected by the receiver. In this case, most of the rays reaching

the receiver do not work on predicting the position.

As we all know that the LoS path contributes the most to

the received signal power with the highest energy among all

the arriving rays. As a result, it plays a major role in position

prediction. In addition, the LoS path power fits the path loss

model best because its propagation path is not obscured by



obstacles. However, due to the existence of severe NLoS

propagation indoors, not every reference point (RP) has a LoS

path. Thus in this paper, we propose the maximum power (MP)

path. In indoor mmWave and THz communication scenarios,

the MP paths at most RPs are the LoS paths. Even if the

MP paths are NLoS paths, owing to the mmWave and THz

characteristics, they only go through low-order reflection or

diffraction, so their power loss is acceptable. Therefore, the

RSS of MP path can fit the channel propagation loss model

very well compared with the total RSS, as shown in Fig. 1.

In addition, AoA and ToA have higher stability than RSS

and can promote the distinction between fingerprint features.

As a result, we integrate RSS, AoA, and ToA of MP path

at the receiver as channel fingerprint features, i.e., CSI-based

channel fingerprint features. Such channel fingerprint features

not only improve fingerprint accuracy and distinction between

RPs, but also remove redundant information and lessen the

burden of the positioning algorithm.

D. The Structure of Channel Fingerprint Database

This subsection will introduce the structure of channel fin-

gerprint database, as shown in Fig. 2. The channel fingerprint

database is constructed as a structure named fingerprintBase,

which contains three elements: Fingerprint, Coordinate, and

SN. SN is the AP number, a 1 × n vector, and n is the

number of valid access points (APs). Coordinate is the RP

coordinate, a N × 2 matrix, and N is the number of valid

RPs. Fingerprint is the CSI-based channel fingerprint feature,

a N × 4n matrix, containing RSS, azimuth AoA (AAoA),

elevation AoA (EAoA), and ToA. In particular, it should be

noted that, in order to adapt to the positioning algorithm later,

the positioning area should be meshed perpendicular to the

coordinate axis in the Cartesian coordinate system, then RPs

are set at the grid intersections.

III. WEIGHTED RANDOM FOREST POSITIONING

ALGORITHM

A. Weighted Prediction

RF selects the result with the most votes in the decision

tree as the prediction output. The higher the similarity, the

more the votes, so RF is highly dependent on RPs. It is

inevitable that there are many similar RPs in the channel

fingerprint database, but just selecting the most similar one is

obviously not comprehensive enough. The influence of other

RPs on the positioning results is ignored, which leads to a large

positioning error. In order to avoid that, a WRF algorithm is

put forward. WRF combines the idea of WKNN algorithm,

which selects the coordinates of the K most similar RPs and

uses the reciprocal of the similarity distance as the weight

to predict the terminal coordinates. In the online stage, the

fingerprint features extracted from test point (TP) are input

into the model trained by RF and the output is no longer a

single prediction coordinate, but the K RPs’ coordinates with

the highest score S. The higher the S, the greater the impact

on the estimation results, so the final predicted coordinates are

(a) Total RSS (b) RSS of MP path

Fig. 1. The spatial distribution of RSS with the transmitter at (0,0).
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Fig. 2. The construction process and structure of fingerprintBase.

calculated according to the score weighting of K coordinates

as follows

(x, y)TP =

K
∑

k=1

(xk, yk) · Sk

K
∑

k=1

Sk

. (3)

B. Coordinate Separation

Although the joint coordinate estimation considers the

uniqueness of each RP’s fingerprint, it ignores the similarity of

signal features among RPs. To further consider the similarity

of signal feature between RPs, the training model M x and

M y are derived by training the RPs’ horizontal coordinates

x and vertical coordinates y in the offline stage. In the online

stage, the TP’s channel fingerprint features are input into

M x and M y to predict the K horizontal coordinates x and

vertical coordinates y with the highest score S. Then bring

them into (3)

xTP =

K
∑

k=1

xk · S xk/

K
∑

k=1

S xk (4a)

yTP =

K
∑

k=1

yk · S yk/

K
∑

k=1

S yk. (4b)

The algorithm description of WRF is shown in Algorithm 1

and 2.

C. The Framework of the Proposed Positioning Algorithm

In this subsection, we will combine the CSI-based finger-

print feature proposed in Section II and the WRF algorithm

proposed in this section to sort out the framework of the

proposed positioning algorithm, as listed below and shown

in Fig. 3.



• Collect the CSI of offline RPs and online TPs. The RPs

are located at the intersection of the grids established

perpendicular to the coordinate axis in the Cartesian

coordinate system.

• Extract the CSI-based channel fingerprint features.

• Construct the channel fingerprint database.

• Separate the RPs’ coordinates into x and y and send them

into RF to be trained together with channel fingerprint

features, then output the training model M x and M y.

• Send the online TPs’ channel fingerprint features into

M x and M y and carry out the weighted prediction,

then output the final predicted TPs’ coordinates.

Algorithm 1 WRF Training

Input: 1) The training sample set T ⊂ Fingerprint. 2) The

label set L x, L y ⊂ Coordinate. 3) The number of

Decision Tree N .

Output: The RF Classifiers M x, M y.

1: for L in {L x, L y} do

2: Initialize RF Classifiers Model = ∅;

3: Randomly select N sub-training sets ST from T ;

4: for n in {1, · · · , N} do

5: Initialize Decision Tree D(n) = ∅;

6: Randomly select features sets F in Fingerprint;

7: function TREEGENERATE(ST , F )

8: Generate node;

9: if All samples in ST belong to l in L then

10: Mark this node as a leaf node of Label l;
11: D(n) = [D(n) ∪ node];

12: return ;

13: end if

14: if ST = ∅ or All samples in ST have the same

value on F then

15: Mark this node as a leaf node which is

classed as the label with the most samples in ST ;

16: D(n) = [D(n) ∪ node];

17: return ;

18: end if

19: Select the optimal feature f whose value is f∗

from F according to Gini index;

20: Generate two branches for this node, the sam-

ple in ST whose value is f∗ on the f is marked as D1
and the rest are marked as D2;

21: TREEGENERATE(D1, F );

22: TREEGENERATE(D2, F );

23: end function

24: M = [M ∪ D(n)];
25: end for

26: if L = X then

27: M x = M ;

28: else

29: M y = M ;

30: end if

31: end for

32: return M x, M y.

Algorithm 2 WRF Estimating

Input: 1) The RF Classifiers M x, M y. 2) The testing

sample set T ⊂ testFingerprint.

Output: The predicting coordinate (xTP , yTP ).
1: for M in {M x, M y} do

2: function RFPREDICT(M, T )

3: for n in {1,· · · ,N} do

4: Compute the prediction pnof the D(n);
5: end for

6: [S, P ] = Vote[p1, · · · , pn]

7: end function

8: Select the highest K score S and corresponding posi-

tion P ;

9: if M = M x then

10: x = P ;

11: Compute the xTP according to (4a);

12: else

13: y = P ;

14: Compute the yTP according to (4b);

15: end if

16: end for

17: return (xTP , yTP ).
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Fig. 3. The framework of the proposed positioning algorithm.

IV. ANALYSIS OF RT SIMULATION RESULTS

A. Simulation Parameters Setting

In this section, we will construct the indoor scenarios and

simulate the channel parameters with the commercial software

Wireless InSite®. We set two different indoor scenarios. The

area of scenario 1 is 16 m × 15 m and the area of scenario 2

is 8 m × 6 m, as shown in Fig. 5. As well, the simulation

parameters are shown in Table I. It should be pointed out that

during the simulation, the reflection order is limited to 6 and

the diffraction order is 1, which covers a reasonable portion

of rays that could be detected in the real environments.

B. Performance Evaluation of CSI-based Channel Fingerprint

Feature

In this subsection, we construct the fingerprint database by

setting reference grids with 0.2 m intervals and utilize WKNN

algorithm to estimate the TPs’ coordinates in the online

stage. The collected fingerprint features are RSS, RSS +



(a) Scenario 1 (b) Scenario 2

Fig. 4. Simulation scenarios.

TABLE I
THE SIMULATION PARAMETERS.

Simulation parameters Value

RPs’ height 1.5 m

APs’ height 2.8 m

APs’ position
(-7.64 m, -6.72 m), (7.72 m, -7.54 m) in scenario 1

(0.18 m, 0.20 m), (7.70 m, 5.78 m) in scenario 2

Frequency 60 GHz

Bandwidth 3 GHz

RPs’ antenna Single omnidirectional

APs’ antenna MIMO omnidirectional

Reflection order 6

Diffraction order 1

AoA, and the proposed CSI-based channel fingerprint feature.

The simulation results characterized by the error cumulative

distribution function (CDF) are shown in Fig. 5.

It can be seen that the probability of the error of the

traditional RSS fingerprint feature within 1 m is only 10%.

After adding AoA as fingerprint feature, the accuracy is

significantly improved. Further, the maximum error of the

proposed CSI-based fingerprint feature is only 0.7 m and the

average error is within 7 cm, which reaches the centimeter

level. This is due to the fact that the proposed CSI fingerprint
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Fig. 5. CDF of positioning errors for different fingerprint features.
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Fig. 6. CDF of positioning errors for each algorithm with 0.2 m intervals.

TABLE II
PERFORMANCE OF EACH ALGORITHM WITH 0.2 M INTERVALS IN

SCENARIO 1.

Algorithm Min(m) Max(m) Mean(m) Training Time(s) Positioning Time(s)

WKNN 0.0075 0.7002 0.0643 - 0.3

RF 0.0253 0.3796 0.0961 146.07 0.81

WRF 0.0018 0.3094 0.0552 23.64 0.74

feature extracts the most fine-grained signal features of RPs

and makes full use of the multipath information. Thus it can

effectively resist the influence of NLoS propagation and MAI,

resulting in significantly improved positioning accuracy.

C. Performance Evaluation of WRF Algorithm

In this subsection, we mesh the Scenario 1 and Scenario 2 at

intervals of 0.2 m, collect the proposed CSI-based fingerprint

features as fingerprints to build fingerprint database, and

set the number of WRF decision trees to 100. Then, we

compare the WRF with RF [16] and WKNN [8] to verify the

superiority and robustness of the WRF positioning algorithm.

The simulation results are shown in Fig. 6 and Table II.



TABLE III
POSITIONING TIME OF EACH ALGORITHM FOR DIFFERENT GRID SIZES.

Algorithm WKNN RF WRF

1 m × 1 m 0.08 s 0.28 s 0.27 s

0.2 m × 0.2 m 0.3 s 0.81 s 0.74 s

It can be seen that the positioning error of WRF is smaller

than WKNN and RF whatever in scenario 1 or in scenario 2.

Although the error CDF of WRF are comparable with the first

80% of WKNN, the maximum error of WRF is only 0.3 m

in scenario 1, which is much smaller than WKNN’s 0.7 m, so

WRF is much more stable than WKNN. Moreover, the average

error of WRF is also the smallest, just about 5.5 cm, which

reaches the centimeter level. Comparing from the positioning

time, although the positioning time of WRF is longer than

the WKNN, it still reaches millisecond level and is shorter

than RF, especially its training time is significantly reduced

(Note that Table II shows the positioning and training time of

100 TPs). In addition, WRF estimates the TPs’ coordinates

based on training model, so the positioning time changes

less with the increase of database capacity. However, the

online positioning time of WKNN will increase exponentially

with the increase of database capacity, which can be seen

from Table III. Therefore, with the increase of fingerprint

database capacity, this difference between WRF and WKNN

will decrease gradually.

V. CONCLUSIONS

In this paper, a CSI-based WRF positioning algorithm

has been proposed for 6G indoor communications and the

performance of the algorithm has been demonstrated with

RT simulation. The results have shown that the proposed

algorithm has a maximum error within 0.3 m, an average error

within 6 cm, and positioning time within 10 ms. This has

indicated that the algorithm has very high accuracy, stability,

and response speed. Thus, the proposed algorithm can satisfy

the requirements of 6G indoor positioning with centimeter-

level positioning accuracy and millisecond-level response time.

In the future, we will carry out the realistic measurement for

online TPs to further evaluate the proposed algorithm.

ACKNOWLEDGMENT

This work was supported by the National Key R&D Pro-

gram of China under Grant 2018YFB1801101, the National

Natural Science Foundation of China (NSFC) under Grants

61960206006 and 61901109, the Frontiers Science Center for

Mobile Information Communication and Security, the High

Level Innovation and Entrepreneurial Research Team Program

in Jiangsu, the High Level Innovation and Entrepreneurial

Talent Introduction Program in Jiangsu, the Research Fund

of National Mobile Communications Research Laboratory,

Southeast University, under Grant 2021B02, the EU H2020

RISE TESTBED2 project under Grant 872172, the High Level

Innovation and Entrepreneurial Doctor Introduction Program

in Jiangsu under Grant JSSCBS20210082, the Fundamental

Research Funds for the Central Universities under Grant

2242022R10067, and the China Postdoctoral Science Foun-

dation under Grant 2021M702499 and the Outstanding Post-

doctoral Fellow Program in Jiangsu.

REFERENCES

[1] X.-H. You, C.-X. Wang, J. Huang, et al., “Towards 6G wireless
communication networks: Vision, enabling technologies, and new
paradigm shifts,” Sci. China Inf. Sci., vol. 64, no. 1, Jan. 2021,
doi: 10.1007/s11432-020-2955-6.

[2] C.-X. Wang, J. Bian, J. Sun*, W. Zhang, and M. Zhang,“A survey of
5G channel measurements and models,”IEEE Commun. Surveys Tuts.,
vol. 20, no. 4, pp. 3142-3168, 4th Quart., 2018.

[3] P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user
location and tracking system,” in Proc. IEEE INFOCOM’00, Tel Aviv,
Israel, 2000, pp. 775–784.

[4] M. Zhou, X.-Y. Li, Y. Wang, and W. Nie, “6G multisource-information-
fusion-based indoor positioning via Gaussian kernel density estimation,”
IEEE Internet Things J., vol. 8, no. 20, pp. 15117–15125, Oct. 2021.

[5] D. Sun, Y.-N. Zhang, W.-W. Xia, et al., “A BLE indoor positioning
algorithm based on weighted fingerprint feature matching using AoA
and RSSI,” in Proc. WCSP’21, Changsha, China, 2021, pp. 1–6.

[6] S. Huang, K. Zhao, Z.-Q. Zheng, W.-Q. Ji, T.-Y. Li, and X.-F. Liao,“An
optimized fingerprinting-based indoor positioning with Kalman filter and
universal kriging for 5G internet of things,” Wireless Commun. Mobile

Comput., vol. 2021, no. 9936706, June 2021.
[7] K.-S. Wu, J. Xiao, Y.-W. Yi, M. Gao, and L. M. Ni, “FILA: Fine-grained

indoor localization,” in Proc. IEEE INFOCOM’12, Orlando, FL, USA,
2012, pp. 2210–2218.

[8] J. T. Sospedra, R. Montoliu, S. Trilles, Ó. Belmonte, and J. Huerta,
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