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Abstract—The freshness and usefulness of information play an
important role in offering ubiquitous connectivity for time-critical
control applications. A concept named value of information (VoI)
is proposed based on the field of information theory to quantify
the usefulness of data for sensor-assisted Internet of Things (IoT)
networks in the presence of transmission noise. In this work, we
focus on general Gaussian random process models and study the
rate of change of the VoI when generating more data samples
and increasing the signal-to-noise ratio (SNR). We further look
at Gauss-Markov random process models, and investigate the
impact of the number of observations and the SNR on the VoI
performance. It is interesting to find that using more data samples
is effective to improve the VoI only in the low SNR regime,
while it yields zero rate of change of the VoI in the high SNR
regime. Moreover, the VoI can be improved by increasing the
SNR in both high and low SNR regimes regardless of how many
samples are used. We also find a trade-off between the SNR and
the number of observations, and scale back SNR to achieve the
same VoI improvement by adding one extra observation. The
results illustrated in this work can be used in the design of
practical real-time IoT networks.

Index Terms—Value of information, data freshness, Internet
of Things

I. INTRODUCTION

Driven by the rapid advance in intelligent sensor-based
Internet of Things (IoT), fresh and useful information has be-
come increasing important in order to make real-time decisions
and guarantee efficient network operation. Sensing devices are
deployed to continuously collect the ambient data in IoT, and
the data is required to be transmitted to a remote monitor as
timely as possible to make sure that the monitor always holds
the latest status information of a target physical process. A
metric named age of information (AoI) is employed to measure
the freshness of information from the receiver’s side [1]. The
AoI is defined as the time duration since the generating time of
the latest received data sample. It increases linearly with unit
slope and decreases suddenly when a new packet is observed.

The research on AoI has received increasingly interest over
the recent years [2]. The AoI has been linked to queueing
theory [3], signal processing theory (estimation theory) [4] and
information theory [5], and it has worked as an effective tool in
the design of freshness-aware network architectures [6]. AoI-
optimal scheduling and wireless resource allocation problems
have been extensively investigated in a variety of specific
5G/6G scenarios [7]–[9]. Furthermore, AoI variants have also
been introduced to meet different demands in different applica-
tions. Since the performance of the AoI degrades linearly over

time, non-linear AoI functions have been explored to quantify
how dissatisfying the outdated information is [10]–[12].

Despite these contributions, the effects of the signal-to-
noise ratio (SNR) and the correlation between data samples on
the data freshness have not been clearly treated. In practice,
samples can be negatively affected if they are observed through
a poor channel, thus the usefulness of data deteriorates. How-
ever, the quality of the transmission channel was ignored in
many existing works. Moreover, existing AoI and its variants
characterise the data freshness by observing the most recent
sample. Using a single observation is reasonable in non-noisy
Markov models, but in the presence of noise, all the past
observations at the receiver are correlated and they all contain
valuable information about the underlying data source. There-
fore, both the SNR and past data samples are important factors
affecting the data freshness. Regarding this background, we
are motivated to employ the AoI in an information-theoretic
context, and study how the usefulness of data changes with
the SNR and the number of past observations.

Recently, we proposed the concept of the value of infor-
mation (VoI) based on the mutual information and obtained
its closed-form expression in general Gaussian process mod-
els [13], [14]. In this work, we explore the impact of the SNR
and the number of observations on the VoI with the aim of
improving its performance. Specifically, we study the rate of
change of the VoI with respect to the number of observations
and the SNR in Gaussian models. We further apply these
results to Gauss-Markov models in which the correlation
function is exponential. We find that, in the high SNR regime,
increasing the SNR is a possible method to improve the VoI,
but using more data samples is not. In the low SNR regime,
both methods can help to increase the VoI, and there exists
a trade-off: either increasing SNR for a fixed number of
observations or using an extra data sample for a fixed SNR
can achieve the same target value. The results presented in
this work can be applied in various Gauss-Markov models,
such as the autoregressive model and the Ornstein–Uhlenbeck
model, to improve the usefulness of information in practical
IoT-assisted control applications.

II. SYSTEM MODEL

A. Value of Information Definition

We consider a sensor-based IoT system in which sensing
devices are deployed to monitor the surrounding environment,
traffic and so on. The physical phenomenon under observation



is modelled as a random process {Xt}. The information
generated by the sensor at the transmitter needs to be com-
municated to a remote monitor promptly, and the processed
data will be further used to control a plant in such real-time
monitoring systems. We denote Xti as the data packet which
is sampled at time ti. It represents the status of the underlying
random process at ti and i is the index of this sample.
From the receiver’s perspective, {Yt} is the observed random
process. We denote Yt′i

as the i-th corresponding observation
which is received at time t′i. Due to the transmission and
queuing delay, we assume that t′i > ti. Due to the noise and
interference through the transmission channel, we assume that
{Yt} ≠ {Xt} which means that the underlying random process
is not directly observable at the receiver.

Given a time instant t, the traditional age of information
concept is defined as t− tn in which t > t′n. Xtn represents
the latest received data sample and the AoI only measures
the time duration since the most recent received packet is
generated. In our work, we define the value of information
in an information-theoretic context. Specifically, the VoI is
defined as the mutual information between the state of the
underlying random process at a given time t and the latest m
observations, i.e.,

v(t) = I(Xt;Yt′n
, · · · , Yt′n−m+1

), t > t′n. (1)

Here, n is the total number of data samples observed by the
monitor and we extract the latest m (1 ≤ m ≤ n) observations
to measure the usefulness of the data. This mutual information-
based VoI notion measures the reduction in uncertainty for the
current unknown status of the underlying latent process given
a collection of observed measurements. If the entropy of Xt

is identical regardless of the time (i.e., the random process
{Xt} is stationary), the VoI can be functionally linked to the
conditional entropy of Xt given {Yt′n

, · · · , Yt′n−m+1
}. In this

case, the VoI can also be interpreted as how much information
the observation {Yt′n

, · · · , Yt′n−m+1
} tells us about a latent

status Xt.

B. Noisy Gaussian Process Model

We denote vector Xm and Ym as the sets of the lat-
est m samples and observations, respectively, i.e., Xm =
[Xtn , · · · , Xtn−m+1 ]

T and Ym = [Yt′n
, · · · , Yt′n−m+1

]T. We
assume that the stochastic process {Xt} is Gaussian and
stationary. Let the variance of this Gaussian process be σ2

x and
the mean be 0. For any 1 ≤ i ≤ n, Xti is normally distributed
with Xti ∼ N (0, σ2

x). Xm is multivariate normally distributed
with Xm ∼ N (0, σ2

xKXm
) where the autocorrelation matrix

KXm is given by

KXm =
1 rtn−tn−1

· · · rtn−tn−m+1

rtn−tn−1 1 · · · rtn−1−tn−m+1

...
...

. . .
...

rtn−tn−m+1
rtn−1−tn−m+1

· · · 1

 .

(2)

In this matrix, r is the Pearson correlation coefficient which is
used to represent the dependency between the data samples.
Given a pair of random variables (Xti , Xtj ), it can be pre-
sented by r|ti−tj |, which only relates to the time difference,
for stationary random processes. The correlation coefficient
ranges from −1 to 1. If r = 0, there is no linear correlation
between two variables. If r = 1 or −1, they can be regarded
as positively or negatively highly-correlated variables.

Data samples are communicated through the following
additive white Gaussian noise channel

Ym = Xm +Nm (3)

where Nm = [Nt′n
, · · · , Nt′n−m+1

]T. We denote {Nt′i
} as

noise samples which are independently, identically and nor-
mally distributed with Nt′i

∼ N (0, σ2
n) for any 1 ≤ i ≤ n.

In this model, we denote γ as the signal-to-noise ratio (SNR)
which is given by

γ =
σ2
x

σ2
n

. (4)

III. VOI IN GAUSSIAN MODELS

In the model we described above, the value of information
defined in (1) for general Gaussian and stationary process
models is given in the following lemma [14].

Lemma 1. For a fixed time instant t, the VoI for the noisy
Gaussian model is given as

v(m, γ) = −1

2
log

[
1− uT

m

(
KXm

+
1

γ
Im

)−1

um

]
, (5)

where the vector um is given by

um =

[
rt−tn , rt−tn−1

, · · · , rt−tn−m+1

]T
. (6)

Here, KXm
is the autocorrelation matrix which is given

in (2) and Im is the m-dimensional identity matrix. Vector
um measures the dependency between the state at time t
and past states of the underlying random process. The VoI
is presented by a function of m and γ. m is the number of
observations are used and the SNR γ represents the quality
of the communication channel. Compared with the traditional
AoI concept, it is easy to see that this VoI concept measures
both the correlation property of the underlying data source1

and whether the channel condition is poor or good.
Lemma 1 shows that the VoI is largely affected by the

number of past observations m and the SNR γ. For simplicity,
we denote η as the absolute value of the exponential VoI
difference, i.e.,

η =

∣∣∣∣e−2v(m,γ) − e−2v(m′,γ′)

∣∣∣∣. (7)

η is a non-negative function of m, m′, γ and γ′. It can be used
to represent the growth of the amount of valuable information

1The correlation can be affected by either the inherent property of the
underlying data source (which depends on the autocorrelation function r in
rδ) or the time duration between the generation time of two samples (which
depends on the time difference δ in rδ).



by using more past observations or increasing the SNR. We
consider the following two cases to further explore the VoI:
(1) For a fixed SNR γ, the change of the VoI when increasing
m by one, which is denoted as ηm; (2) for a fixed number
of observations m, the change of the VoI when increasing a
certain value of the SNR, which is denoted as ηγ . Then, we
can state the following two propositions.

Proposition 1. For a fixed time instant t and a fixed SNR γ,
the exponential VoI difference over the number of observations
(m′ = m+ 1) can be given by

ηm = ρ

[
uT
m

(
KXm +

1

γ
Im

)−1

wm − rt−tn−m

]2
. (8)

Vector wm is given by

wm =

[
rtn−tn−m

, rtn−1−tn−m
, · · · , rtn−m+1−tn−m

]T
. (9)

ρ is given by

ρ =

[
1 +

1

γ
−wT

m

(
KXm

+
1

γ
Im

)−1

wm

]−1

. (10)

Proof: See Appendix A.
This proposition shows the improvement of the VoI when

increasing the number of observations by 1 for a fixed SNR,
i.e., ηm = e−2v(m,γ) − e−2vv(m+1,γ). rt−tn−m

captures the
correlation between the current status Xt and the (m+ 1)-th
measurement Yt′n−m

.

Proposition 2. For a fixed time instant t and a fixed m, the
exponential VoI difference over the SNR can be given by

ηγ = uT
m

[(
KXm

+
1

γ′ Im

)−1

−
(
KXm +

1

γ
Im

)−1]
um. (11)

Proposition 2 shows the improvement of the VoI when
increasing the SNR from γ to γ′ for a fixed m, i.e., ηγ =
e−2v(m,γ) − e−2v(m,γ′) where γ′ > γ.

IV. VOI IN GAUSS-MARKOV MODELS

In this section, we apply the results in Propositions 1
and 2 to a special case in which the underlying source
data is exponentially correlated. If the underlying stochastic
process {Xt} is Gaussian and its autocorrelation function is an
exponential function, then {Xt} is not only a Gaussian but also
a first-order Markov process. This case can be used to model
many practical Gauss-Markov random processes, such as the
autoregressive process and the Ornstein–Uhlenbeck process.
We focus on this general Gauss-Markov model to further study
how the VoI varies with the number of observations and the
SNR.

We write the correlation coefficient as rδ = βδ where β is
a constant, ranging from 0 to 1. We assume that samples are

generated at arbitrary but fixed times {ti}, and denote τi as
the sampling interval of two packets, i.e.,

τi = tn+1−i − tn−i, 1 ≤ i ≤ m. (12)

In the absence of the noise (when σ2
n = 0), the underlying

random process is not latent from the receiver’s perspective
(i.e., Xti = Yt′i

), thus the VoI defined in (1) can be written as

v(t) = I(Xt;Xtn) = −1

2
log

[
1− β2(t−tn)

]
, t > t′n. (13)

In this case, the VoI does not relate to the number of observa-
tions or the quality of the transmission channel. It only relates
to the correlation function and the time elapsed until a new
observation is made.

In the presence of the noise, it is easy to see that

I(Xt;Yt′n
, · · · , Yt′n−m+1

) ≤ I(Xt;Xtn). (14)

The equality holds when the SNR γ → ∞ or σ2
n = 0.

In this case, the following corollaries can be derived from
Propositions 1 and 2 under different SNR conditions.

A. High SNR regime

Corollary 1. In the high SNR regime, for a fixed time instant
t and a fixed SNR γ, the exponential VoI difference over the
number of observations satisfies

ηm = O(γ−m). (15)

Moreover, ηm = 0 holds in the absence of the noise.

Proof: See Appendix B.
Corollary 1 shows how the VoI varies when increasing m by

1 for a fixed and high SNR. For the exponentially correlated
data source, the underlying random process is Markov and the
observed process will also turn to be Markov in the absence
of noise. Therefore, in Corollary 1, the difference between the
VoI with m + 1 and m observations is presented by a big
O term in which γ−m approaches 0 exponentially quickly
as m grows. This means that increasing the length of the
observation window does not help to improve the VoI in this
case. Regardless of the correlation condition, the high SNR
regime yields nearly zero rate of change of the VoI when
increasing the number of observations.

Corollary 2. In the high SNR regime, for a fixed time instant
t and a fixed m, the exponential VoI difference over the SNR
satisfies

ηγ =

(
1

γ
− 1

γ′

)
β2(t−tn) +O

(
1

γ2

)
+O

(
1

γ′2

)
. (16)

Proof: In this case, we assume that 1
γ → 0 and 1

γ′ → 0.
This result is obtained directly by (KXm + ϵIm)

−1
= K−1

Xm
−

ϵ(K−1
Xm

)
2
+O(ϵ2) when ϵ → 0 in Proposition 2.

Corollary 2 shows the change of the VoI when increasing
the SNR for a fixed m. The increase of the VoI with different
SNR does not relate to m, thus the SNR is the dominant factor
affecting the VoI in the high SNR regime. When m = 1, the



difference of the VoI in Corollary 1 can be presented as the
same order in Corollary 2. This means that, only for very
small m, we may scale back SNR as we increase m by one
to achieve the same VoI.

B. Low SNR regime

Corollary 3. In the low SNR regime, for a fixed time instant
t and a fixed SNR γ, the exponential VoI difference over the
number of observations satisfies

ηm = β2(t−tn)β
2

m∑
i=1

τi
[
γ −

(
1 + 2m

)
γ2

]
+O(γ3). (17)

Proof: See Appendix C.
In the low SNR regime, Corollary 3 shows that increasing

the number of observations is a possible way to improve the
VoI. However, ηm decreases with increasing m. This means
that infinite observations cannot increase the VoI infinitely.
Moreover, the low correlation condition (β → 0) also yields
a zero rate of change of the VoI when increasing m which is
the same as the high SNR regime. A highly correlated data
source (β → 1) yields a positive VoI difference.

Corollary 4. In the low SNR regime, for a fixed time instant
t and a fixed m, the exponential VoI difference over the SNR
satisfies

ηγ = (γ′ − γ)

(
1+

m−1∑
j=1

β
2

j∑
i=1

τi
)
β2(t−tn) +O(γ2)+O(γ′2).

(18)

Proof: This results are obtained by series expansion at
γ = 0 and γ′ = 0.

Corollary 4 shows that increasing the SNR is another
possible way to improve the VoI in the low SNR regime. There
is a trade-off existing in this case, i.e., either increasing SNR
or increasing m by one can achieve the same target value.
Compared with Corollaries 3 and 4, we have the following
remark.

Remark 1. Increasing the SNR by a certain amount ∆γ has
the same effect on the VoI as increasing m by 1 in the low SNR
regime. Specifically, for fixed m and γ, we have v(m+1, γ) =
v(m, γ +∆γ) when

∆γ =
γ

m∑
j=1

β
−2

m∑
i=j

τi

. (19)

V. NUMERICAL RESULTS

Numerical results obtained by Monte Carlo simulations are
provided in this section. In the simulation, data samples are
generated randomly at rate λ according to a Poisson process.
The transmission delay of each sample is also generated
randomly according to an exponential distribution with rate
µ. We set λ = 0.5 and µ = 1, and evaluate the VoI at a fixed
time instant t = 100.

Fig. 1 shows the normalised VoI with the different number
of observations m and different SNR γ, and illustrates the

Fig. 1. The normalised value of information with different number of
observations m ∈ {1, 2, 3, 4, 5, 6} and different SNR γ ∈ (0, 8). The
correlation parameter β = 0.7.

Fig. 2. The improvement of the value of information by increasing the number
of observations m ∈ {1, 2, 3, · · · , 8, 9, 10} under different SNR conditions
γ ∈ (0, 10). The correlation parameter β = 0.7.
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Fig. 3. The value of information versus the correlation parameter β ∈
(0.4, 1).



trade-off between m and γ. The normalised VoI is the ratio of
the VoI and its non-noisy Markov counterpart which is given
in (13). It is shown that the VoI increases and then converges
when increasing the SNR or using more data samples. Fixing
the SNR, the VoI increases with m when the SNR is small,
while the change is not obvious when the SNR is large. This
result verifies the statements given in Corollaries 1 and 3,
i.e., only in the low SNR regime, the VoI can be increased
by increasing m. Fixing m, the VoI increases with the SNR
regardless of the number of observations. This means that
increasing the SNR is helpful to increase the VoI and verifies
the results given in Corollaries 2 and 4.

Fig. 2 further shows that the performance of the VoI
when m rises from 1 to 10 for different SNR. The vertical
axis represents the percentage increase in the VoI which is
calculated by v(m,γ)−v(1,γ)

v(1,γ) × 100%. When the SNR is low,
the VoI can be improved up to 60% by using more past
observations. When the SNR is high, large m is not helpful to
improve the VoI and the SNR is the dominant term affecting
the VoI.

Fig. 3 illustrates that how the VoI varies with the au-
tocorrelation parameter β. Large β represents the highly-
correlated data source and small β means weak correlation.
Regardless of the SNR and the number of observations, the VoI
always increases with the correlation parameter. As β rises, the
past data samples will be more dependent and contain more
valuable information about the underlying random process,
which further yields higher VoI.

VI. CONCLUSIONS

In this work, we focused on general Gaussian process
models and investigated how the SNR and the number of
observations affect the value of information and how to
improve the performance of the VoI. We further looked at an
exponentially decaying autocorrelation function and studied
the trade-off between the two in different SNR conditions. It
is interesting to find that, in the high SNR regime, increasing
the SNR can largely increase the VoI regardless of how many
observations are captured. However, using more past data
samples yields nearly zero rate of change of the VoI in this
case. In the low SNR regime, we showed that increasing
the SNR by a certain value can achieve the equivalent VoI
performance as increasing the number of observations by 1.
The analytical results obtained in this work can be further used
to optimise the value of information for time-critical Gauss-
Markov models.

APPENDIX A
PROOF OF PROPOSITION 1

Let the vector

wm =

[
rtn−tn−m

, rtn−1−tn−m
, · · · , rtn−m+1−tn−m

]T
.

The autocorrelation matrix of Xm+1 can be written as

KXm+1 =

[
KXm

wm

wT
m 1

]
. (20)

For simplicity, we denote

Σm+1 = KXm+1
+

1

γ
Im+1 =

[
Σm wm

wT
m 1 + 1

γ

]
. (21)

The correlation between the current status Xt and the past
m+ 1 observations can be captured by the following vector

um+1 = [uT
m, rt−tn−m ]T. (22)

Based on Lemma 1, the VoI with m + 1 observations is
given by

v(m+ 1, γ) = −1

2
log

[
1− uT

m+1Σ
−1
m+1um+1

]
. (23)

Based on the block matrix inversion, we have

Σ−1
m+1 =

[
Σ−1

m + ρΣ−1
m wmwT

mΣ−1
m −ρΣ−1

m wm

−ρwT
mΣ−1

m ρ

]
(24)

where

ρ =

(
1 +

1

γ
−wT

mΣ−1
m wm

)−1

=
γ

1 + γ − γwT
mΣ−1

m wm

.

(25)
Therefore, the VoI difference can be presented by

uT
m+1Σ

−1
m+1um+1

= uT
mΣ−1

m um + ρ

(
uT
mΣ−1

m wm − rt−tn−m

)2

. (26)

APPENDIX B
PROOF OF COROLLARY 1

For exponentially correlated random processes, we have

um = βt−tn

[
1, βτ1 , · · · , β

m−1∑
i=1

τi
]T

, (27)

wm = βτm

[
β

m−1∑
i=1

τi
, β

m−1∑
i=2

τi
, · · · , 1

]T
, (28)

rt−tn−m
= βt−tnβ

m∑
i=1

τi
, (29)

KXm =



1 βτ1 · · · β

m−1∑
i=1

τi

βτ1 1 · · · β

m−1∑
i=2

τi

...
...

. . .
...

β

m−1∑
i=1

τi
β

m−1∑
i=2

τi
· · · 1


, (30)

and

K−1
Xm

=


a1 b1
b1 a2 b2

b2
. . . . . .
. . . am−1 bm−1

bm−1 am

 . (31)



Here,

ai =


1

1−β2τ1
i = 1

1
1−β2τm−1

i = m
1

1−β2τi−1
+ 1

1−β2τi
− 1 others

(32)

and
bi = − βτi

1− β2τi
, 1 ≤ i ≤ m− 1. (33)

In the high SNR regime, we assume that 1
γ → 0. Series

expansion is used at 1
γ = 0 to study how the VoI varies with

the length of the time window m. For simplicity, we denote
1
γ as z and let η(z) = g2(z)

h(z) where

g(z) = uT
m

(
KXm + zIm

)−1

wm − rt−tn−m

h(z) = 1 + z −wT
m

(
KXm

+ zIm

)−1

wm.

(34)

It is easy to see that g(0) = 0 and g′(0) = 0, thus we have
η(0) = 0 and η′(0) = 0.

For any positive integer k > 1, k-th order derivatives of
g(z) and h(z) are given as

∂kg

∂zk
= (−1)kuT

m

[(
KXm + zIm

)−1]k+1

wm

k∏
i=1

i, (35)

∂kh

∂zk
= (−1)k+1wT

m

[(
KXm

+ zIm

)−1]k+1

wm

k∏
i=1

i.

(36)
Since

uT
mK−1

Xm
= βt−tn [1, 0, · · · , 0] (37)

K−1
Xm

wm = βτm [0, · · · , 0, 1]T, (38)

we have ∂kg
∂zk = 0 holds for any 1 ≤ k ≤ m− 1 when z = 0.

Therefore, we can state that ∂kη
∂zk = 0 at z = 0 for any 1 ≤

k ≤ m− 1.
If 1

γ = 0 we have uT
mΣ−1

m wm = rt−tn−m
in Proposition

1, thus the VoI with m+1 observations equals its counterpart
with m observations when there is no noise.

APPENDIX C
PROOF OF COROLLARY 3

Similar to the analysis given in the high SNR regime, we
let η(γ) = γ g2(γ)

h(γ) where

g(γ) = γuT
m

(
γKXm + Im

)−1

wm − rt−tn−m

h(γ) = 1 + γ − γ2wT
m

(
KXm

+ Im

)−1

wm.

(39)

It is easy to see that g(0) = −rt−tn−m
and h(0) = 1. The

derivatives of g(γ) and h(γ) are given as

g′(0) = uT
mwm, g′′(0) = −2uT

mK−1
Xm

wm (40)

h′(0) = 1, h′′(0) = 2wT
mwm. (41)

Therefore, derivatives of η(γ) are given as

η′(0) = r2t−tn−m
,

η′′(0) = −2r2t−tn−m
− 4mrt−tn−m

βt−tnβ

m∑
i=1

τi
.

(42)
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