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Abstract—Semantic communications target to reliably convey
the semantic meaning of messages. It is different from existing
communication systems focusing on reliable bit transmission.
To achieve the goal of semantic communications, we propose a
signal shaping method by minimizing the semantic loss, which is
measured by the pretrained bidirectional encoder representation
from transformers (BERT) model. The signal set optimization
problem for semantic communication systems with a few message
candidates is investigated. We propose an efficient projected
gradient descent method to solve the problem and prove its
convergence. Simulation results show that the proposed method
outperforms existing signal shaping methods in minimizing the
semantic loss.

Index Terms—Semantic communications, signal shaping, se-
mantic loss

I. INTRODUCTION

Semantic communications have been recognized as a

promising technology in the sixth-generation (6G) wireless

networks since only transmitting the meaning or content

of information [1]–[3]. However, the difficulty of represent-

ing semantic information with precise mathematical models

severely limits the development of semantic communications

[4]. Thanks to the recent advances of deep learning (DL), the

research on DL based semantic communications has attracted

a lot of interest. Most of them realized semantic informa-

tion transmission by designing the end-to-end communication

systems, e.g., [5]–[9]. To be more specific, Farsad et al. in

[5] proposed a semantic codec scheme based on bidirectional

long short term memory (BLSTM), which achieved lower

the word error rate. Xie et al. in [6] designed a semantic

communication system based on Transformer, which not only

uses transfer learning to ensure that the system is suitable

for different channel environments, but also uses semantic

similarity to verify the effectiveness of the system. Further, Xie

et al. [7] proposed a lite distributed semantic communication

system based on previous work [6], for Internet-of-Things

devices with limited computing capability. Besides, Kurka et

al. in [8] designed a neural network architecture with output

feedback based on autoencoder for image source. Weng et

al. in [9] proposed a attention mechanism based semantic

communication system for speech signals.

So far, DL-enabled semantic communications have shown

impressive capabilities, especially at low signal-to-noise

Fig. 1. A message semantic communication system

(SNR) regime. In fact, however, most of them still aim

to secure the bit-level/words-level/message-level precision,

e.g., [6], [7], [10]. This is because they use traditional bit-

level/words-level/message-level supervisions, such as cross en-

tropy (CE) or bit/word/message error rate, which are difficult

to catch the semantics [11]. In this letter, we propose a

signal shaping method for semantic communication systems

with a few message candidates. We formulate a signal set

optimization problem to minimize the semantic loss measured

by the pretrained bidirectional encoder representation from

transformers (BERT) model [12]. The formulated problem

is transformed to a vector optimization subject to a power

constraint and solved by an efficient projected gradient descent

method. Simulation results show that the proposed method

considerably outperforms existing signal shaping methods,

which aim to minimize the error rate, in reducing the semantic

loss.

II. SYSTEM MODEL

This letter considers a message semantic communication

system as illustrated in Fig. 1. In Fig. 1, a message mi chosen

from a small message set M of size M . It is then mapped to

the ith signal vector xi ∈ CN , where N denotes the number

of channel uses. Signals carrying messages may be wrongly

detected when passing through the noisy channel. Existing

communications systems use bit/symbol/message error rate as

the performance metrics for the system design, which over-

looks the semantic loss of different message error detection.

Previously, there has not any efficient way to measure the

semantic loss. Thanks to the advance of deep learning and

its applications in nature language processing, some trained

models provide an efficient way to quantify the semantic

similarity between two different messages. Based on the

http://arxiv.org/abs/2202.02072v2
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Fig. 2. An example to show the semantic similarity computed by the
pretrained BERT model.

pretrained BERT model in [12], we define the semantic loss

A(i, j) between message mi and mj as

A(i, j) = 1− φ(mi,mj), (1)

where φ(mi,mj) =
BΦ(mi)·BΦ(mj)

T

‖BΦ(mi)‖‖BΦ(mj)‖ denotes the semantic

similarity ranging from 0 to 1, and BΦ(·) represents the

pretrained BERT model, which includes billions of parameters

and is used for extracting the semantic information. In Fig. 2,

we show a table listing the semantic similarity of 4 messages.

It can be seen that the value of φ(mi,mj) can well reflect the

semantic similarity between mi and mj .

Without loss of generality, the signal vectors are as-

sumed to meet an average normalized power constraint,

i.e., E(||xi||22) ≤ 1. Given all messages being transmitted

with an equal probability 1
M

, the power constraint can be

expressed as 1
M

∑M

i=1 x
H
i xi ≤ 1. The channel considered

in this letter is the additive white Gaussian noise (AWGN)

channel that adds noise to achieve a given signal-to-noise

ratio (SNR) γ. Let X represent the set of all legitimate

transmitted signal vectors corresponding to M messages, i.e.,

X = {x1,x2,x3, · · · ,xM}. At the receiver, the maximum

likelihood (ML) detection can be performed by

x̂i = arg max
xi∈X

p(y|xi). (2)

As p(y|xi) ∝ exp(−||y − xi||22), the ML detector can be

further expressed as

x̂i = arg max
xi∈X

||y − xi||22. (3)

III. PROBLEM FORMALIZATION

According to [13], the pairwise error detection probability

for any xi 6= xj using the ML detector can be written as

P (xi,xj) = Q

(√

γ||xi − xj ||22
2

)

(4)

where Q(x) = 1√
2π

∫∞
x

exp
(

−u2

2

)

du. The corresponding

semantic loss caused by the wrong detection between xi and

xj can be expressed by

SL(mi,mj) = A(i, j)Q

(√

γ||xi − xj ||22
2

)

. (5)

For the transmission of all messages, a union upper bound on

the average semantic loss can be expressed as

SL(X ) = 1

M

M∑

i=1

M∑

j=1,j 6=i

SL(mi,mj). (6)

Substituting (5) into (6), we can compute the upper bound for

the semantic loss as

SL(X ) = 1

M

M∑

i=1

M∑

j=1,j 6=i

A(i, j)Q

(√

||γxi − xj ||22
2

)

. (7)

Therefore, the optimization problem of signal shaping to

reduce the semantic loss can be formulated as

(P1) : Given : γ,A(i, j), ∀i, j
Find : X = {x1,x2, · · · ,xM}

Minimize : SL(X )

Subject to :
1

M

M∑

i=1

xH
i xi ≤ 1.

IV. THE PROPOSED SIGNAL SHAPING METHOD

Problem (P1) is a set optimization problem, which is

difficult to solve. To make it tractable, we first transform it as

a vector optimization problem and then propose an efficient

projected gradient descent algorithm to deal with it.

A. Problem Transformation

First, we rewrite the power of the Euclidean distance

between signal vectors as

||xi − xj ||22 = ||GDz(ei − ej)||22, (9)

where

G =

M
︷ ︸︸ ︷

[IN , IN , · · · , IN ] ∈ C
N×MN ,

Dz = diag(z) ∈ C
MN×MN ,

z = [xT
1 ,x

T
2 , · · · ,xT

M ]T ∈ C
MN×1,

ei = gi ⊗ xi ∈ C
MN×1, ej = gj ⊗ xj ∈ C

MN×1,

and gi ∈ C
M×1, gi ∈ C

M×1 represent the ith and jth one-hot

vectors with all zeros except a one at the ith position and jth

position, respectively. Expanding the expression, we have

||GDz(ei − ej)||22 = (ei − ej)
HDH

z GHGDz(ei − ej)

= trace
(
DH

z RGDz∆Ei,j

)
,

(10)

where RG = GHG and Eij = (ei − ej)(ei − ej)
H .



Summarizing above and based on the rule

trace(DuADvB) = uH(A⊙B)v [14], we have

||xi − xj ||22 = zHWijz, (11)

where Wij = RG ⊙∆Eij .

With such transformation, the upper bound for the semantic

loss can be rewritten as

SL(z) =
1

M

M∑

i=1

M∑

j=1,j 6=i

A(i, j)Q

(√

γzHWijz

2

)

, (12)

and the power constraint can be rewritten as

zHz ≤M. (13)

Therefore, the set optimization problem can be reformulated

as a vector optimization problem:

(P2) : Given : γ,Wij , A(i, j), ∀i, j
Find : z

Minimize : SL(z)

Subject to : zHz ≤M.

B. Projected Gradient Descent Optimization Method

Problem (P2) is a non-convex problem and the optimal

solution to the problem (P2) is not unique1. To solve the

problem (P2), we formulate the Lagrangian function as

L(z, λ) = SL(z) + λ(zHz−M). (15)

According to the Karush-Kuhn-Tucker (KKT) conditions, the

optimal solutions to the problem (P2) should satisfy






∇zL(z, λ) = 0,

λ(zHz−M) = 0,

λ ≥ 0.

(16)

Because L(z, λ) monotonically decrease with the power, thus

it is minimized when the power constraint is met with strict

equality, i.e., λ(zHz−M) = 0. The first condition in (16) can

be expressed as

∇zL(z, λ) = [Ω(z) + 2µIMN ] z = 0, (17)

where

Ω(z) = − 1

M

M∑

i=1

M∑

j=1,j 6=i

√

γA(i, j)2

4πzHWijz
· e−

γz
H

Wijz

4 ·Wij .

(18)

Clearly, the closed-form solution to (17) is difficult to obtain.

In this letter, we resort to a projected gradient descent method

to find a good solution. In detail, we first compute the gradient

descent direction in the kth iteration as

gk = −Ω(zk)zk. (19)

1It is obvious that a same phase rotation on all signal vectors will not
change their mutual Euclidean distances. Thus, a phase rotation on the optimal
solution is still an optimal solution to achieve the minimum semantic loss.

Algorithm 1: Projected gradient descent algorithm for

minimizing semantic loss in semantic communications

Initialize k = 1, ǫ, and z1 with zH1 z1 = M .

repeat

Compute the gradient descent direction by (19).

Perform projection by (20).

Search θ by solving (22).

Update zk+1 by (21).

k ← k + 1
until

‖g⊥

k ‖2

‖gk‖2

≤ ǫ

Output z = zk.

To ensure the power of the solution unchanged, we perform a

projection by

g⊥
k = gk −

zHk gkzk

||zk||22
, (20)

such that zHk g⊥
k = 0. After projection, we update the solution

to be

zk+1 = cos θ · zk + sin θ ·
√
M

g⊥
k∥

∥g⊥
k

∥
∥
2

, (21)

where θ ∈ [0, π
2 ] can be obtained by solving

θ = arg min
θ∈[0,π

2
]
SL(zk+1). (22)

By updating the solution until the stop criterion
‖g⊥

k ‖2

‖gk‖2

≤ ǫ is

met, we can obtain a good solution. For clarity, we summarize

the projected gradient descent algorithm in Algorithm 1.

C. Convergence and Computational Complexity Analysis

Since the semantic loss is lower bounded, Algorithm 1

converges because of the following proposition.

Proposition 1: Algorithm 1 always guarantees SL(zk+1) ≤
SL(zk).

Proof: For a sufficient small θ with θ → 0, we can derive

the first-order Taylor expansion of SL(zk+1) based on (21) as

SL(zk+1) ≈ SL(zk)− gH
k ·
√
M

g⊥
k∥

∥g⊥
k

∥
∥
2

· θ. (23)

Since gH
k g⊥

k = (1 − cos2 α)||gk||22 ≥ 0, where α =
arccos <gk,zk>

||gk||2||zk||2 , therefore we have

SL(zk+1) ≤ SL(zk). (24)

The computational complexity of Algorithm 1 mainly

comes from the computation of the gradient descent direction

by (18) and (19). It can be analyzed to be O(NiterM
4N2),

where Niter represents the number of iterations that Algorithm

1 performs. Even though the computational complexity is high

for large M , it will not be a problem as the signal shaping

can be conducted offline.
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Fig. 4. Signal constellation designs for semantic communication systems with M = 4, 8 and 16 messages and N = 1 at γ = 10 dB.
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Fig. 3. Convergence property of Algorithm 1 with 10 different randomly
generated solutions.

V. SIMULATION AND DISCUSSION

In this section, we first investigate the convergence of the

proposed algorithm for signal shaping and its sensitivity to

the randomly generated initial solution z1 by simulations. In

the simulations, we set M = 16, N = 1, γ = 10 dB and

ǫ = 10−2. Algorithm 1 is performed 10 times with 10 different

initial solutions in the simulations. The results are demon-

strated in Fig. 3. It is shown that Algorithm 1 converge fast and

is sensitive to the initial solution. To combat this sensitivity, we

optimize the signal shaping with 50 randomly generated initial

solutions and choose the one with the minimum semantic loss

in the following simulations.

Second, we show the optimized signal designs for message

semantic communication systems with M = 4, 8, 16 candidate
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M=4, N=1, SSSC, Simu.

Fig. 5. Semantic loss of different signal shaping methods.

messages2. Other parameters N , ǫ, γ are set as 1, 10−2, and

10dB, respectively. The signal designs are illustrated in Fig. 4.

It is shown that the designed signal constellations are irregular,

which are different from traditional ones. This is because

the semantic meaning of each signal points are taken into

considerations. Those signal constellation points have larger

semantic similarities are closer to each other, leading to that

more space is left to place other signal constellation points.

Third, to show the superiority of the proposed signal

shaping for semantic communications (SSSC), we compare

it with those signal designs that can achieve the minimum

message error rate, e.g., binary phase shift keying (BPSK)

and quadrature phase shift keying (QPSK). Simulation results

are demonstrated in Fig. 5. Simulation results show that taking

2The messages to be delivered and their semantic similarity matrices are
available at https://github.com/SSG-SDU/Semantic-Similarity/tree/master.

https://github.com/SSG-SDU/Semantic-Similarity/tree/master


the semantic meaning of messages into consideration can bring

considerable performance gain in reducing the semantic loss

in semantic communication systems. Specifically, under the

setup with M = 4, N = 1, SSSC is better than QPSK by

1 dB at the semantic loss of 10−3. Under the setup with

M = 8, N = 3, SSSC is better than BPSK by around

0.8 dB at the semantic loss of 10−2. Under the setup with

M = 16, N = 2, SSSC is better than QPSK by 1.3 dB at the

semantic loss of 2× 10−2. Besides, we include the numerical

results of the theoretical upper bound of semantic loss and it

is shown that the theoretical upper bound is tight at high SNR

regime.

VI. CONCLUSION

In this letter, we proposed a signal shaping method to

minimize the semantic loss for semantic communication sys-

tems with a few message candidates. The semantic loss was

quantified by the pretrained BERT model. We proposed an

efficient projected gradient descent method to deal with the

problem. We compared the proposed signal design with ex-

isting signal designs that achieve the minimum message error

rate. Simulation results demonstrated that the proposed signal

shaping method can provide considerable gain in reducing the

semantic loss.
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