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Abstract—The core of fingerprinting is based on the uniqueness
of the RF signature in a given location over time. In the offline
phase, the fingerprints —the set of RSSI values from different
anchors— are collected at given locations generating a radio
map. In the online phase, a matching algorithm retrieves the
most similar fingerprints from the radio map and computes
the position estimate for every operational fingerprint. However,
computing the similarities to all the samples in the radio map
may be inefficient and not scale in those cases where the radio
map is large. Previous attempts to alleviate the computational
load rely on the segmentation of the radio map through smart
clustering in the offline stage, and a two-step estimation process in
the online stage. However, most of the clustering models applied
are generic without any consideration about signal propagation
and relevant fingerprints are often filtered, resulting in a higher
positioning error. This paper introduces Strongest AP Set (SAS),
a clustering model conceived for RSSI-based fingerprinting. The
results show that SAS is not only able to reduce the computational
cost, but also to provide better accuracy than the full model
without clustering.
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I. INTRODUCTION

Fingerprint-based positioning has become very popular in
the last years with around 1800 published works according to
Scopus. The model introduced in RADAR [1], with an offline
and an online phase, is still used by many fingerprint-based
solutions. Despite being originally conceived for Wi-Fi,
fingerprinting is gaining popularity with ZigBee, Bluetooth
Low Energy (BLE), LoRaWAN and SigFox [2]-[5].

The core idea of Received Signal Strength Indicator (RSSI)
fingerprinting relies on collecting fingerprints in several known
locations (i.e., the reference dataset or radio map) in the
offline phase. The online phase usually relies on a matching
algorithm, which retrieves the most similar fingerprints from
the radio map and then computes the position estimate
based on them. This matching algorithm, which in essence
is a custom implementation of the k-Nearest Neighbour
(k-NN) algorithm, requires to compute the similarity between
operational fingerprint and all the reference fingerprint in
the radio map. In large deployments, when the number of
reference samples and detected Access Points (APs) is large,
k-NN may not be efficient and scalability problems may arise.
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Some works have reduced the computational cost at the
operational stage, including filtering by common or strongest
APs or clustering. However, Torres-Sospedra et al. [6] showed
that reducing the computational cost is usually at the expense
of increasing the positioning error, being K -Means clustering
an alternative providing a good trade-off between both metrics.

Clustering models are generic and they are applied without
any specific knowledge about radio signal propagation. We
consider that the accuracy provided by the k-NN can not only
be kept but also improved by focusing only on the part of the
radio map which is relevant to the operational fingerprint.

In this paper, we propose the SAS clustering method, which
exploits the concept that the strongest APs are indicating the
region where the user is located. Therefore, the idea behind
SAS is to cluster the fingerprints in the radio map based on
the set of the IV strongest APs. Our contributions include:

o A clustering model specific for RSSI-based positioning
grounded on the set of strongest APs.

o A sophisticated approach to select the most similar
clusters not based on distances in the RSSI feature space.

o Experiments over 10 datasets using the positioning error,
time to generate the clusters, and computational cost at
the operational stage as benchmarking metrics.

II. RELATED WORK

A popular strategy to reduce the computational cost of
fingerprinting relies on clustering. In general, clustering
methods make groups of similar objects. Thus, in
fingerprinting, each cluster contains similar fingerprints
[71, [8]. In the online phase, the search for the most similar
fingerprints is done in two steps: first determining which is
the most relevant cluster and, then, searching for the most
similar fingerprints within that cluster.

The most popular clustering model is K-Means, which
splits the RSSI feature space into Voronoi cells, and it has been
widely applied to fingerprinting. Anuwatkun et al. [8] applied
it in combination with the difference of RSSIs, whereas Lee et
al. [9] developed an algorithm to find the optimal value of K
for K-Means, decreasing the positioning error by 20%with
respect the same positioning algorithm without clustering.

Variants of K-Means include Fuzzy c-Means (FCM) and
K-Medoids. FCM allows a fingerprint to belong to multiple
clusters [10]-[12], giving rise to overlapped areas. K-Medoids
provides a dataset partition and a cluster selection suitable for
fingerprinting [13], being able to detect/exclude outliers [14].



Affinity Propagation Clustering (APC) has been used in
positioning applications. It provides better accuracy than
traditional clustering models with less number of features [15].
Caso et al. [16] adapted APC for fingerprinting, improving
its accuracy and efficiency. APC does not require setting the
number of clusters, but the computational costs and memory
requirements are prohibitive in large radio maps.

DBSCAN was originally conceived as a density-based
clustering model, and it is more robust to outliers present on
the reference dataset than other traditional clustering models.
Despite its usage in fingerprinting is less common, it has
been used to improve the performance and to detect those
sub-regions in the operational area where the performance is
low [17]. However, DBSCAN seems to be very sensitive to
the radio map, ending in low performance in several cases.

A previous comparison showed that clustering models and
other optimization rules reduced the computational cost at the
expense of a slightly higher positioning error [18]. This work
introduces a novel clustering model for fingerprinting, not only
grouping similar samples, but also exploiting the information
about the current region to reduce the positioning error.

III. MATERIALS AND METHODS
A. Basics of Clustering in fingerprinting

Fingerprinting requires two phases (see Algorithm 1). In the
offline phase, reference fingerprints (s) are collected in a set
of locations whose position is known in advance, generating a
radio map (7). In the online phase, the operational fingerprints
(s") are compared to the fingerprints stored in the radio map.
Their position is estimated using the locations of the most
similar fingerprints in the radio map, usually computing their
centroid. Therefore, the cost of estimating the position for any
operational fingerprint in the test set, |V|, is O(|T|), which
may not be efficient in, for instance, large radio maps.

Clustering adds a new step to the offline phase (see @ in
Algorithm 1), which is devoted to generating groups of similar
fingerprints and a representative sample for each cluster. This
step is just run once per radio map, and it has no impact on
the operational time. However, some clustering models, such
as Affinity Propagation, are very demanding at this stage. In
those cases where the radio map is updated regularly, the time
to generate the clusters is a critical factor.

Clustering also modifies the operational phase to perform
the two-step search. First, the most relevant cluster is identified
(see in Algorithm 1). In most of the clustering models, a
cluster is represented by its centroid or a “popular” sample.
Thus, the coarse search corresponds to finding the most
similar cluster representative. Once, the centroid is selected,
the fine-grained search is done over the samples belonging to
that cluster (see in Algorithm 1), being the reduced radio
map 7 much smaller that the full radio map 7 (|7 << |T)).
The most significant gains in terms of estimation time are
expected to come from the use of a much smaller radio map.

The changes introduced by clustering in the fingerprinting
method are highlighted with (1)(3) in Algorithm 1.

Algorithm 1 Pseudocode of k-NN for positioning
1: input 7, V, k
2 Offline pre-processing of training datasets
3: for i =1 to |V| do

4: Identify most relevant cluster

5: Generate reduced radio map, 7', using 7 and s}
6 for j=1to |T]| do

7: Compute distance similarity s} and sz.

8: end for

9: Sort similarities in RSS space

10: Select the k closest candidates

11: Estimate building, floor and position

12: end for

13: Return: Estimated positions, floors, buildings

B. The Strongest AP Set (SAS) Clustering

Although traditional clustering models have been able
to tackle indoor positioning, the efficiency has often been
achieved at the cost of worse positioning accuracy [6]. Some
knowledge-based rules can narrow the problem, helping in
generating better clusters and providing better ways to identify
the most relevant cluster for an operational fingerprint.

In order to take into account the challenges of RSSI-based
positioning in clustering, we have developed Strongest AP Set
(SAS). SAS exploits the link between the strongest AP and the
sub-region in the operational area when creating a cluster. i.e.,
the set of strongest APs in an operational fingerprint is the key
to indicate the coarse-grained region where it was collected
since those strong signals cannot be measured anywhere else.

To adapt to any scenario, SAS uses 2 hyperparameters, N
and P. The former represents the length of the set of strongest
APs in a sample, and the latter indicates the minimum number
of common strongest APs between two samples to belong
to the same cluster. Finally, SAS follows the algorithmic
structure of the traditional fingerprint-based model [1] (see
Algorithm 1), where the £-NN model is applied over the
reduced radio map, 7', to estimate the position.

1) Creating the clusters: In the offline phase, SAS clusters
the radio map by exploiting the strongest APs according to
Algorithm 2. First, the set of strongest APs is identified for
every reference sample in the radio map as follows:

1) For each reference fingerprint in the radio map, 7, get
the identifiers of the N strongest APs and the strongest
absolute RSSI value;

2) The APs with undetected RSSI values are excluded from
the strongest AP set and the identifier is replaced with
the value —1; this happens when the number of observed
APs in the reference fingerprint is shorter than NV;

3) Fingerprints with P or less detected APs in their
strongest AP set, are considered noisy samples and,
therefore not included in the filtered radio map T,

4) Sort fingerprints in descending order according to the
strongest RSSI value and provide sorted filtered radio
map 7 and corresponding sets of strongest APs SAS.
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Fig. 1. Identification of the Strongest AP Sets for cluster generation (N=3,
P=1)

A visual example is provided in Fig.1 with N=3 and P=1.

Generating the clusters requires to iterate through the sorted
list of fingerprints. Marked fingerprints, already members of at
least one cluster, cannot form their own cluster. In the iterative
process, if a fingerprint is not marked, then:

1) It is marked and it starts its own cluster, ¢, and its set
of strongest APs is used as the cluster ¢ representative.

2) Its set of strongest APs will be compared to the sets of
strongest APs of all the other reference fingerprints.

3) Those reference fingerprints that have more than P APs
in common with the representative of the created cluster
(APs with identifier —1 are not considered) are also
marked and assigned to the newly created cluster, 7.

Let us define S; as the set of the N strongest AP identifiers in
sﬁ api, apa, ..., apn, and € as the set of all S; values. For
clarification, we provide a graphical example in Fig.2. The full
algorithmic description of the clustering process is provided
in Algorithm 2.

2) Cluster identification in the operational phase: In the
operational phase, when a new fingerprint is collected, the
system should identify which is the most relevant cluster (or
set of clusters) for that sample. The corresponding procedure
is given by Algorithm 3 and is made of the following steps:

1) Get the identifier of the N strongest APs of the current
operational fingerprint, the APs with undetected RSSI
values are excluded from set and the identifier is
replaced with —2.

2) Compare the set of strongest APs to all cluster
representatives and get how many APs they have in
common, again undetected APs are not considered.

3) Select the cluster with the highest similarity (highest
number of common APs). In the case of a tie, select all
the clusters with the highest similarity.

3) Generate the reduced radio map: Once the most similar
cluster (or clusters) are identified, the fingerprints to generate
the reduced radio map, 7', can be easily retrieved. Then, the
k-NN algorithm is applied to estimate the position.

As the cluster identification may provide multiple “most
similar” clusters for an operational fingerprint, the fingerprints
of each cluster have to be inserted into the reduced radio map.
This raises a question about those fingerprints that belong
to multiple clusters. In SAS, multiple instances of the same
fingerprint are not allowed in the reduced radio map and only
one instance is included.
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Fig. 2. Iterative process to generate the Clusters with SAS

Algorithm 2 SAS Clustering
1: Input: 7 (ordered in descendent order of strongest AP),
Q, N, P
. // Initialize Variables
C = {} // Initialize set of clusters
: CR = {} // Initialize cluster representatives
Ny = 0 // Initialize number of current clusters
. for i =1to |T| do
// Process fingerprint if it doesn’t belong to any cluster
if st ¢ |JC[k] then
k

9: Ng=Ng+1

10: C[Nd]:{stGT:|SjOSi|>P,
Vie{1,2,...,|Q}}

11: CR[NCI] =5;

12: end if

13: end for

14: Return: C, CR

AN A

Algorithm 3 SAS Cluster Identification
Input: CR, SV
D = {} //is the set of selected clusters
E = {} // is the set of similarities
for i =1 to |CR| do
Eli] = {|S¥ n CR[i]|,i}
end for
FE =sort E in descending order of the first element
(similarity)
§: [/ =select the first element of £ and all other elements
with the same similarity
9: D =JCI[E[k,2]]
k

10: Return: D
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Fig. 3. Plots to visualize the relation between N and P for dataset TUTS. Top-left: Number of clusters. Top-right: APE. Bottom-left: Cluster Identification

Time. Bottom-right: Matching Time.

1V. EXPERIMENTS AND RESULTS
A. Experimental Setup

In order to assess SAS, we have compared it to the plain
k-NN baseline and K-Means as it is a well-known efficient
clustering model. Previous tests showed us other clustering
models may not be robust or require prohibitive resources [6].
The comparison includes 10 Wi-Fi datasets, similar to [19].

The selected datasets are DSI1, LIB1&2, MAN1, MINT1,
UJI1, SAH1, UTS1, TUT5&6 [6], [20]-[23]. For each dataset,
we set the hyperparameters’ values providing a good trade-off
between the positioning error and the computational after
running the models multiple times (see Table I). For SAS,
the number of generated clusters, #C, is also provided.

TABLE I
HYPERPARAMETERS FOT THE EXECUDED MODELS

DSI1 LIB1 LIB2 MANIMINT! UJII SAHI TUT5 TUT6 UTSI
|[T] 1369 3120 576 14300 4973 19369 9274 442 3107 9108

k-NN k£ 30 11 24 14 12 5 4 4 1 24
K-Means K 2 26 30 3 31 19 5 32 2 30
N 10 12 6 6 4 3 3 18 10 10

SAS P 3 7 1 2 1 0 0 0 0 0
#C 13 58 7 6 5 71 108 10 30 30

The metrics selected to evaluate our solution consist of the
Averaged Positioning Error (APE) [24], the clustering time,
the cluster identification time, and the matching time. The
clustering time refers to the time required to generate the
clusters of a radio map. The cluster identification time refers
to the average time required to get the most similar cluster(s)
for each fingerprint in the operational phase. The matching
time corresponds to the process of retrieving the most similar
fingerprints from the reduced radio map (full radio map in
plain k-NN) and providing an individual position estimation.

The experiments were run in a computer with Intel® Core™
17-4710MQ CPU 2.50 GHz and Python 3.9.4. Data and code
are available in https://github.com/moisesramires/SAS [25].
Simple data cleansing was applied to all datasets, where distant
APs and void fingerprints were removed.

B. SAS hyperparameters

SAS has 2 hyperparameters, N and P (see Section
II-B) and understanding their relationship and impact in the
deployment of SAS is crucial. So, for every dataset, several
combinations of values for N and P were evaluated. As a
result, four graphs were generated for each dataset. In the
four graphs, each line represents a value of N, where the
z-axis corresponds to values of P. The y-axis corresponds
to the APE, the clustering identification time, the matching
time, and the number of generated clusters, respectively. Fig.3
shows the plots for dataset TUTS as an illustrative example,
the plots for all datasets are available in [25].

It is worth noting that all datasets report similar plots, and
the best trade-off between positioning error and Matching time
happens when P < % in all datasets. Another observation is
that the Matching time is going down as P increases because
the samples must have a lot more of strongest APs in common
and we have more strict clusters as a result. This also means
a bigger number of small clusters, and, therefore, the cluster
identification time and the number of clusters go up while the
Matching time goes down.

By analyzing the data we can conclude that selecting the
best N and P combination is challenging. P must be small in
comparison to N to achieve the lowest positioning errors, but
these solutions will not be the best in terms of computational
cost. Selecting the optimal combination of hyperparameters
required to find a middle ground between this trade-off.



C. Results

Tables II-V present the main results in terms of Averaged
Positioning Error (APE) [24], clustering time, averaged cluster
identification time and averaged matching time, respectively.

TABLE II
MAIN RESULTS: AVERAGE POSITIONING ERROR [m].

DSI1 LIBlI LIB2 MANIMINTI UJI1 SAH1 TUTS5 TUT6 UTSI

Plain k-NN  4.10 244 292 225 250 884 625 625 208 751
SAS 405 236 278 224 248 821 587 622 204 7.14
K-Means 425 233 281 224 245 887 604 645 209 741

First, the results show the diversity of datasets in terms of
APE, with errors ranging from 2.04m to 8.81 m. K-Means is
providing worse results than the plain k-NN in four datasets
and slightly better results on the remaining six. K-Means
splits the radio map into Voronoi cells, so fingerprints near
the cluster boundaries may have less information available and,
therefore, worse results. In contrast, SAS is always providing
the best results than plain £-NN and K-Means.

It is worth mentioning the outstanding performance of SAS
in UJI1, UTS1, SAHI, and TUTS5, where the APE provided by
SAS is significantly lower than plain £-NN and/or K-Means.

TABLE III
MAIN RESULTS: CLUSTERING TIME [s].

DSI1 LIB1 LIB2 MANIMINTI UJI1 SAHI TUT5 TUT6 UTSI

SAS
K-Means

0.09 052 0.18 027 0.08
054 087 096 265 449

3.47
6.72

2.77
293

0.09 075 226
0.17 074 057

Concerning clustering time, plain k-NN does not run
this step, so only K-Means and SAS are assessed. SAS
provides better results than K-Means in all datasets, except
for TUT6, where they have a difference of 0.01s and in
UTS1, where K-Means is the winner. In contrast to Affinity
Propagation Clustering (APC), which requires tight memory
and computation resources [6], SAS scales to large datasets.

TABLE IV
MAIN RESULTS: CLUSTER IDENTIFICATION TIME [ms].

DSI1 LIBI LIB2 MANIMINTI1 UJI1 SAHI TUT5 TUT6 UTSI
SAS 0.14 029 0.18 054 0.16 056 085 032 048 0.61
K-Means 050 030 030 040 028 050 0.57 042 293 0.52

In relation to the averaged cluster identification time, plain
k-NN also does not run this step. K-Means and SAS provides
similar results throughout the datasets. The identification time
depends on the dataset, being in the worst case 3ms. An
important aspect is that despite the time being lower for
K -Means, this trend is the opposite in the smallest datasets.

TABLE V
MAIN RESULTS: MATCHING TIME [ms].

DSII LIB2 MANIMINT1 UJI1 SAHI TUT5 TUT6 UTSI

Plain k-NN 98.81 48.24 46.65 130.85 36.70 612.42 482.46 15.29 120.83 349.90
SAS 528 686 1820 76.18 18.36 29.44 1875 4.33 15.61 52.46
K-Means 1145 286 266 43.61 2.11 50.74146.97 131 79.52 19.87

LIBI

Regarding the matching time, the plain £-NN does not scale.
In the largest dataset (UJIl), it requires more than 0.6s to
provide a position estimate. SAS is providing a matching
time below 53 ms in all datasets, except MAN1. MANI is
the dataset with the highest density of samples with 110
fingerprints per reference point and many samples will be
located in the sub-region dominated by the set of strongest
APs. In the largest datasets (UJI1, SAHI1, TUT6), with the
exception of UTSI1, the computational cost of SAS is not only
satisfactory but better than K-Means. It seems that SAS is
promising for large operational areas.

According to all presented results, it seems that /-Means
is more efficient than SAS in terms of computational cost
in the operational phase. This is in part due to the cluster
identification in SAS being more sophisticated. SAS generates
clusters that may overlap and multiple clusters can be assigned
as the “most similar cluster” in the operational phase of SAS.
Still, the computational cost of SAS is significantly lower with
respect to plain k-NN, especially in the datasets covering very
large areas. In contrast, SAS is providing better accuracy than
K -Means, and always improving in relation to plain k-NN.

In order to analyze the trade-off between the computational
costs and positioning error, we provide a scatter plot in Fig.4
(top), where Averaged Positioning Error (APE) and Averaged
Execution Time (AET) are compared for each dataset. AET
is the cluster identification time plus the matching time. As
the datasets are diverse, it is hard to see a pattern. Thus, both
metrics are normalized with respect to a baseline for each
dataset resulting in the scatter plot shown in Fig.4 (bottom)
with relative values with respect to the plain k-NN.
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Fig. 4 identifies 3 scenarios, the first one is where SAS is
worse than K-Means both in terms of average error and in
terms of computational cost, and this happens for the datasets
LIB1, MANI1 and MINTI1. Should be noted that even if SAS
is losing, it still has an improvement in the average error
with respect to the plain k-NN. The second scenario is when
K-Means has a better computational cost, but SAS has a
better average error, and this is can be observed in the datasets
LIB2, TUTS and UTS1. The third scenario is when SAS beats
K-Means in both fields, and this can happens in the datasets
that cover large areas (UJI1, SAH1 and TUT6) and DSII. In
particular, Fig. 4 shows 3 main outputs.

1) K-Means is computationally more efficient than SAS in
the operational stage at the expense of having slightly
worse performance (APE) than the plain k-NN.

2) SAS provides a good efficiency/accuracy trade-off,
giving good efficiency without sacrificing accuracy.

3) SAS has not only reduced the computational cost to a
minimum expression in the two largest datasets, but also
the positioning error has been significantly decreased in
around 7.5-12.5%. It seems that SAS is a promising
method for datasets involving large operational areas.

V. DISCUSSION & CONCLUSIONS

This work introduces the Strongest AP Set (SAS) clustering
model, a novel approach in order to split the radio maps
into smaller pieces. SAS considers the radio signal properties,
focusing on building a scalable Indoor Positioning System
(IPS) without any loss in positioning performance.

To assess SAS, we have performed a comprehensive
analsysis over 10 datasets and 4 performance metrics. SAS
has been compared to the k-NN model without clustering and
the K-Means clustering model.

The results show that the proposed SAS clustering model
not only reduces the computational costs but also provides
a good positioning accuracy. SAS is better than the plain
k-NN model for all datasets in terms of positioning error
and execution time. In large datasets, the improvements of
SAS are outstanding. K-Means, in contrast, provided a worse
positioning error than the plain £-NN in 4 datasets. i.e., SAS
is scalable without any loss in positioning performance.

SAS filters noisy samples and focuses only on the
strongest APs for cluster selection. The results show that
the fingerprint-based models should look at trustworthy
information instead of focusing on the whole picture.

It is worth mentioning that SAS does not rely on any
random initialization, getting the same radio map partition run
over run. Despite K-Means providing good averaged results,
the initial clusters are randomly generated, which introduces
variability in the results from run to run without any metric
reporting the quality of the partition done to the radio map.

This work brings new avenues for research and development
of reliable and scalable fingerprint-based positioning. The next
steps would be focused on finding a lightweight approach to
select the most similar clusters and to improve the efficiency
on large datasets.
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