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Abstract—In the context of cell-free massive multi-input multi-
output (CFmMIMO), zero-forcing precoding (ZFP) is superior in
terms of spectral efficiency. However, it suffers from channel aging
owing to fronthaul and processing delays. In this paper, we propose
a robust scheme coined delay-tolerant zero-forcing precoding (DT-
ZFP), which exploits deep learning-aided channel prediction to
alleviate the effect of outdated channel state information (CSI). A
predictor consisting of a bank of user-specific predictive modules is
specifically designed for such a multi-user scenario. Leveraging the
degree of freedom brought by the prediction horizon, the delivery
of CSI and precoded data through a fronthaul network and the
transmission of user data and pilots over an air interface can
be parallelized. Therefore, DT-ZFP not only effectively combats
channel aging but also avoids the inefficient “Stop-and-Wait”
mechanism of the canonical ZFP in CFmMIMO.

I. Introduction

Cell-free massive multi-input multi-output (CFmMIMO) [1]–

[3] has gained much attention recently due to its potential of

becoming a technical enabler for the six-generation (6G) system

[4]. It employs a large number of distributed access points

(APs) to simultaneously serve a few users in a geographical area

over the same time-frequency resource. The dominant number

of APs over user equipment (UE) makes linear precoding,

i.e., conjugate beamforming (CBF) and zero-forcing precoding

(ZFP), perform nearly as good as dirty-paper coding [5] in

CFmMIMO. It is extensively verified that ZFP is superior to

CBF with much higher spectral efficiency [3]. However, all APs

in ZFP are required to send their local channel state information

(CSI) to a central processing unit (CPU) via a fronthaul

network and then stop-and-wait until the CPU sends back

precoded data. This particular process induces a considerable

delay, raising channel aging in fast-fading environments. This

problem will be more challenging in 6G, where high mobility,

e.g., high-speed trains and unmanned aerial vehicles, and high

frequency, such as millimeter-wave and terahertz signals [6],

further aggravate the fading of wireless channels. Thus, the

canonical ZFP in CFmMIMO suffers from two major problems:

(1) the performance degradation due to channel aging, and (2)

the inefficient time resource utilization because of the “Stop-

and-Wait” mechanism.

In the literature, the effect of channel aging on co-located

massive MIMO, see [7], [8], and the uplink of CFmMIMO
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have been reported [9]. To the best knowledge of the authors,

the impact of aged CSI on the downlink of CFmMIMO has

not been discussed until the authors of this paper provided

the first work in [10]. The theoretical analysis and numerical

evaluation in [10] revealed that the fronthaul and processing

delays deteriorate performance substantially. Consequently, the

effect of channel aging should be seriously considered and

an effective mitigation method is mandatory in the practical

deployment of CFmMIMO.

As a follow-up of [10], the aim of this paper is to propose

a robust transmission scheme against channel aging, coined

delay-tolerant zero-forcing precoding (DT-ZFP). We exploit

deep learning (DL)-aided channel prediction [11] to improve

the quality of CSI. Although prior works investigated modeled-

based [12] and data-driven prediction [13], these methods only

focus on a single-user setup where the difference of distance-

dependent large-scale fading among different users is not con-

sidered. In this paper, we extend the single-user prediction to

meet the requirements of DT-ZFP by specifically designing a

multi-user predictor consisting of a bank of user-specific DL

predictive modules. Leveraging the degree of freedom brought

by the prediction horizon, the delivery of precoded data and

CSI through a fronthaul network and the transmission of user

data and pilot signals over air interface can be parallelized. As

a result, DT-ZFP can not only effectively combat channel aging

but also avoid the inefficient resource usage due to “Stop-and-

Wait” mechanism. The superiority of the proposed scheme is

justified by simulations.

The remainder of this paper is structured as follows: Section

II introduces the system model. Section III presents the commu-

nications process of DT-ZFP and the design of the multi-user

deep-learning predictor. Simulation setup and numerical results

are demonstrated in Section IV. Finally, the conclusions are

drawn in Section V.

II. SystemModel

We consider a CFmMIMO system where a large number of

M single-antenna APs and K single-antenna UEs are randomly

distributed over a geographical area, with M ≫ K. The signal

transmission and reception of the APs are coordinated by a

CPU via a fronthaul network to simultaneously serve the users

over the same time-frequency resource, as shown in Fig.1.

The downlink transmission from the APs to the UEs and the

uplink transmission from the UEs to the APs are separated

http://arxiv.org/abs/2210.05229v1
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Fig. 1. Schematic diagram of a cell-free massive MIMO system consisting of
a CPU, M APs, and K users. The proposed scheme employs deep learning to
convert estimated CSI to predicted CSI, and buffers the transmitted symbols
precoded based on the predicted CSI.

by time-division duplex (TDD) operation. Channel reciprocity

is exploited in TDD to avoid a remarkably high overhead of

downlink pilots that are proportional to the number of APs. A

radio frame is divided into three phases: uplink training, uplink

transmission, and downlink transmission. In the uplink training,

the UEs send orthogonal pilot sequences to the APs, so that

each AP can estimate the instantaneous CSI, which is employed

to precode the information symbols in the downlink and detect

the received signals in the uplink. As [10], this paper focuses

on the downlink transmission where the proposed DT-ZFP is

applied, whereas the uplink transmission is skipped since the

fronthaul delay does not affect the signal detection at the CPU.

Without losing generality, we assume that small-scale fad-

ing follows frequency-flat block fading. A frequency-selective

channel can be transformed into a magnitude of flat-fading sub-

channels through orthogonal frequency-division multiplexing

[14], making this assumption reasonable. We write gmk =√
βmkhmk to denote the channel coefficient between AP m,

∀m = 1, 2, . . . , M and UE k, ∀k = 1, 2, . . . ,K, where βmk and

hmk represent large-scale and small-scale fading, respectively.

Usually, hmk is modelled as a circularly symmetric complex

Gaussian random variable with zero mean and unit variance,

i.e., hmk ∼ CN(0, 1). Large-scale fading equals βmk = 10
Pmk+Smk

10 ,

where Smk denotes shadowing fading with zero mean and

variance σ2
sd

, namely Smk ∼ N(0, σ2
sd

), and Pmk represents path

loss, which can be computed by the COST-Hata model [1] as

Pmk =



























−P0 − 35 lg(dmk) dmk > d1

−P0 − 15 lg(d1) − 20 lg(dmk) d0 < dmk ≤ d1

−P0 − 15 lg(d1) − 20 lg(d0) dmk ≤ d0

, (1)

where lg stands for the common logarithm, dmk is the prop-

agation distance, d0 and d1 denote the break points, and the

reference path loss at 1 m is given by

P0 = 46.3+33.9 lg ( fc) − 13.82 lg (hAP) (2)

− [

1.1 lg( fc) − 0.7
]

hUE + 1.56 lg ( fc) − 0.8

with carrier frequency fc, the AP antenna height hAP, and the

UE antenna height hUE .

III. Delay-Tolerant Zero-Forcing Precoding

Exploiting the potential of DL-based channel prediction, we

propose a delay-tolerant transmission scheme for the downlink

of CFmMIMO. This section first presents the principle of DT-

ZFP through its communications process and then introduces

the multi-user predictor that is built by a bank of user-specific

DL predictive modules.

A. The Communications Process

As prior works such as [1]–[3], we assume that βmk is

perfectly known, and the fronthaul network is error-free and

capacity-infinite so as to particularly focus on the fronthaul

delay without the disturb of practical constraints [15]. We only

consider the uplink training and downlink data transmission

hereinafter, whereas the uplink transmission is neglected as

explained before. As illustrated in Fig.2, the DT-ZFP scheme

operates as follows:

1) Uplink Training: The communications process is orga-

nized in radio frames. At the training phase of radio

frame t, the UEs transmit orthogonal pilot sequences ik[t],

k = 1, . . . ,K simultaneously towards the APs. Due to the

orthogonality, we have iH
k

ik′ = 0, ∀k′ , k. A typical AP

m observes

yu
m[t] =

√
pu

K
∑

k=1

gu
mk[t]ik[t] + nm[t], (3)

where pu is the UE power constraint, gu
mk

[t] denotes the

instantaneous channel gain between AP m and UE k

during the uplink training at frame t, and additive white

Gaussian noise (AWGN) has zero mean and variance σ2
n,

i.e., nm ∈ CN
(

0, σ2
nI

)

.
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Fig. 2. The frame structure of DT-ZFP in comparison with that of the
conventional ZFP. Due to the prediction horizon enabled by channel prediction,
the delivery of precoded data and CSI through the fronthaul network and the
transmission of user data and pilots over air interface can be parallelized,
avoiding the inefficient Stop-and-Wait operation in ZFP.



2) CSI Estimation (CSI-E): The mth AP can compute the

linear minimum mean-square error (MMSE) estimate of

gu
mk

[t], ∀k as [3]

ĝu
mk[t] =

( √
puβmk

puβmk + σ2
n

)

iH
k [t]yu

m[t]. (4)

Denoting the channel estimation error as g̃u
mk
= gu

mk
− ĝu

mk
,

we have g̃u
mk
∈ CN (0, βmk − αmk), where βmk and αmk =

puβ
2
mk

puβmk+σ
2
n

are the variances of gu
mk

and ĝu
mk

, respectively.

3) CSI Prediction (CSI-P): Unlike ZFP that sends the esti-

mated CSI directly to the CPU, DT-ZFP conducts channel

prediction before the delivery of CSI. Each AP feeds its

local CSI, e.g.,
{

ĝu
m1

[t], ĝu
m2

[t], . . . , ĝu
mK

[t]
}

for AP m, into

a local predictor to get prediction values

ǧu
mk[t + 1] = fm

(

ĝu
mk[t]

)

, ∀k, (5)

where fm(·) represents the input-output function of the

multi-user channel predictor running at AP m, which will

be elaborated in the next sub-section.

4) CSI Delivery: Each AP sends its predicted CSI, e.g.,

ǧm[t + 1] =
[

ǧu
m1[t + 1], . . . , ǧu

mK[t + 1]
]T
∈ CK×1 (6)

at AP m, to the CPU through the fronthaul network. Thus,

the CPU gets the global CSI prediction

Ǧt+1 =

[

ǧ1[t + 1], . . . , ǧM[t + 1]

]

∈ CK×M . (7)

5) Zero-Forcing Precoding: Assume the downlink transmis-

sion has N symbol periods, we denote the symbol vector

at period n, n = 1, . . . ,N as

sn
t+1 =

[

sn
1[t + 1], . . . , sn

K[t + 1]
]T
, (8)

where sn
k
[t + 1] is the information symbol intended for

user k at the nth symbol period of frame t + 1, satisfying

E[|sk|2] = 1. The CPU precodes sn
t+1

to get

xn
t+1 =

[

xn
1[t + 1], . . . , xn

M[t + 1]
]T

(9)

through

xn
t+1 = ǦH

t+1

(

Ǧt+1ǦH
t+1

)−1
Ψt+1sn

t+1, (10)

where xn
m[t + 1] denotes the precoded symbol to be

transmitted by AP m at the nth symbol period of frame

t+1, Ψ ∈ CK×K is a diagonal matrix consisting of power-

control coefficients, i.e.,

Ψt+1 = diag
{

ψ1[t + 1], ψ2[t + 2], . . . , ψK[t + 1]
}

. (11)

6) Precoded Symbol Buffering: The CPU distributes the pre-

coded symbols towards their corresponding APs, namely
{

x1
m[t + 1], x2

m[t + 1], . . . , xN
m[t + 1]

}

(12)

for AP m, through the fronthaul network. AP m receives

xn
m[t + 1], n = 1, . . . ,N from the CPU and stores these

symbols in its buffer. Note that these precoded symbols

will be transmitted at the next frame indexed t + 1,

while each AP transmits the precoded symbols xn
m[t],

n = 1, . . . ,N buffered at the previous frame t − 1.

7) As shown in Fig.2, the APs in ZFP need to stop and wait

for the arrival of precoded symbols from the CPU after

the delivery of CSI. Due to the feedback and processing

delays, there is a time gap between the completion of

receiving pilot sequences (uplink training) and the start

of transmitting the precoded symbols (downlink transmis-

sion). More details of modeling this gap can refer to Fig.

1 of our previous work [10]. However, DT-ZFP can start

the downlink transmission immediately once the uplink

training is completed since the transmitted symbols for

the current frame, i.e., xn
m[t], n = 1, . . . ,N, are already

buffered at the previous frame t − 1. As a particular

degree of freedom enabled by the prediction horizon, the

downlink transmission of DT-ZFP can be performed in

parallel with other processing, i.e., the CSI estimation and

delivery, and the precoding and distributing of symbols,

as depicted from step 2) to step 6). Consequently, the

inefficient stop-and-wait operation in ZFP is avoided,

resulting in more efficient usage of time resource.

Algorithm 1: Delay-Tolerant Zero-Forcing Precoding

input: M, K, and βmk, ∀m = 1, . . . , M, k = 1, . . . ,K

for Radio frame t do

foreach UE k = 1, 2, . . . ,K do

Send pilot sequence ik;

end

foreach AP m = 1, 2, . . . , M do

Start transmission after uplink-downlink switch;

Fetch xn
m[t], n = 1, . . . ,N from the buffer;

Transmit xn
m[t] with power pd;

Estimate local CSI ĝu
mk

[t], ∀k = 1, . . . ,K;

Predict ǧu
mk

[t + 1] = fm
(

ĝu
mk

[t]
)

;

Deliver ǧm[t + 1] to the CPU;

end

CPU get Ǧt+1 =

[

ǧ1[t + 1], . . . , ǧM[t + 1]

]

;

ZF Precoding: xn
t+1
= ǦH

t+1

(

Ǧt+1ǦH
t+1

)−1
Ψt+1sn

t+1
;

CPU distribute
{

x1
m[t + 1], . . . , xN

m[t + 1]
}

to AP m;

AP m buffer
{

x1
m[t + 1], . . . , xN

m[t + 1]
}

;

end

The proposed DT-ZFP scheme is summarized as Algorithm1.

As a result, a typical user k obtains the received symbol at the

nth period of frame t as

rn
k [t] =

√
ρdgT

k [t]xn
t + nk

=
√
ρdgT

k [t]ǦH
t

(

ǦtǦ
H
t

)−1
Ψts

n
t + nk, (13)

where gk[t] =
[

g1k[t], g2k[t] . . . , gMk[t]
]T
∈ CM×1 denotes the

channel fingerprint of user k at frame t, pd is the AP power

constraint, and nk is AWGN with zero mean and variance σ2
n,

i.e., nk ∈ CN
(

0, σ2
n

)

.
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Fig. 3. The structure of a multi-user predictor operating at a typical AP m,
which is mainly comprised of K independent deep-learning modules. Each
module consists of an input layer, an output layer, and multiple LSTM or GRU
hidden layers.

We exploit deep learning-aided channel prediction [11] to

improve the quality of CSI. Although prior works investi-

gated modeled-based [12] and data-driven prediction [13], these

methods focus on single-user scenarios where only small-scale

fading is considered with the assumption that channel gains fol-

low standard complex Gaussian distribution, i.e., h ∼ CN(0, 1).

However, a practical wireless system needs to accommodate

a lot of users and simultaneously serve multiple active users.

Due to the near-far effect, distance-dependent large-scale fading

among multiple users might differ by several orders of magni-

tude or tens of decibels (dB). In CFmMIMO, different AP-

UE pairs have different propagation distances, where previous

single-user channel prediction cannot be directly applied. We

therefore design a multi-user predictor consisting of a bank of

user-specific DL predictive modules to deal with such power-

gain difference.

Fig.3 shows the structure of the multi-user predictor oper-

ating at a typical AP m. The estimated CSI ĝmk[t], ∀k is first

normalized by multiplexing a factor of 1/
√
βmk. Recalling that

ĝmk[t] =
√
βmkĥmk[t], the input data for the kth DL module

equals ĥmk[t], following CN(0, 1). Thus, each DL module,

which generally consists of an input layer, L hidden layers,

and an output layer, can perform single-user prediction indepen-

dently. Feeding ĥmk[t] into the input feed-forward layer obtains

I
(

ĥmk[t]
)

= δh

(

wiĥmk[t] + bi
)

, where wi and bi denote the

vectors of weights and biases of the input layer, and δh stands

for an activation function. The first hidden layer generates

L(1)
(

I
(

ĥmk[t]
))

as the response to the activation of the input

layer. The structure of a hidden layer built by long short-term

memory (LSTM) or gated recurrent unit (GRU), and the detail

definition of L (·) can refer to the previous work of the authors

[16]. The activation goes through the network until the output

layer modelled by T (·) gets a predicted value

ȟmk[t + 1] = T
(

L(L)
(

. . .L(2)
(

L(1)
(

I
(

ĥmk[t]
)))))

. (14)

The predicted CSI is obtained by multiplexing a factor of
√
βmk,

i.e.,

ǧmk[t + 1] =
√

βmkȟmk[t + 1]. (15)

As revealed in [16], the computational complexity of a

DL module is low since CSI prediction needs only a few

(generally two or three) hidden layers with a small number

of neurons, unlike other high-complexity applications such as

face recognition or natural language processing that requires

tens of hidden layers with a large number of neurons per layer.

IV. Performance Evaluation and Comparison

The performance of the proposed scheme is evaluated

through Mont-Carlo simulations. This section introduces the

simulation setup and illustrates some representative numeri-

cal results to observe the gain of DT-ZFP on the downlink

of a CFmMIMO system. Consider a square urban area of

1 km × 1 km where M = 128 distributed APs serve K = 16

UEs at the same time-frequency resource. To calculate large-

scale fading using (1), we take values d0 = 10m, d1 = 50m,

and P0 = 140.72dB with fc = 1.9GHz, hAP = 15m, and

hUE = 1.65m, while the standard derivation for shadowing

fading is σsd = 8dB. The power constraints of AP and UE

are pd = 0.2W and pu = 0.1W, respectively. Since the optimal

max-min power control has high complexity, a sub-optimal,

low-complexity scheme [3] is applied for power control, i.e.,

ψk =

(

maxm

∑K
k=1 δkm

)−1
, ∀k, where δm = [δ1m, . . . , δKm]T

=

diag

(

E

[

(

ǦǦH
)−1

ǧmǧH
m

(

ǦǦH
)−1

])

and ǧm stands for the mth

column of Ǧ. The variance of AWGN is computed by σ2
n =

κ · B · T0 · N f with the Boltzmann constant κ, signal bandwidth

B = 20MHz, temperature T0 = 290Kelvin, and noise figure

N f = 9dB.

To emulate a fast-fading scenario, the maximal Doppler

shift is selected to fd=100Hz, corresponding to a velocity of

about 50 km/h at carrier frequency of 1.9 GHz. To get high

prediction accuracy, the hyper-parameters of deep learning,

mainly including the number of layers, the number of neurons

per layer, activation functions, training algorithms, and the

volume of training data, need to be carefully tuned. Generally, a

training of a deep network is started from an initial state where

all weights and biases are random. The prediction is compared

with its desired value and the resultant error is propagated

back through the network to update the weights by means of a

training algorithm such as the Adam optimizer [17]. Compared

the prediction accuracy of different hyper-parameters, we select

a 2-hidden-layer LSTM network with 25 neurons at either layer

and a training length of 5, 000. More details of the dataset

building and training process can refer to [18].

Fig.4 provides the comparisons with respect to cumulative

distribution functions (CDFs) of per-user spectral efficiency.

The performance curves of ZFP using the perfect and outdated

CSI are employed as the benchmarks to indicate the upper and

lower boundaries, respectively. In the perfect case, the 5%-

likely spectral efficiency, which is usually used to measure the

cell-edge performance, and the 50%-likely or median spectral
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Fig. 4. Performance evaluation of the proposed scheme under different
prediction horizons of 1 ms, 2 ms, and 3 ms, in comparison with the benchmarks
using the perfect CSI and outdated CSI. The performance is measured by the
CDF of per-user spectral efficiency.

efficiency are around 4.8bps/Hz and 5.8bps/Hz, respectively.

For the ease of comparison, we set the overall delay in the

conventional ZFP to 1 ms. Due to the outdated CSI, the 5%-

likely and median spectral efficiencies decrease to 1.49bps/Hz

and 3.56bps/Hz, amounting to a rate loss of approximately

70% and 40%, respectively. The results further reveal the

substantial impact of channel aging on the performance of ZFP

in CFmMIMO.

We first observe the result of the proposed scheme under a

prediction horizon of 1 ms. That is to say, the DL predictor

predicts the upcoming CSI of 1 ms later based on the current

estimated CSI. The signal-to-noise ratio (SNR) of the received

pilot signals is set to be 30 dB, which is reasonable in a practical

wireless system with good conditions. It achieves the near-

optimal performance with a 5%-likely and median spectral

efficiency of 4.78bps/Hz and 5.73bps/Hz, respectively. The

quality of estimated CSI affects the training of deep learning

and the resultant prediction accuracy. Decreasing the SNR

of the received pilot signals to 15 dB, as indicated by Noisy

in the figure, its achievable spectral efficiency degrades to

approximately 3.9bps/Hz and 5.2bps/Hz. With the increase of

prediction horizon, the prediction accuracy of the deep-learning

predictor decreases. We further set a prediction horizon of 2 ms

with a SNR of received pilot signals of 30 dB, resulting in a

5%-likely and median spectral efficiency of 4.48bps/Hz and

5.5bps/Hz, respectively. Under a prediction horizon of 3 ms,

which is long enough considering a channel coherence time of

around 10 ms under the Doppler shift of 100Hz, a 5%-likely

and median spectral efficiency of 2.28bps/Hz and 4.32bps/Hz

are achieved. It can be concluded from the simulation results

that the proposed scheme can effectively alleviate the impact

of channel aging in a CFmMIMO system with a substantial

performance gain.

V. Conclusions

This paper proposed a robust scheme called delay-tolerant

zero-forcing precoding for the downlink transmission of cell-

free massive MIMO systems. Exploiting deep learning-aided

single-user channel prediction, we designed a multi-user pre-

dictor that is comprised of a bank of user-specific predictive

modules, where the difference of distance-independent large-

scale fading among users are settled. Leveraging the degree

of freedom brought by the prediction horizon, the delivery of

precoded data and CSI through a fronthaul network and the

transmission of user data and pilots over air interface can be

parallelized, avoiding the inefficient “Stop-and-Wait” mecha-

nism of the conventional ZFP in CFmMIMO. Numerical results

justified the effectiveness of the multi-user deep-leaning channel

predictor, and the performance superiority of the proposed

scheme in terms of achievable spectral efficiency.
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