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Abstract—Due to recent developments in electric mobility,
public charging infrastructure will be essential for modern
transportation systems. As the number of electric vehicles
(EVs) increases, the public charging infrastructure needs to
adopt efficient charging practices. A key challenge is the
assignment of EVs to charging stations (CSs) in an energy
efficient manner. In this paper, a Reinforcement Learning
(RL)-based EV Assignment Scheme (RL-EVAS) is proposed
to solve the problem of assigning EV to the optimal CS in
urban environments, aiming at minimizing the total cost of
charging EVs and reducing the overload on Electrical Grids
(EGs). Travelling cost that is resulted from the movement
of EV to CS, and the charging cost at CS are considered.
Moreover, the EV’s Battery State of Charge (SoC) is taken
into account in the proposed scheme. The proposed RL-EVAS
approach will approximate the solution by finding an optimal
policy function in the sense of maximizing the expected value
of the total reward over all successive steps using Q-learning
algorithm, based on the Temporal Difference (TD) learning
and Bellman expectation equation. Finally, the numerous
simulation results illustrate that the proposed scheme can
significantly reduce the total energy cost of EVs compared
to various case studies and greedy algorithm, and also
demonstrate its behavioural adaptation to any environmental
conditions.

Index Terms—Electric vehicle assignment, charging sta-
tion, Q-learning, temporal difference, Bellman expectation
equation, energy consumption, energy cost, electrical grids.

I. INTRODUCTION

BEING one of the fastest growing sources of energy
demand and carbon dioxide (CO2) emissions, the

transportation sector is under great pressure to be decar-
bonized through deploying EVs [1]. At the same time,
various parameters, such as the technological innovation
in battery efficiency and electric drivetrain, led to dra-
matically increase the EVs penetration in recent years
in urban environments [2]. Charging EVs at home is an
alternative solution for the EV users, however, it takes
too much time (6 to 8 hours). Therefore, establishing a
conveniently available fast-CSs is essential to increase the
satisfaction of EV users, and alleviating peak charging
loads. Using fast-CSs can charge EV batteries at least 12
times faster [3]. The adoption rate of EVs mainly depends
on the presence of wide range of CSs in metropolitan
areas to help EV users to charge their vehicles during their
journeys. Furthermore, the selection of best fast-CSs for

EVs is an important factor that affects not only the spread
of EVs but also minimize the total energy consumption
of EVs to reach CSs and increase the sustainability of
transportation, knowing that the energy demand in the
transportation sector will increase by 54% until 2035 [4].

In recent years, more attention has been paid to suggest-
ing learning-based techniques for finding the optimal CSs
for EVs in metropolitan environments. Several algorithms
and technique have been utilized to solve this problem.
Machine learning is a sub-field of artificial intelligence
(AI) that provides systems with the ability to automati-
cally learn from experience without being explicitly pro-
grammed and finally solve the most complex problems [5].
RL technique is one of the machine learning categories
that has been utilized recently in several studies to solve
the problem of assigning EV to optimal CS. In [6],
an optimal CS selection algorithm based model-free RL
technique has been proposed, to minimize the total travel
time of EVs charging demands from origin to CS using the
selected optimal route, taking into account unknown future
demands and dynamically changing traffic conditions. The
CS selection was formulated as a Markov decision process
(MDP) model with unknown transition probability.

A congestion control in CSs allocation with Q-learning
has been introduced in [7]. In this paper, the authors have
considered the travel time and the queuing time in CSs in
their model, to build joint-resource congestion game which
utilises the interaction between the EVs and resources. Q-
learning algorithm has been applied to the model in order
to solved the problem. In [8], a deep RL (DRL) based
approach for EV charging navigation has been proposed
to adaptively learn the optimal technique for EV charging
navigation without any prior knowledge of uncertainties.
Feature states have been extracted from stochastic data.
The authors investigated the DRL-based charging naviga-
tion from a single perspective of EV owner, considering
randomness in smart grid and intelligent transportation
data. To the best of our knowledge, the existing literature
did not take into account the variation in the charging
rate between CSs, in order to assign EVs to the optimal
CSs. Our proposed scheme is unique in that, as we take
into account the differences in charging rate among all
available CSs, the charging cost at CSs, the travelling cost



of EV to reach CS, and also the capability of the CSs. We
argue that all of these metrics have a significant influence
on the decision of assignment EVs to CSs in urban areas.

The main contributions of the present paper are sum-
marized as follows:
• A RL-scheme for assignment of EVs to the optimal

CSs in metropolitan environments is proposed in this
paper. The proposed scheme considers the energy
consumption cost that is resulted from the movement
of EV towards CS (travelling cost), and the total
expected cost to fully charge EV at CS (total energy
cost). An EV’s battery SoC in the process of finding
the optimal CS is also taken into account.

• Q-learning algorithm has been utilized to solve this
problem based on maximizing the cumulative reward
of the EV during learning process by reducing the
total cost of charging EVs.

• As a results of applying our proposed scheme, we
minimize the load on the overwhelmed EGs, by
assuming different rewards for CSs in the study area.
The reward at each CS is determined based on the
electricity price offered by EGs’ suppliers to CSs,
these prices vary according to the load and locations
of EGs.

The rest of the paper is organized as follows. EV
assignment problem formulation and optimization model
are presented in Section II. Then, a RL based approach is
proposed in Section III. Section IV shows the numerical
results of our proposed approach. Finally, Section V draws
a conclusion.

II. EV ASSIGNMENT PROBLEM

In this section, the assignment and optimization
problem will be presented. The notations used in this
paper are listed in Nomenclature list. In addition,
parameters and variables are explained in the where they
are first used.

NOMENCLATURE

Sets and Index

A Set of actions.
M Set of CSs.
S Set of states.
j index of CSs.

Parameters and Variables

α, γ The learning rate and discount factor, re-
spectively.

µev, µj The longitude of EV and CSj ,
respectively.

Φ A threshold value that restricts the maxi-
mum amount of energy consumption that
EV can consume to reach CS

π∗(s) The optimal policy.
ψev, ψj The latitude of EV and CSj ,

respectively.
ϕj The charging rate at CSj .

ϑev,j The energy consumption cost resulted from
the movement of EV towards CS.

ξev,j The total expected energy to fully charge
EV at CS, except the travelling cost.

ζev The EV battery capacity.
a, a′ The action that the agent takes in the

current state, and target state, respectively.
Cev,j The overall cost of charging EV.
dev,j The distance that EV travels to reach CS.
Eev,j The overall energy.
M The number of CSs in the study area.
Q∗(s, a) The optimal state-action value function.
Q(s, a) A state-action value function.
r The immediate reward.
Rwj The reward that is associated with CSj .
s, s′ The current and target states, respectively.
Uev,j The accumulative reward for EV with CSj .
V The total number of actions that EV takes

to arrive CSj .
xev,j A binary decision variable shows that the

EV selects CSj for charging.

A. Problem Formulation

The problem has been formulated as shown in the
following sections:

1) EV: The EV is represented by a single agent that
moves in the environment trying to find the optimal CS
considering the possible actions and reward at each state.
The EV has one attribute; (pev), where pev is the position
(coordinates) of EV .

2) CSs: Define the CS set as M = {1, ..., u, ...,M}.
The cardinality of M is M , i.e., there are M CSs in the
investigated area. CSj in M has two attributes; bu, ru,
where bu, and ru are the position and reward of the CS.
The reward at CSj , depends on the charging rate of CSj .

3) Cost-based EV assignment: The proposed strategy
uses a RL technique to assign EV to the best CS based
on minimizing the total cost of charging EVs, i.e, Cev,j .
To calculate the total expected cost of charging EV, two
factors should be investigated: the energy consumption
cost that is resulted from the travelling of EV towards CS,
i.e., ϑev,j , and the total expected energy to fully charge EV
at CS, i.e., ξev,j , considering the charging rate at each CS,
which is usually determined based on the electricity price
offered by EGs to the CS owners. The electricity price
that offered by EGs to CSs is different due to the load and
location of each EG. CSs connected to the same EG have
the same electricity price, and therefore the same charging
rate. The overall energy, i.e, Eev,j , can be calculated as
follows:

Eev,j = ϑev,j + ξev,j (1)

To calculate ϑev,j , we need to calculate the amount of
energy that the EV consumes per km to reach CS, i.e., δev
[9], [10], and also calculate the total distance that the EV
travels towards CS, i.e., dev,j . In this work, we assume that
δev is 0.16 kWh/km [11], [12] The following illustrates
how dev,j , ϑev,j , and ξev,j are calculated:

dev,j =

√
(ψev − ψj)2 + (µev − µj)2 (2)

where ψev , ψj are the latitude of EV and CSj , and µev ,
µj are longitude, respectively.

ϑev,j = δev ∗ dev,j (3)



where δev is the amount of energy that the EV consumes
per km to reach CS. Eq. 4 shows how the total energy to
fully charge EVs is calculated, except the travelling cost.

ξev,j = (ζev − SoC) (4)

where ζev denotes the capacity of the battery, and SoC is
the battery state of charge. The total cost of charging EV
can be calculated as follows:

Cev,j = Eev,j × ϕj (5)

where ϕj represents the charging rate at CSj .

B. Optimization Problem
The corresponding optimization problem of our pro-

posed approach can be written as:

min
X

M∑
j=1

Cev,j xev,j (6)

s.t.

M∑
j=1

xev,j = 1 (7)

xev,j ∈ {0, 1}, ∀j (8)

ϑev,j < Φ, ∀j (9)

where the variable xev,j is a decision variable with binary
values {0,1} as shown in Eq. (8), to indicate whether
the CSj is selected by the EV or not, xev,j is equal
to 1 if the j is selected, otherwise it is equal to 0.
Constraint (7) restricts that only one CS is selected as
destination. Constraint (9) shows that the total amount of
energy consumption that EV needs to reach CS should not
reach to a certain threshold Φ in order to maintain the EV
battery’s SoC.

III. REINFORCEMENT LEARNING APPROACH

Typically, RL techniques can be processed under two
categories: off-policy and on-policy [13]. In particular, an
off-policy learning method (e.g., Q-learning) earns an op-
timal target policy independent of the behavior policy used
during exploration process as long as the different states
are explored enough times. Whereas on-policy learning
method finds the optimal policy taking into account the
actual actions taken over the exploration process, which
means that the target policy is the same as the behavior
policy used in exploration process. Q-Learning technique
will be used in this work to addresses the problem of
assignment EV to CS.

A. Q-Learning-based EV Assignment

In this section, a RL technique is employed to solve
our optimization problem (6-9), based on Q-Learning Al-
gorithm technique. Q-learning, an incremental technique
for dynamic programming, is appropriate for solving such
kind of problems. Q-learning is an agent-based technique
in which the AI agent interacts with its environment and
adapts its actions based on rewards or penalties received in
response to its actions [14]. Mainly, there are three basic
elements in the algorithm: environment, state, and action.
We will introduce the algorithm after setting the elements.

Fig. 1. Sample from the urban area of Newcastle upon Tyne city, UK

1) Environment, State, and Action Set: The environ-
ment is an essential element in Q-learning, in which the
AI agent selects its actions according to corresponding
rewards. In our scenario, the environment should involve
roads between EVs and those available CSs. Fig. 1 shows
part of the Newcastle upon Tyne, UK. The directions
(actions) the EV is allowed to take in the study area, are
represented by three colors of arrows. The green and blue
arrows show that the EV can move in only four directions:
South, North, East, and West. The difference between the
green and blue arrows is that the green arrows show that
an EV can move in both directions, while the blue arrows
show that an EV can only move in one direction. The
red arrows indicate that an EV can move in the other
four directions: South-East, South-West, North-East, and
North-West and also in both directions. Road works signs
indicate that these streets are closed and cannot be used
by vehicles, so the EV user needs to find other streets to
reach CS. The CSs are distributed in fixed locations in the
study area as shown in Fig. 1.

The state set in our scenario can be denoted by S, and
defined as following:

S = {(x1, y1), (x2, y2), (x3, y3), ..., (xn, yn)} (10)

where x and y represent the position (coordinate) of the
state that an agent can visit during its journey to the
destination. The cumulative reward is calculated based
on the actions that have been taken by an EV in the
environment, and can be calculated as follows:

Uev,j = Rwj −
V∑
i=1

ri (11)

where Uev,j represents the accumulative reward for EV
with CSj , Rwj denotes the reward that is associated with
CSj , V represents the total number of actions that EV
takes to arrive CSj , and ri is the immediate reward that
EV gets for each action in the environment.

The action set, i.e., A, of the EV in the grid world
denotes the way how the EV can moves to change its
state. In our scene, the directions that the EV is allowed
to use are included in the following set:

A = {South,North,East,West, South− East,
South−West,North− East, and North−West}

(12)

The energy consumption cost of EV movement towards
CS, i.e., ϑev,j , is mainly dependent on the distance be-
tween the locations of EV and CS. To minimize this
cost, we need to reduce the covered distance that the EV



Fig. 2. Example of a single movement of EV

needs to travel to reach the CS. To achieve this, the EV
earns punishment (penalty) for every hop in the grid. The
rewards associated with CSs depends on the charging rates
at these CSs. Accordingly, CS with higher charging rate,
the lower its reward. The reward increases as the charging
rate decreases. Fig. 2 shows an Illustrative example of a
single movement of EV in the environment.

2) Q-Learning Algorithm: Two input parameters are
required for Q-learning algorithm: the state in which
the agent is located, and an action that can be taken
at the current state. Therefore, the Q-learning algorithm
has a function that calculates the quality of these two
parameters, as shown below:

Q : S ×R→ R (13)

Before an agent starts its learning process, Q is initialized
to an arbitrary fixed value (zero in our approach). Then
at each step the agent chooses an action at, earns a
reward rt, moves to a new state st, then Q is updated.
In this work, the objective function is minimizing the
total energy cost of an EV which can be calculated using
the optimal strategy by recursively updating action-value
function (Q). The value of this function is determined
by the TD learning algorithm technique and the Bellman
equation, as shown bellow:

Q(s, a)← Q(s, a)+α(r+γ maxa′ Q(s′, a′)−Q(s, a)) (14)

where Q(s, a) represents the value of the state-action
function, i.e, Q-value function (s, a), α and γ denotes the
learning rate and discount factor between 0 and 1, and r
is the immediate reward value received as the result of
taking action a in state s. In the environment, there are
many different Q-value functions according to the different
actions and policies that can be used in the learning
process. The optimal Q-value function is the value which
yields maximum Q-value compared to all other Q-values
that have been acquired during the learning process. So,
mathematically the optimal Q-value function, i.e, state-
value function, can be expressed as:

Q∗(s, a) = max
π

Qπ(s, a) (15)

where Q∗(s, a) denotes the optimal value-action function.
The purpose of the EV charging navigation process, is to

find the optimal policy π∗ over all feasible policies that EV
can select during the learning process, which minimizes
the cost or maximizes the reward. Therefore, Once we
have Q∗(s, a), EV can act optimally based on the optimal
strategy as shown in the following greedy strategy:

π∗(s) = argmax
a

Q∗(s, a) (16)

where π∗(s) is the optimal policy that EV can act in
the environment, which achieves the optimal value-action
function.

Q-learning algorithm uses ε-greedy policy for the action
selection step, which is also called behavior policy, to
ensure a high level of balance between exploration and

exploitation, i.e, exploration-exploitation trade-off, as well
as to improve the learning level of the agent during the
direct interaction with the environment. A simple strategy
that has been proposed to deal with this problem is the
ε-greedy (with 0 ≤ ε < 1), with greater corresponding
to greater probability of exploration. the value of ε has a
significant impact on the performance and complexity of
the Q-learning algorithm. Details can be seen in Algorithm
1 as follows:

Algorithm 1 Training Process of Q-Learning algorithm

Input: α, γ, ε,Q (terminal-state), s ∈ S, a ∈ Λ, N,M
Output : Optimal Q∗(s, a), and π∗(s) for EV

Initialization:
1: Initialize Q(s, a) arbitrary
2: Initialize fixed CS locations
3: K=maximum number of episodes
4: Initialize random s for the EV
5: for eps = 1 to K do
6: Select a ∈ Λ for EV using ε-greedy policy
7: Execute the action a
8: Receive immediate reward r
9: Observe the new state s’

10: Select a’ in s’ for the EV using Eq. (14)
11: Update Q(s, a) value in Q-table
12: s ← s’
13: if (s is terminal or ϑev,j ≥ Φ) then
14: Start new episode
15: else
16: Select a ∈ Λ
17: end if
18: end for
19: Return Q∗−values, and π∗ for the EV

IV. EXPERIMENTS

In this section, the evaluation of the proposed approach
in different study cases are carried out within the proposed
environment to demonstrate the effectiveness and feasi-
bility of the proposed approach. Moreover, a comparison
between the baseline case and the greedy strategy is also
presented in this paper. In Section IV-A, the details of
experimental setup are presented. The training process and
simulation results are discussed in Section IV-B.

A. Experimental Setup

The performance of the proposed approach is demon-
strated within an area 25× 25 grid map. The agent (EV)
earns -1 as penalty for each movement in the environment.
The rewards that the EV earns when reaching CSs varies
depending on the charging rate of each CS which mainly
depends on the electricity rates as mentioned earlier.
Barriers have been placed on some of the roads that
EV takes in the directions leading to CSs, which in turn
force the EV to search for another available roads. In
this work, we assume that the rewards of CSs are two
values 60 and 80, depending on the charging rate at
CS. As mentioned earlier, The reward increases as the
charging rate decreases. An inverse relationship between
the charging rate and the given reward associated with
each CS. Each episode terminates, if the EV reached to the
CS or reached the threshold value of the travelling energy
consumption (Φ). All the following experimental results



TABLE I. RL-EVAS parameters

Parameter Value
Environment 25×25 grids

M 4
Penalty -1
Rewards 60, 80
ζev 62 kWh
ϕ $0.15, $0.35
SoC ζev × 60% kWh
α 0.1
ε 0.1
γ 0.6
δev 0.16 kWh/km
Φ 1.6 kWh

have been performed by Python 3.10 on Windows 10
Pro 64bits, V.20H2, Intel(R) Core(TM) i5-8250U CPU @
1.60GHz (8 CPUs), 1.80 GHz. The simulation parameters
related to the proposed scheme are presented in Table I.

B. Results

The performance of RL-EVAS is evaluated with respect
to two criteria:
• The maximum cumulative reward of the value func-

tion of the learned policy, reflecting the proposed
objective function of this approach.

• The total energy cost of EV, considering the cost that
resulting from the movement of EV towards CS, and
the cost of charging the EV at CS.

To this end, comparisons between RL-EVAS and dif-
ferent case studies, and also between the RL-EVAS and
greedy strategy will be conducted in the proposed scheme.

1) Case Studies: The following proposed case studies
demonstrate the feasibility and effectiveness of the pro-
posed approach.
• Case A: With reduced the number of actions. In this

case, we assume that the number of actions that the
EV needs to perform to interact with the environment
at each state is just 4 as shown in Eq. (17), rather than
8 actions for RL-EVAS, as shown in Eq. (12). As
shown in Fig. 1, the green and blue arrows represent
the possible actions that the EV can perform in Case
A. While the possible actions that the EV can select
in RL-EVAS are the green, blue and red arrows which
give the EV to perform 8 actions. Finally, the other
parameters remain the same as the RL-EVAS.

ACaseA = {South, North, East, West} (17)

• Case B: With the increase in the number of obstacles
standing in the way of the EV towards CSs. In
this case, we assume that the number of barriers is
increased by 25%, 50%, and 75% compared to the
RL-EVAS with the same number of episodes. While
the other parameters remain the same as the RL-
EVAS.

Fig. 3 and Table II show the comparison results between
RL-EVAS and Case A. It can be seen that the distance,
travelling energy consumption, and travel time are less in
RL-EVAS compared to Case A, this leads to minimize
the total amount of energy needed to charge the EV. As
a result, the total energy cost is minimized as shown in
Fig. 3, this is due to the assumption that the possible
actions that EV can select in RL-EVAS is more compared
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Fig. 3. Comparison between RL-EVAS and Case A

to Case A. Another observation in Fig. 3, is that the
cumulative reward for RL-EVAS is more compared to
Case A. The reason behind this is that the total number
of timestep (the hops that EV needs to reach CS) is less
compared to the Case A as shown in Table II. Each
timestep is considered as an additional penalty for the
EV. Accordingly, the cumulative penalty will finally be
deducted from the reward that EV receives when it reaches
CS. Based on the foregoing, it is noticeable that the
cumulative reward is inversely related to the timestep.

Fig. 4 and Tables III - V, show the comparison results
between RL-EVAS and Case B. In this case, we assume
three different scenarios. In the first scenario, we assume
that the number of obstacles is increased by 25%, then
in the second scenario we assume that the number is
increased by 50%, while in the last scenario, we assume
that the number is increased by 75%. The reason behind
this assumption is that street conditions are not fixed and
can change for several reasons, including, but not limited
to, the works that may occur in the study area as shown
in Fig. 1.

It is easy to notice that that the total timestep, total
distance, travelling energy consumption, and the total
energy that is required to fully charge EV are less in RL-
EVAS compared to the all scenarios in Case B, and it
can be observed that all of these parameters are increased
according to the proposed scenario in Case B as shown in
Fig. 4. The reason for this is the assumption of increasing
the percentage of streets that the EV cannot use in the
study area to access CS. To overcome this challenge, the
EV will try to find other possible routes to reach CS, which
in turn increases the number of hops (timestep) that the
EV must take to reach CS. Consequently, it increases the
distance between the location of EV and the location of the
CS at any charging decision point, the energy consumed
by EV en route to the CS, and also the total energy that
is required to fully charge EV. It is also noticeable that
the timestep, distance, travelling energy consumption and
total energy decrease when the number of episodes is



TABLE II. Comparison between RL-EVAS and Case A in terms of
Timestep, Total Energy and Travel Time

Episodes RL-EVAS Case A
Timestep Total Energy (kwh/km) Travel Time (minute) Timestep Total Energy (kwh/km) Travel Time (minute)

2× 105 5 37.584 3.6 7.45 37.77216 5.364
4× 105 5.05 37.58784 3.636 6.95 37.73376 5.004
6× 105 5.75 37.6416 4.14 7.75 37.79519999 5.57985
8× 105 5.9 37.65312 4.248 7.85 37.80288 5.652
10× 105 7.35 37.76448 5.292 8.1 37.82208 5.831985
Average 5.81 37.646208 4.9516 7.622 37.785215998 5.486367
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TABLE III. Comparison between RL-EVAS and Case B
when the number of obstacles is increased by 25%

Episodes

RL-EVAS Case B
Cumulative Total Cumulative Total

Reward Energy Reward Energy
Cost ($) Cost ($)

2× 105 35 9.3 34.27 9.8864
4× 105 42.4 8.2613759 41.8 8.3891
6× 105 46 7.515455 43.2 7.67741
8× 105 50.7 6.772416 48.9 6.78912
Average 43.525 7.9623117 42.0425 8.1855075

higher as shown in Fig. 4. This is due to the fact that
the performance of the EV in the study area improves
with the increase in the number of episodes, since the EV
will have a higher chance of finding the optimal CS at
any charging decision point, even though the number of
available streets decreases.

As shown in Tables III - V, the cumulative reward that
has been achieved in RL-EVAS is higher compared to all
scenarios of Case B, which means that the EV in RL-
EVAS has selected CSs with higher reward rather than
selecting CSs with lower rewards as the EV performed
in Case B. As mentioned in Section III-B, the charging
rate at CS decreases as the given reward increases. This
is the reason why the total energy cost for charging EV at
selected CSs in RL-EVAS is less compared to all scenarios
in Case B as shown in the above-mentioned tables.

Tables VI, shows the comparison between the RL-EVAS
and Case B, in terms of the travel time of EV to reach CS.

TABLE IV. Comparison between RL-EVAS and Case B
when the number of obstacles is increased by 50%

Episodes

RL-EVAS Case B
Cumulative Total Cumulative Total

Reward Energy Reward Energy
Cost ($) Cost ($)

2× 105 35 9.3 33.67 10.0879
4× 105 42.4 8.2613759 38.9 8.4662
6× 105 46 7.515455 44 7.62554
8× 105 50.7 6.772416 47.9 6.82147
Average 43.525 7.9623117 41.1175 8.2502775

TABLE V. Comparison between RL-EVAS and Case B
when the number of obstacles is increased by 75%

Episodes

RL-EVAS Case B
Cumulative Total Cumulative Total

Reward Energy Reward Energy
Cost ($) Cost ($)

2× 105 35 9.3 32.87 10.32453
4× 105 42.4 8.2613759 37 8.7986
6× 105 46 7.515455 42 7.70554
8× 105 50.7 6.772416 46.3 6.92374
Average 43.525 7.9623117 39.5425 8.4381025

It is seen that the travel time of RL-EVAS is less compared
to the all scenarios in Case B, with an improvement of up
to 20%. The reason behind this is that the number of the
streets that the EV cannot use to find CS with is increased
compared to RL-EVAS, which means that the EV needs
to travel longer distance, which in turn increases the travel
time to reach CS.

TABLE VI. Comparison between RL-EVAS and Case B
in terms of the travel time (minute)

Episodes RL-EVAS Case B
25% 50% 75%

2× 105 3.6 4.30618 4.6152 5.22
4× 105 3.636 4.248 4.5288 5.04
6× 105 4.14 4.17096 4.3056 4.644
8× 105 4.248 4.28134 4.33318 4.52837
Average 3.906 4.25162 4.4457 4.858075

TABLE VII. Comparison between RL-EVAS and the Greedy Strategy
in terms of Total Energy and Total Energy Cost

Episodes

RL-EVAS Greedy Strategy
Total Total Total Total

Energy Energy Energy Energy
kwh/km Cost ($) kwh/km Cost ($)

2× 105 37.584 9.3 37.56096 10.51706
4× 105 37.58784 8.26137 37.55788 9.78
6× 105 37.6416 7.51545 37.53484 10.6891
8× 105 37.65312 6.77241 37.49184 8.6871
10× 105 37.76448 5.66467 37.47801 9.0247
Average 37.64621 7.50278 37.52471 9.73959
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Fig. 5. Comparison between RL-EVAS and Greedy strategy

2) A Comparison between RL-EVAS and Greedy strat-
egy: In this work, in addition to the proposed case studies
that have been assumed before, we also compare RL-
EVAS with greedy strategy to demonstrate our proposed
approach, the comparison between the two strategies is
done based on the total distance, travelling energy con-
sumption, total energy that is required to fully charge EV,
cumulative reward, and total energy cost. As mentioned
before, the performance of RL-EVAS is evaluated with the
respect into two criteria: the cumulative reward, and total
energy cost. Fig. 5 and Table VII show the results of the
comparison between RL-EVAS and the greedy approach.

Although the greedy algorithm achieved comparable
results in terms of total distance, travelling energy con-
sumption, total energy that is required to fully charge EV
as shown in Fig. 5 and Table VII. However, RL-EVAS was
able to achieve the desired results, in terms of maximizing
the cumulative reward and minimizing the total energy cost
cost. The reason for this is the greedy algorithm selected
the CS based only on the distance, which in turn reduced
the energy consumption to reach CS, and the total energy
required to fully charge EV. However, the greedy algorithm
did not take into account the variance in the rewards that
have been associated with each individual CS, and also
the charging rate at each CS, which in turn led to reduce
the cumulative reward and increase the total energy cost.
On the contrary, RL-EVAS has taken into account the two
parameters, thus achieved the goal of the system, which
is maximizing the cumulative reward and minimizing the
total energy cost.

V. CONCLUSION

This paper proposed a RL-based assignment scheme
for EVs to CSs. Several parameters were considered,
including the distance between the locations of EV and
CS, the EV travelling energy consumption, charging rate
at each CS, and the total energy cost of EV. An EV’s
battery SoC was also considered as a constraint to limit

the amount of energy consumption that an EV consumes
to reach CS. Experimental results demonstrate that the
proposed scheme can approximate the solution of finding
the optimal policy in the sense of maximizing the expected
value of the total reward, and minimizing the total energy
cost of EV using Q-learning algorithm. Moreover, the
results of the comparisons we obtained showed that the
RL-EVAS outperformed all the proposed cases and greedy
algorithm approach with an improvement of up to 20%.
Our future works will focus on improving the scalability
of the proposed scheme for practical applications, and
using the Deep Q-Network (DQN) algorithm to solve this
problem using multi-agents in the study area.
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