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Machine Learning based Interference Whitening in 5G NR
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Abstract—We address the problem of computing the
interference-plus-noise covariance matrix from a sparsely lo-
cated demodulation reference signal (DMRS) for spatial domain
interference whitening (IW). The IW procedure is critical at
the user equipment (UE) to mitigate the co-channel interference
in 5G new radio (NR) systems. A supervised learning based
algorithm is proposed to compute the covariance matrix with
goals of minimizing both the block-error rate (BLER) and the
whitening complexity. A single neural network is trained to select
an IW option for covariance computation in various interference
scenarios consisting of different interference occupancy, signal-
to-interference ratio, signal-to-noise ratio, modulation order, cod-
ing rate, etc. In interference-dominant scenarios, the proposed
algorithm computes the covariance matrix using DMRS in one
resource block (RB) due to the frequency selectivity of the
interference channel. On the other hand, in noise-dominant
scenarios, the covariance matrix is computed from DMRS
in entire signal bandwidth. Further, the proposed algorithm
approximates the covariance matrix into a diagonal matrix when
the spatial correlation of interference-plus-noise is low. This
approximation reduces the complexity of whitening from O(N3)
to O(N) where N is the number of receiver antennas. Results
show that the selection algorithm can minimize the BLER under
both trained as well as untrained interference scenarios.

Index Terms—5G new radio (NR), Co-channel interference,
Interference Whitening, Machine Learning, Neural Network.

I. INTRODUCTION

In recent years, 5G wireless networks are becoming oper-

ational worldwide in order to meet high data-rate demands

and support a wide range of services. The user equipment

(UE) in the 5G network is required to employ multiple-input,

multiple output (MIMO) technology to support high data rates

[1]. Further, due to a dense deployment of the base stations

and high frequency reuse factor in the 5G networks, it is

inevitable that the user equipment (UE) need to efficiently

tackle co-channel interference (CCI) in the downlink reception

[2]. A low-complexity approach to handle the interference in

a MIMO receiver is to treat it as a colored Gaussian noise

and apply spatial domain interference whitening (IW) [3], [4].

This approach does not require the knowledge of interference

channel.

Spatial domain IW uses the estimated interference-plus-

noise covariance matrix to whiten the received signal and

estimated MIMO channel matrix. The covariance matrix can

be estimated from reference signals (RS) using the knowledge

of transmitted pilot symbols [5]. In the 5G new radio (NR)

system, the covariance matrix is estimated from PDSCH

demodulation reference signal (DMRS). This is because the
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Fig. 1: Illustration of sparse DMRS of type-1.

PDSCH DMRS experiences same interference as data sym-

bols in PDSCH [6].

However, there are challenges in estimating the covariance

matrix from PDSCH DMRS. The first challenge is that the

PDSCH DMRS can be sparsely located within the resource

block (RB) [6]. For example, there are only twelve DMRS

resource elements (REs) available in one slot to estimate the

covariance matrix as shown in Fig. 1 when the base station

transmits two symbols of DMRS configuration type-1 [7]. Due

to fewer samples, the variance of the estimated sample covari-

ance is high indicating that the estimated covariance is not

robust [8]. To improve the estimation quality, the covariance

matrix can be estimated by averaging over DMRS in all RBs

in the entire signal bandwidth, provided the interference is

absent or its power is low in those RBs. However, the receiver

does not have a prior knowledge of the interference occupancy

or power to make a decision whether or not to use the DMRS

in the entire signal bandwidth for covariance estimation.

The second challenge is the high complexity of whiten-

ing which involves Cholesky factorization of the covariance

matrix followed by the inverse of a lower triangular matrix

[5]. The overall complexity of this procedure is O(N3) where

N is the number of receiver antennas [9]. If the interference-

plus-noise is spatially uncorrelated, then the complexity of the

whitening can be reduced from O(N3) to O(N) without any

loss in performance by approximating the covariance matrix

with a diagonal matrix and setting the non-diagonal terms to

zero. However, in the absence of any prior knowledge of the

interference power, it is not straightforward to decide whether

the interference-plus-noise is spatially uncorrelated or not by

observing only a few PDSCH DMRS samples.

Recent works in the literature have employed machine

learning to mitigate the effects interference in MIMO re-

ceiver [10]–[12]. However, the methods developed in [10],

[11] tackle inter-stream interference among different MIMO
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streams or layer. Those methods are not applicable in CCI

scenarios where the interference channel is unknown. Further,

the paper [12] proposed a reinforcement learning (RL) method

to compute the covariance with few DMRS samples under

CCI. However, the proposed online RL technique requires

the UE to learn the interference statistics at run-time. Such

techniques have implicit assumption that interference occu-

pancy and power remain constant from one slot to the next.

Further, the method in [12] requires maintaining a large look-

up table of state, action and rewards at the UE. In this work,

we propose a machine learning based IW technique applicable

in CCI scenarios. Our approach do not require learning inter-

ference statistics at run-time. Further, the proposed method is

applicable even when the interference occupancy and power

changes at each time slot.

We employ a neural network to decide whether or not to

compute the covariance matrix by averaging over entire band-

width. The neural network also determines if the covariance

matrix can be approximated with a diagonal matrix or not.

The proposed method does not require any prior knowledge

of the interference occupancy and power. We train a neural

network based on decoding results of the serving signal under

different interference scenarios and apply the same network

in different scenarios.

The main contributions of this paper are summarized below.

1) A supervised learning based algorithm is proposed to

select an IW option to compute interference-plus-noise

covariance matrix,

2) The proposed algorithm selects a low-complexity IW

option and simultaneously minimizes the block-error

rate (BLER),

3) A single neural network is robust even under different

interference scenarios.

Notations: Vectors are denoted by bold, lower-case letters,

e.g., h. Matrices are denoted by bold, upper-case letters, e.g.,

H. Hermitian transpose is denoted by (.)∗ and diag(A) is a

diagonal matrix with diagonal elements same as the diagonal

elements of A.

II. SYSTEM MODEL AND OBJECTIVE

We consider a M × N MIMO system model with M

transmit antennas and N receiver antennas. Let yi,j,t ∈ CN×1

be the received signal vector at time slot t in RE (i, j), i.e.,

RE located at the ith sub-carrier and jth OFDM symbol in

the slot. Let Sb, b = 1, · · · , B, be the set of REs in the bth

resource block (RB) where B is the total number of RBs in the

signal bandwidth. The set of RBs with interference is denoted

by I. Then, the received signal vector can be expressed as

yi,j,t =

{

Hi,j,txi,j,t + ni,j,t, if (i, j) ∈ Sb, b /∈ I,

Hi,j,txi,j,t +HIi,j,txIi,j,t + ni,j,t, if (i, j) ∈ Sb, b ∈ I,

(1)

where Hi,j,t ∈ CN×M and xi,j,t ∈ CM×1 are the down-

link MIMO channel and the transmitted signal, respectively.

at DMRS REs
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Fig. 2: Block diagram of receiver with interference whitening.

Further, HIi,j,t ∈ C
N×M ′

and xIi,j,t ∈ C
M ′×1 are the

downlink interference channel and interference signal, where

M ′ is the number of antennas at the interfering transmitter.

Finally, ni,j,t ∈ CN(0, I) is the noise vector. We assume that

the Hi,j,t and HIi,j,t are scaled according to SNR and SIR

assuming unit noise power at each antennas and the channels

remain constant over the duration of slot t. Therefore, we drop

subscript t to simplify notations.

We define the interference-plus-noise vector vi,j as follows:

vi,j = yi,j −Hi,jxi,j =

{

ni,j , if (i, j) ∈ Sb, b /∈ I,

HIi,jxIi,j + ni,j , if (i, j) ∈ Sb, b ∈ I,
(2)

Assuming that the noise and interference signal has zero

mean, the ideal interference-plus-noise covariance matrix for

the bth RB is RIW,b = E[vi,jv
∗
i,j ]. In order to whiten the

signal in the bth RB, first the Cholesky factorization Lb of

RIW,b is computed such that RIW,b = LbL
∗
b . Then, the

received signal vector yi,j and the estimated channel matrix

Ĥi,j are pre-multiplied by the inverse of Lb as follows:

y
(w)
i,j = L−1

b yi,j , Ĥ
(w)
i,j = L−1

b Ĥi,j , (i, j) ∈ Sb (3)

where y
(w)
i,j and Ĥ

(w)
i,j are whitened signal vector and channel

matrix, respectively. Following the whitening operation, the

detector computes log-likelihood ratios from y
(w)
i,j and Ĥ

(w)
i,j

and the decoded bits are obtained from the decoder as shown

in Fig. 2. Let c indicate the cyclic redundancy check (CRC)

flag indicating whether the block is decoded successfully (c =
1) or not (c = 0). Let Pe = Pr{c = 0} be the probability

of decoding error or block error rate (BLER) under different

channel realizations. The objective of this work is to select

RIW,b in order to minimize Pe under different interference

scenarios while keeping the whitening complexity low.

III. PROPOSED APPROACH

In order to obtain the whitening matrix RIW,b, we first

compute an initial estimate R̂D,b from DMRS in the bth RB.

We define SD,b ⊂ Sb such that SD,b is the set of DMRS REs

where the transmitted DMRS are known at the receiver. The

initial estimate of the covariance matrix can be computed as

follows:

R̂D,b =
1

|SD,b|

∑

(m,n)∈SD,b

v̂m,nv̂
∗
m,n, (4)

where v̂m,n = ym,n− Ĥm,nxm,n, |SD,b| is the cardinality of

set SD,b, Ĥm,n is the estimated channel at DMRS RE (m,n)
and xm,n is the transmitted DMRS pilot.

We consider three options to compute RIW,b from R̂D,b.

One obvious option is to directly R̂D,b for whitening, i.e.,



RIW,b = R̂D,b. The complexity of whitening with this option

is O(N3) due to the Cholesky factorization and matrix inverse

operations [9]. This option is suitable in an interference-

dominant scenario when the correlation between interference

received on two antennas is high, e.g., when the non-diagonal

elements of E[vi,jv
∗
i,j ] are non-negligible relative to the

diagonal elements.

A lower complexity option is to use only the diagonal

elements of R̂D,b for whitening, i.e., RIW,b = diag(R̂D,b).
Due to a diagonal covariance matrix, the Lb is also a di-

agonal matrix where the nth diagonal entry is Lb(n, n) =
√

RIW,b(n, n), n = 1, 2, · · · , N . Further, L−1
b is also a di-

agonal matrix with L−1
b (n, n) = 1√

RIW,b(n,n)
. Therefore, the

complexity of whitening becomes O(N). In this case, the pre-

multiplication with L−1
b in (3) is equivalent to normalization

of n-th row of yi,j and Ĥi,j with
√

RIW,b(n, n). This option

is suitable in an interference-dominant scenario when the

correlation between interference received on two antennas is

low, e.g., when the non-diagonal elements of E[vi,jv
∗
i,j ] are

negligible relative to the diagonal elements.

In both options above, which are suitable for interference-

dominant scenarios, RIW,b is computed from DMRS REs in

the bth RB only. This is because the interference statistics are

different in different RBs due to frequency selectivity of the

interference channel.

The third option is suitable in a noise-dominant scenario

where we can approximate vi,j as vi,j ≈ ni,j . Assuming

the noise spectrum is white and the noise power is same at

each RB, we can improve the estimate of the covariance by

averaging over all RBs in entire signal bandwidth as shown

in (6). In this option, the complexity of whitening is O(N)
due to a diagonal covariance matrix.

We arrange the three options in the ascending order of

complexity as follows:

1) IW with normalization over RB (IWNRB):

RIW,b = diag(R̂D,b) (5)

2) IW with normalization over signal bandwidth
(IWNBW):

RIW,b = diag

(

1

B

∑

b

R̂D,b

)

(6)

3) IW over RB (IWRB):

RIW,b = R̂D,b (7)

The whitening complexity with IWNRB and IWNBW is

O(N), while the complexity with IWRB is O(N3).

A. Impact of interference scenario on performance of IW

options

We observe that the best IW option to minimize BLER

depends on various factors such as interference occupancy

in signal bandwidth, SIR, SNR, MCS as shown in Fig. 4. To

demonstrate the impact of these factors on BLER, we consider

PDSCH signal

Interference

50 RB

5 RB 5 RB Frequency

(a) Interference occupancy-1: uniformly spaced interference.

Frequency

100 RB

1 RB

(b) Interference occupancy-2: concentrated interference.

Fig. 3: Illustration of interference occupancy.

the interference scenarios with the following interference

occupancy:

• Occupancy-1: Signal of 50RB, with interference dis-

tributed throughout signal bandwidth (Fig. 3a),

• Occupancy-2: Signal of 100RB, with interference at the

center RB (Fig. 3b).

As shown in Fig. 3, the interference is uniformly spaced

in occupancy-1, while it is concentrated in occupancy-2. The

effect of interference occupancy on the BLER is shown in

Fig. 4a and 4b when MCS = 5 and SIR = 10dB. We

observe that the lowest BLER is achieved with IWNRB

and IWNBW options in interference occupancy 1 and 2,

respectively. Finally, Fig. 4c, 4d demonstrate that the best

option depends on MCS and SNR as well. At SIR=30dB,

we can see that IWNRB is the best option for MCS-5, while

IWRB and IWNRB are better options for MCS-19.

Further, we can observe the pros and cons of averaging

over entire signal bandwidth in the IWNBW option. We see

that the IWNBW has the lowest BLER in a noise-dominant

scenario (high SIR) as shown in Fig. 4c. However, it suffers

significantly in a interference-dominant scenario (low SIR)

as shown in Fig. 4a. Here, we emphasize the interference

occupancy is not known at the receiver. Further, the perfect

knowledge of SIR and SNR is not available in the presence

of interference. Therefore, we train a neural network to select

appropriate IW option as described next.

B. Offline Neural Network Training

The objective of the neural network is to select an ap-

propriate IW option to minimize the BLER (Pe) in various

interference scenarios. Interference scenario is denoted by

s and consists of {Channel model, interference occupancy,

SNR, SIR, MCS}. Let P
(ζ)
e (s) be the BLER achieved when

the IW option ζ ∈ {1, 2, 3} is applied at each time slot in a

fixed interference scenario s. Then, the minimum BLER in

scenario s is denoted by P
(min)
e (s) = minζ P

(ζ)
e (s).

Let zs(θ) ∈ {1, 2, 3} be the IW option selected by the neu-

ral network in scenario s, where θ is the network parameter,

i.e., weights and biases of the neural network. Let Pe(s; θ) be

the BLER achieved when IW option is selected by the neural

network in scenario s. Then, the ideal the network parameter

θ∗ achieves Pe(s; θ
∗) = P

(min)
e (s), ∀s. Mathematically, the

goal of network training can be stated as follows:
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Fig. 4: Effect of MCS, SIR, and interference occupancy on BLER under EPA-5 channel in 2x2 MIMO at Doppler frequency 5Hz, subcarrier spacing 15kHz,
system BW=20MHz.

TABLE I: Range of scenarios in training dataset

Parameter Range

Channel models EPA-5, EVA-30

MCS 0 to 27 from Table 5.1.3.1-2 in [13]

SIR {0, 10, 20, 30, 40, 50}dB

Interference occupancy Occupancy-1 (uniformly spaced) and
occupancy-2 (concentrated)

SNR [SNRmin, SNRmax]

min
θ

∑

s∈S

|Pe(s; θ)− P (min)
e (s)|, (8)

where S is the set of different interference scenarios. La-

beled dataset are generated under different interference sce-

narios and then combined for the network training. The

range of parameters used to generate the dataset is tabulated

in Table I. The range of SNR in the training dataset is

[SNRmin, SNRmax] where SNRmin is the largest SNR

with BLER ≥ 0.1 for MCS-0 at SIR = 50dB and SNRmax

is the smallest SNR with BLER ≤ 0.01 for MCS-27 at SIR

= 0dB. The labeled dataset is generated by running simulation

with above parameters and collecting features and labels for

each slot. Each sample in the training dataset corresponds to

one slot in the 5G NR transmission. The feature and label

generation are explained next.

1) Label Generation: During label generation, each IW

option n ∈ {1, 2, 3} is applied in to generate RIW,b as shown

in Fig. 5. The received signal vectors and estimated channel

matrices are whitened with RIW,b generated by each option.

Finally, the CRC flag cn is collected for option n at each

slot. Then, the label is assigned as the lowest complexity

IW option that results in successful decoding. Since the IW

options are arranged in the ascending order of complexity, the

lowest complexity label can be expressed as follows:

z = min
n∈{1,2,3}

{n|cn = 1} (9)

2) Feature Generation: The input features for the neural

network are derived from initial covariance estimate R̂D,b.

TABLE II: Input features

Feature Description

g1
1
N

∑N
i=1 Ravg(i)

g2 maxi Rmax(i)
g3 mini Rmin(i)
g4 Modulation order

g5 Code-rate

Interference 

whitening
Detector Decoder

Interference 

whitening
Detector Decoder

Interference 

whitening
Detector Decoder

at

Data REs

Option-1 (IWNRB)

Option-2 (IWNBW)

Option-3 (IWRB)

Fig. 5: Label generation.

We define terms Ravg(i), Rmax(i), Rmin(i) corresponding to

the i-th diagonal element of R̂D,b as:

Ravg(i) =
1

B

∑

b

R̂D,b(i, i),

Rmax(i) = max
b

R̂D,b(i, i),

Rmin(i) = min
b

R̂D,b(i, i) (10)

For each slot, the five features g1, g2, · · · , g5 shown in

Table II are generated. These feature are chosen from various

candidate features based by using Mutual Information based

Feature Selection (MIFS) algorithm proposed in [14]. Further,

as demonstrated in Section III-A, the BLER for any IW option

depends on the modulation order and code rate which are

known at the receiver. Therefore, we utilize both modulation

order and code rate in addition the features mentioned above

at the input of the network.

3) Network training: Once features and labels are collected

at different interference scenarios, a single neural network is

trained using quasi-Newton method [15] to obtain the network

parameter θ. The architecture of the neural network is shown

in Fig. 6. It consists of 5 input features, one hidden layer

with 16 hidden nodes, and 3 output nodes. We use Sigmoid
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activation function. The network is trained to minimize the

cross-entropy cost function.

C. Online IW selection

At the inference time, the trained parameter θ is used to

select the IW option at each slot as shown in Fig. 6. From the

selected IW option, the covariance matrix RIW,b is computed

for each RB b in the signal bandwidth.

IV. RESULTS

In this section, we present results for the proposed IW

selection algorithm in a 4× 4 MIMO system with M = N =
M ′ = 4. The algorithm in evaluated assuming the base station

transmits two DMRS configuration type-1 as depicted in Fig.

1. Further, we consider the sub-carrier spacing of 15kHz

and FFT size of 2048 for the OFDM transmission. The gain

is demonstrated under trained as well as untrained channel

models and interference scenarios. The gain is quantified in

terms of the SNR gap and complexity of whitening. The SNR

gap is defined as

SNR gap = SNR to achieve 10% BLER −
SNR to achieve 10% BLER for the best IW option. (11)

Note that the low SNR gap implies low |Pe(s; θ)−P
(min)
e (s)|

for P
(min)
e (s) = 0.1.

In Fig. 9, we show the BLER under SIR = 0 and 20dB

along with utilization of IW options by the proposed selection

algorithm under an untrained interference occupancy-3 and

untrained channel model of tapped delay line A with 30Hz

Doppler frequency (TDLA-30). The interference occupancy-3

includes a full-band interference occupying entire bandwidth

of the signal as depicted in Fig. 7. The BLER plots Fig. 9 in

also show SNR required to achieved 10% BLER under each

algorithm after the @ symbol in the legend.

At SIR = 0dB, the best IW option is IWRB as it achieves

10% BLER at 31.57dB SNR as seen in Fig 9a. The proposed

IW selection algorithm also achieves 10% BLER at 31.57dB
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Fig. 8: IW selection at MCS-15 under untrained channel TDLA-30,
SIR=50dB in untrained interference occupancy-3.

SNR. Thus, the SNR gap for the selection algorithm 0dB.

The complexity of interference whitening with the proposed

method is O(N3) at SIR = 0dB since it utilizes IWRB option

as shown in Fig. 9b. At low SIR, the BLER with IWNBW

does not drop below 10% even at high SNR as seen in Fig.

9a. Therefore, the SNR gap for IWNBW at low SIR is ∞.

At SIR = 50dB, the best IW option is IWNBW as it

achieves 10% BLER at 24.02dB SNR as seen in Fig 8a. The

proposed IW selection algorithm also achieves 10% BLER at

24.02dB SNR. Thus, the SNR gap for the selection algorithm

is 0dB. The complexity of the selection method is O(N) since

it utilizes IWNBW as shown in Fig. 8b. The SNR gap for

IWRB is 24.67 − 24.02 = 0.65dB. Further, the complexity

of the IWRB is O(N3). At high SNR, the IWNBW is the

best IW option. Therefore, SNR gap for IWNBW is 0dB.

Finally, in Fig. 9c and 9d, we can see that the proposed method

appropriately selects an IW option to achieve the lowest BLER

at 20dB SIR.

A more extensive comparison between the IW selection

algorithm, IWRB, and IWNBW is shown in Table III for

untrained interference occupancy-3. At low SIR, the best IW

option is IWRB and the IW selection achieves same BLER as

IWRB resulting in SNR gap of 0dB. Since the IW selection

utilizes IWRB option at low SIR, the complexity of whitening

is O(N3). At high SIR, the SNR gap for IW selection is

below 0.05dB indicating the proposed algorithm achieves
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Fig. 9: IW selection at MCS-15 under untrained channel TDLA-30, SIR=0dB and 20dB in untrained interference occupancy-3.

TABLE III: Performance of proposed IW selection under untrained interference occupancy-3

Proposed IW selection IWRB IWNBW

SNR gap (dB) Complexity SNR gap(dB) Complexity SNR gap (dB) Complexity

MCS Channel → EPA-5 TDLA-30 EPA-5 & EPA-5 TDLA-30 EPA-5 & EPA-5 TDLA-30 EPA-5 &

SIR (dB)↓ (untrained) TDLA-30 (untrained) TDLA-30 (untrained) TDLA-30

MCS-0 0 0 0 O(N3) 0 0 ∞ ∞
50 0 0 O(N) 0.60 0.72 0 0

MCS-7 0 0 0 O(N3) 0 0 ∞ ∞

50 0.02 0.01 O(N) 0.47 0.62 0 0

MCS-19 20 0 0 O(N3) 0 0 O(N3) ∞ ∞ O(N)
50 0 0.06 O(N) 0.11 0.42 0 0

MCS-27 30 0 0 O(N3) 0 0 ∞ ∞
50 0.01 0.03 O(N) 0.60 0.63 0 0

BLER very similar to the best IW option of IWNBW. Further,

the complexity of whitening with the proposed algorithm is

O(N). On the other hand, IWRB has higher SNR gap and

requires higher complexity of O(N3).

From the results, we can see that unlike any candidate IW

option, the proposed IW selection method achieves minimum

BLER in all scenarios. Further, it also has lower computational

complexity than IWRB at noise-dominant scenarios (high

SIR) and has significantly better BLER performance than

IWNBW at interference-dominant scenarios (low SIR).

V. CONCLUSION

In this paper, we proposed a supervised learning based

algorithm to select an IW option to compute the interference-

plus-noise covariance matrix from sparsely located DMRS.

The proposed algorithm employs a single neural network

and selects the best IW option to achieve minimum BLER

under trained as well as untrained scenarios of interference

occupancy, SIR, SNR, and MCS. Results also show that

the proposed algorithm reduces the complexity of whitening

from O(N3) to O(N) in scenarios with spatially uncorre-

lated interference-plus-noise. The proposed method does not

require any prior knowledge of the interference occupancy

or power. Further, this method utilizes information extracted

from current time slot only. Therefore, it is applicable in

scenarios where CCI statistics change in each time slot.
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