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Abstract—We studied a target tracking algorithm based on 

millimeter-wave (MMW) radar in an autonomous driving 

environment. Aiming at the cluster matching in the target 

tracking stage, a new weighted feature similarity algorithm is 

proposed, which increases the matching rate of the same target 

in adjacent frames under strong environmental noise and 

multiple interference targets. For autonomous driving scenarios, 

we constructed a method that uses its motion parameters to 

extract and correct the trajectory of a moving target, which 

solves the problem of moving target detection and trajectory 

correction during vehicle movement. Finally, the feasibility of 

the proposed method was verified by a series of experiments in 

autonomous driving environments. The results verify the high 

recognition accuracy and low positional error of the method.  

Keywords—radar tracking; automotive radar; feature 

matching; cluster-based 

I. INTRODUCTION  

Self-driving technology has advanced rapidly in recent 
years. However, in complex, cluttered, and unseen 
environments with high uncertainty, autonomous driving 
systems frequently make the wrong decisions, so advanced 
autonomous technologies remain in the laboratory stage [1]. 
The key to improving system reliability is sensors. Although 
cameras are the most widely used sensor, they are susceptible 
to interference from light and dust. In comparison, millimeter-
wave (MMW) radar performs robustly in adverse weather and 
has higher-accuracy range and speed detection [2]. Therefore, 
MMW radar has been widely used in self-driving systems 
because of its unique advantages that considerably improve 
system reliability. 

To improve self-driving safety, it is important to predict 
whether a collision will occur in the future from videos, which 
involves monitoring and tracking the objects in automotive 
circumstances. Due to the development of image processing 
and deep learning technology, tracking algorithms based on 
cameras have been well-studied[3]; however, radar-based 
tracking study is limited by several defects. First, the noise and 
clutter in an environment can lead to false alarm targets and 
detection errors in the case of a low signal-to-noise ratio 
(SNR). Second, generally, the radar data only contain the 
position, velocity, and intensity, which makes the data 
difficult to classify. Regardless, some research [4-5] achieved 
simple classification through machine learning methods based 
on special features such as the doppler pattern, 3D data cube, 

and statistical features. The plot-level features are scarce, so 
they are hard to use to support complex intelligent algorithms. 
To address the problem of tracking moving targets using 
scarce features, a previous study [6] achieved human-vehicle 
classification using cluster-level feature vectors, considering 
the shape parameters, which contain more characteristics than 
plot-level features. Huang et al. [5] used features in a long time 
span to distinguish the walking patterns of different people. 
Their common idea is to aggregate small features into a larger 
whole to increase the distinguishability of targets. Building on 
this method, we used clusters as the basic unit of tracks. The 
typical clustering method is density-based spatial clustering of 
applications with noise (DBSCAN), but with this method, 
plots are often mistakenly merged or split apart [4,7]. To 
effectively exploited plot-level features in the detection, we 
improve the clustering algorithm by taking distance, velocity, 
and amplitude into consideration. 

The main contribution of this paper is a new data 
association method in tracking algorithm, which seeks to 
determine which plots should be used to update which tracks. 
There are lots of data association method base on radar have 
emerged [8], such as joint probabilistic data association 
(JPDA) [8,9], multiple hypotheses tracking (MHT) [8], and 
the probability hypothesis density (PHD) filter [10]. However, 
the literature [11] reports that these methods obtain acceptable 
results in simulation but are flawed in real scenes with noise 
and scarce prior knowledge. Yang et al. [12] stated that the 
calculations in these methods are highly complex, limiting 
their application. To solve that problem, Chen et al. [13] 
proposed measuring the correlation between radar plots using 
their feature vectors since the plots between frames have 
structural similarity. Additionally, it is common to measure 
the similarity of pixels in computer vision [14]. So, it is 
possible to classify different clusters consisting of plots in 
radar graphs. In this paper, our data association algorithm 
defines a similarity function between clusters to measure the 
correlation. In every scan, the similarity between two clusters 
is calculated by the cluster-level features with assigned 
different weights. 

The rest of the paper is organized as follows: In Section II, 
the system model of the MMW radar is illustrated. In Section 
III, the clustering algorithm for detected plots is provided, and 
the proposed target tracking algorithm is illustrated. The 
experimental result and evaluation are presented in Section IV. 
This is followed by the conclusions in Section V. 



II. SYSTEM MODEL 

Moving target tracking is divided into three steps: target 
detection, target tracking, and track extraction. In the target 
detection step, which is a fundamental step, plots are detected 
and generated the candidate clusters. In the target tracking step, 
the clusters are assigned to tracks by their similarity. Finally, 
in the extraction step, the tracks are recognized from moving 
targets and they are restored to the original tracks by the 
radar’s kinematic parameters. 

In the target detection step, the radar estimates the target's 
range, velocity by 2D-FFT algorithm. Then phase error 
elimination and beamforming algorithm was used to estimate 
azimuth. After that, we apply constant false alarm rate (CFAR) 
to filter out the noise and clutters, and clustering.  

In the target tracking step, a weighted feature similarity 
algorithm in the data association step. After that, we 
implement a Kalman filter for state prediction and estimation, 
where the associated cluster revises the latest track prediction 
to provide an optimal estimate of the target state. The track 
management system determines which tracks need to be 
updated or deleted.  

Finally, it’s the step of moving the target’s track extraction. 
Giving the radar the advantage of detecting moving objects, it 
can be used to track objects that need the most attention in the 
driving environment. Therefore, the solution to exclude statics 
objects from a mobile radar is simply introduced. 

III. PROPOSED ALGORITHM 

In this section, the proposed algorithm is presented, 
including its rationale and implementation. 

A. Clustering 

After obtaining plot information from low-level 
processing, we apply CFAR which can efficiently extract the 
candidate plots for later clustering. Then, we only keep the 
maximum amplitude plot in the neighborhood. This idea 
borrows from maximum pooling in deep learning, and it has 
the following advantages: 1) extracting the maximum element 
can retain the main features and eliminate the unimportant 
ones. 2) making the plots more distinguishable, which is 
beneficial to the development of the subsequent clustering 
algorithm. 3) it reduces the point density and simplifies the 
subsequent data processing of the calculation. 

The plots are then divided into several clusters by a 
clustering algorithm. It is based on DBSCAN, which is widely 
used in radar signal processing. However, we proposed two 
improvements. 1) For small obstacles, the plots are scarce and 
prone to being wrongly recognized as noise by the 
conventional DBSCAN. Our proposed algorithm assumes that 
the noise is likely to have a lower amplitude and adds 
amplitude as a judging condition. 2) It improves the standard 
for plot clustering by including distance, velocity, and 
amplitude, which lowers the possibility of wrongly merging 
different targets. This idea is based on the assumption that the 
plots from the same target remain close and have similarities 
in velocity and amplitude. The clustering algorithm is 
described in Algorithm 1. 

Algorithm1 clustering 

Input: n-th plot feature vector 𝑝𝑛 = (𝑥𝑛 , 𝑦𝑛 , 𝐴𝑛 , 𝑉𝑛) , where the four 

variables represent the x,y position, amplitude, and velocity, respectively; 

radius of epsilon neighborhood 𝜖, neighborhood point density threshold 

MinPts, amplitude threshold A_thres, and velocity threshold V_thres. 

Output: Cluster index k, cluster subset 𝐶 = {𝛺1, 𝛺2, ⋯ , 𝛺𝑘} 

Variables: Epsilon neighborhood 𝑁𝜖(𝑝𝑖) : for 𝑝𝑖 ∈ 𝑃𝑘 , 𝑁𝜖(𝑝𝑖) =
{𝑝𝑗 ∈ 𝑃𝑘|𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑝𝑗) < 𝜖}; 

The average amplitude 𝐴̅ of points in 𝑃𝑘, and point set 𝛺 from the same 

cluster 

1: Initialization: 𝛺 = ∅, 𝑘 = 0, mark all the points as unvisited 

2: Noise judgment: {𝑝𝑛𝑜𝑖𝑠𝑒|𝑁𝜖(𝑝𝑛𝑜𝑖𝑠𝑒) < 𝑀𝑖𝑛𝑃𝑡𝑠 ∧ 𝐴𝑛𝑜𝑖𝑠𝑒 < 𝐴̅} 

3: Find the unvisited non-noise point 𝑝𝑖  and its epsilon neighborhood 

𝑁𝜖(𝑝𝑖) 

4: Combine 𝑝𝑗 = {𝑝|𝑝 ∈ 𝑁𝜖(𝑝𝑖)} into cluster 𝑝𝑖 when 

{𝑝𝑗| |𝑁𝜖(𝑝𝑗)| ≥ 𝑀𝑖𝑛𝑃𝑡𝑠 ⋀ |𝑉𝑗 − 𝑉𝑖| < 𝑉𝑡ℎ𝑟𝑒𝑠⋀ |𝐴𝑗 − 𝐴𝑖| < 𝐴_𝑡ℎ𝑟𝑒𝑠} , 

and mark 𝑝𝑗 as visited 

5: Return to step 3 until all the eligible points have been considered 

The result of the clustering algorithm is the cluster index of 
plots. In the next part, the proposed tracking algorithm is 
based on the cluster’s features. 

B. Tracking  

The proposed tracking algorithm matches the clusters in 
multiple frames depends on the similarity of the clusters. The 
similarity is calculated by the cluster’s feature vector. In frame 
m and cluster k, the cluster feature vector is defined as 

, max min max min[ , , , , , , , , ]= T

m k x y r X X Y YF P P V S A B B B B       (1) 

where , ,
x y r
P P V denote the average x and y coordinates value 

of points and the average radial velocity in cluster k, 
respectively; A is the average amplitude of plots in cluster k; 

max min max min
, , ,

X X Y Y
B B B B  are the maximum and minimum x- 

and y-coordinate values of the bounding box, respectively; 
and S is the area of the box. 

After obtaining the feature vector, the same cluster 
between two adjacent frames can be determined by similarity 
function, which is used to measure the similarity of the feature 
vectors of two clusters. The similarity contains five parts: 
distance, velocity, area, overlap, and amplitude, as shown in: 

𝑆𝑖𝑚 = 𝑤1𝑆𝑑𝑖𝑠 + 𝑤2𝑆𝑣𝑒𝑙 + 𝑤3𝑆𝑎𝑟𝑒𝑎 + 𝑤4𝑆𝑜𝑣𝑒𝑟𝑙𝑎𝑝 + 𝑤5𝑆𝑎𝑚𝑝 (2) 

where ∑ 𝑤𝑖 = 15
𝑖=1  are the importance weights between 0 and 

1. For example, a greater 𝑤2 will be helpful when extracting 
moving targets. The distance similarity can be defined as 

1 2( , )
1dis

thres

dist P P
S

d
= −   (3) 

The distance similarity is determined by Euclidean distance 
of two clusters’ centroids 𝑃1, 𝑃2  and 

thresd is the parameter 

depends on the radar detection resolution. Analogously, the 
velocity and area similarity are described as follows 

1
r

vel

thres

V
S

V


= −       (4) 

1area

thres

Area
S

Area


= −       (5) 

The overlap similarity is defined by the ratio of the 
intersection and the union of bounding boxes, as shown in (5). 
It is based on the assumption that the same cluster’s boxes in 
two adjacent frames have the maximum overlapped area. 
Overlap similarity is 1 if the two bounding boxes coincide; 
otherwise, it is less than 1. 




=


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Box Box
S
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   (6) 

 Finally, the amplitude similarity is defined in (7).  

1 2

1
max( , )

amp

Amp
S

Amp Amp


= −   (7) 

From the equation above, it can be seen that the similarity 
is between 0 and 1. The similarity measures the possibility and 
determines whether a new cluster belongs to the track by 
considering several factors.  

Next, to generate the prediction and estimate the motion of 
targets, a kinematic model needed to be built. We use a 
Kalman filter to predict new clusters and provide an optimal 
estimate when a new cluster is matched, as shown in 
Algorithm2. 

Algorithm2 Kalman Filter 

Input: state matrix A, new measurement state z, frame interval time t ,  

state vector 
max min max min[ , , , , , , , ]T

x y x y X X Y Yx P P V V B B B B=  

Output: Optimal feature estimation
tF  

Variables: Measure model H, state transition model A, Kalman gain K, 

process noise covariance Q, measurement noise covariance R, estimate 

noise covariance matrix P, innovation matrix y 

------prediction------ 

1: predict state: 
| 1 1| 1t t t tx x A− − −=  

2: predict covariance: 
| 1 1| 1

T

t t t tP AP A Q− − −= +  

------match------ 

3: calculate the similarity between the track’s prediction feature and 

clusters in the current frame t 

4. if maximum cluster similarity exceeds the acceptance gate then 

5. extract the cluster feature and turn it into a measurement state z 

------update------- 

7. innovation: 
| 1t t t ty Z Hx −= −  

8. Kalman gain: 1

| 1 | 1( )T T

t t t t tK P H R HP H −

− −= +  

9. Estimate state: 
| | 1t t t t t tx x K y−= +  

10. Update covariance: 
| | 1( )t t t t tP I K H P −= −  

11. Predict the cluster feature in the next frame: 
1 |t t tx x A+ =  

12. Transform the state vector
|t t
x into the feature vector

tF , then update 

the tracks 

Note that the prediction and update are separate. In the 
prediction step, we need to predict the state of the next frame. 
If the corresponding cluster is found in the next frame by the 
similarity function, then it will enter the updating step and 
generate optimal estimation.  

Notably, the feature vector contains tangential velocity 
estimation 𝑉𝑦 which is different from the feature vector. It can 

be derived using tangential displacement, as shown in Fig. 1. 
The parameters can be expressed as 

1 sink
t

r
V

t

−=


    (8) 

sin cosx r tV V V  = +    (9) 

cos siny r tV V V  = +    (10) 

A factor [0,1]  is set to reduce the influence of position 

error caused by azimuth inaccuracy on the prediction result, 
which will achieve better experimental results. 

 

Fig. 1. Tangential velocity estimation model, where 𝑉0 denotes the target 

velocity in the current frame, which is decomposed into radial velocity 𝑉𝑟 

and tangential velocity 𝑉𝑡. The two points are the cluster centroids of the 

current frame and the previous frame. 

To differentiate the static target from the moving one 
requires the motion parameters of the radar. Suppose the 
velocity components of radar are 𝑉𝑥 and 𝑉𝑦, the azimuth is 𝛼, 

as shown in Fig.2. The radial velocity of static targets can be 
derived as 

sin cosstatic rx ry x yV V V V V = + = +        (11) 

 

Fig. 2. Decomposition of the relative velocity of static targets. 

staticV is only affected by the azimuth when the radar 

velocity is set. Here, the compensation involves subtracting 

staticV from the detected radial velocity. 

r static vV V −        (12) 

Ideally, the velocity of static objects will be 0 after 
compensation. However, in practice, because of noise and 
error, the final error is acceptable within a certain threshold 𝛿𝑣, 
whose value depends on the real circumstance; for example, 
on a road with high-speed cars, a larger  𝛿𝑣 would perform 
better; In a street with bicycles and pedestrians, 𝛿𝑣should be 
set lower. 

IV. PERFORMANCE EVALUATION 

In this section, we evaluate the performance of the method 
through a series of experiments. To test the object detection 
performance and target tracking algorithm of our method, 
three experiments were conducted. 

The experiments are based on Texas Instrument’s (TI) 
automotive MMW radar products. We chose AWR1642 as the 
radar test platform, having four receiving channels and two 
transmitting channels, and 4 GHz available bandwidth from 
76 to 81 GHz. Then, we chose DCA100 EVM as the data 



capture board for streaming the ADC raw data from the 
AWR1642 to the computer through an ethernet cable. 

Previous studies [15,16] introduced a rich set of metrics 
for tracking system evaluation of camera systems, which can 
also be used in radar tracking. Given these metrics, we 
evaluated the performance of our method from three aspects: 
centroid matching error (CME), bounding box overlap rate 
(BBOR), and F1-score. The CME and BBOR are defined as 

1

1
( , )

N

i i

i

CME dist GT DT
N =

=       (11) 

1

1 N
i i

i i i

GT DT
BBOR

N GT DT=


=


      (12) 

where N, GT, and DT represent the length of track, ground 
truth, and detection, respectively. CME and BBOR represent 
the centroid position error, whereas BBOR represents the 
shape error. 

A. Static detection performance 

In the first experimental scenario, multiple targets were 
detected by a static radar to produce clustering results. We 
chose a wide road and placed the targets in a fixed position, 
and the size of the targets was measured to calculate the 
BBOR. The experimental scene are shown in Fig. 3. 

   

Fig. 3. Target detection scene and the result of the algorithm 

Used dataset from three detections, we got an average 

CME of 0.193m, and an average BBOR of 78.8%. 

Considering the error is limited by the range resolution 

(0.12m), the CME of the stationary target satisfies the 

precision requirement. The high overlap degree of the 

bounding box is due to the small change in the object echo, 

which makes the size of the cluster box relatively fixed. To 

summarize, the multi-target detection algorithm has high 

accuracy and meets the basic experimental requirements. 

B. Tracking Performance 

The second experiment was for the tracking algorithm; we 
used a static radar to detect moving targets including 
pedestrians, bicycles, and sedans, which are the most common 
targets in automotive scenarios. The target moved in both the 
radial and tangential directions. Three non-target clutter items 
were placed in the environment. The reason for the tangential 
direction was to evaluate the KF prediction.  

The problem of ground truth measurement while tracking 
must be noted. The ground truth can be obtained by a more 
precise sensor such as a camera, but this experiences many 
problems (e.g., time synchronization). After comprehensive 
consideration of accuracy and simplicity, we chose to drive 
the radar vehicle with a constant velocity on a straight line 
with fixed starting and ending points. So, we assumed that the 
actual centroid of the target was equidistant on the line 
segments. Then, the measured size of the targets was assumed 
to be the actual bounding box that was used to calculate the 
BBOR. 

Five sets of data were collected in each direction of motion, 
and the performance was evaluated by three indicators (CME, 
BBOR, and F1-score). The test scenario is shown in Fig. 4. 

 

 

 

 

 

 

Fig. 4. Target detection scene and the result of the algorithm for different 

targets. 

 

Fig. 5. Performance of tracking algorithm 

Several patterns are shown in Fig. 5. For the same kind of 
target, the tangential track has a lower CME, and higher 
BBOR and F1-score, which indicate higher accuracy. This 
result may be due to the detection range, as a radial track with 
a further start point may contain more noise and error.  

When comparing the different targets, we found three 
characteristics. First, the order of the F1-score(tracking 
correctness) is sedan, bicycle, and pedestrian. The tracking 
correctness mainly depends on target size and material, a 
target of large size and made of metal are prone to have an 
intense electromagnetic wave echo, which makes them easier 
to observe by radar. Second, the sedan’s BBOR is the highest, 
and the pedestrian's is the lowest. Apparently, a large target is 
favorable for the overlapping of the adjacent bounding box. 
Third, the bicycle received the lowest CME, for two potential 
reasons. The first reason is positional error, due to the bicycles 
move more straightly than people walking. The second reason 
is the size of the bounding box: a larger box leads to a larger 
variation in the centroid. Due to the detected plots of sedan 
clusters being distributed unevenly in the bounding box, the 
centroids fluctuate and the CME increases. 

C. Trajectory Correction 

The third experiment was used to evaluate the trajectory 
correction performance. The radar was mounted on a vehicle. 



The vehicle and target moved straight at constant velocity 
simultaneously to follow a fixed line on the ground. 

 

 

Fig. 6. Example scenario of the trajectory correction process. 

 

 

 

 

Fig. 7. Tracking algorithm result of different targets and directions. 

 

Fig. 8. Target detection scene and the result of the algorithm 

According to Fig. 7, the tracks showed a large deviation 
and lower positional accuracy from the ground truth compared 
to the second experiment. In combination with the analysis of 
the actual scene, the errors of the radar motion and the target 
motion were superposed so that it was difficult to restore the 
trajectory to a straight line after correction. The velocity 
variation in the radar vehicle also led to increased tangential 
track error.  

However, there was no significant degradation in the F1-
score, meaning that the target could still be effectively 
distinguished from the environment, indicating that the target 

detection and tracking algorithms perform well. A high 
precision sensor on the radar vehicle is the key to improving 
the performance in the third experiment. 

V. CONCLUSION 

In this study, an algorithm for moving target detection and 
tracking was constructed, and the performance of the 
algorithm was tested with an automotive radar. In target 
detection, we used the conventional method including the 2D-
FFT algorithm and the capon beamforming algorithm, then 
the main target plots were extracted by CFAR. A improve 
clustering method was applied to the plots. In moving target 
tracking, the clusters were assigned to different tracks by the 
feature similarity matching method. Then, the trajectory of the 
moving target was identified and restored. The experimental 
results in real road scenes showed that the proposed algorithm 
performs well with high accuracy and robustness. 
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