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Abstract—Modern distributed systems consist of a multi-
layer architecture of IoT, edge, and cloud nodes. Together, they
are revolutionizing our lives, bringing intelligence to existing
processes (e.g., smart grids) and enabling novel, efficient and
effective processes (e.g., remote surgery). This transition however
does not come without drawbacks, due to the ever-increasing
reliance on devices whose security and safety are, at least,
questionable. In this context, research is in its infancy, struggling
to adapt successful practices applied, for instance, in cloud
systems. Security of modern IoT systems still relies on old-
fashioned approaches, mostly static assessments considering only
very specific parts of the target system, rather than assessing the
system as a whole. In this paper, we put forward the idea of
security assurance for IoT, as a higher-level assurance process
evaluating the target system at different layers and different
moments of its lifecycle, then implemented by a flexible assurance
framework. The quality of our approach is evaluated in a real-
world smart lighting system.

Index Terms—Assurance, Cloud-Edge, IoT, Security

I. INTRODUCTION

Novel networking paradigms such as Network Functions
Virtualization (NFV) and 5G, together with novel computing
paradigms such as edge computing, are revolutionizing the
way IT services are engineered, delivered, and utilized. The
confluence of these technologies point to Internet of Things
(IoT) systems that no longer consist of “smart things” only, but
rather embrace multi-tiered systems where data collected by
sensors on the field are analyzed with low latency at the edge,
and are the basis for further optimization at the cloud. These
systems provide unmatched simplifications to our lives, from
the delivery of novel services such as remote healthcare, to the
optimization of existing ones, such as smart grid. Altogether,
the estimated economic impact of IoT by 2025 is in the range
of 2.7 to 6.2 trillion dollars [1].

The price we pay is however not negligible, with increasing
risk of safety, security, and privacy, due to the pervasiveness of
these systems as well as the interplay with their physical coun-
terparts. Continuous assessment of the behavior of such sys-
tems becomes therefore fundamental. Security assurance is one
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of the preferred solutions in this regards, providing processes
and corresponding frameworks evaluating the compliance of
IT systems with respect to user-defined requirements. Security
assurance has been consistently applied in service and cloud-
based systems [2], [3], [4], yet it is in its infancy when it comes
to IoT systems. Static and punctual assessments have been the
preferred approach, but no longer are a viable option [5]. Some
preliminary solutions have been defined [5], [6], [7], [8], but
alternatives are still lacking. In general, they consider low-
level details and traditional CIA properties (Confidentiality,
Integrity, Availability) only, or provide a system overview
which is too abstract to be really useful.

In this paper, we build on the security assurance framework
in [5], putting forward the idea of IoT assurance driven by a
holistic view of the target IoT system. Our approach defines
and executes assurance evaluations matching and exploiting
the architecture of the target system, distributing and ag-
gregating computation accordingly. It considers the whole
system lifecycle, and produces results at different granularity
according to punctual as well as novel artificial intelligence-
based evaluations. This approach enables the assessment of
the system as a whole still considering its peculiarities, with
negligible interference with the system working.

The contribution of this paper is twofold. We first define
our novel approach for IoT assurance driven by artificial
intelligence, focusing both on the methodological and on the
technological point of view. We then present an experimental
evaluation thereof in a real-world IoT system.

The remainder of this paper is organized as follows. Sec-
tion II discusses the state of the art of security assurance. Sec-
tion III presents our approach for an effective IoT assurance.
Section IV introduces a refinement of our previous assurance
framework in [5] to support this novel paradigm. Section V
includes an initial experimental evaluation of our approach.
Finally, Section VI draws our conclusions.

II. BACKGROUND AND MOTIVATIONS

We consider modern three-tiered IoT systems, where re-
source-constrained devices collect data and operate on the
field; these devices are controlled with low latency by one
or more edge nodes, whose computational power vary from
medium-sized servers to microcontrollers; the overall business
process is then analyzed and optimized at the cloud [9].

Security assurance is one of the means to assess the behavior
of such systems to increase their trustworthiness [3]. An as-



surance evaluation can be described at two levels: i) assurance
process, that is, the (formal) description of the assurance eval-
uation; ii) assurance framework, that is, the implementation of
the assurance process [10]. In particular, assurance processes
for IoT mainly revolve around vertical aspects. Compliance
to CIA requirements is still the focus of the state of the art,
such as the assessment frameworks in [6], [11], the assurance
framework in [7], the integrity of the software installed on
edge nodes [8], the quality of service [12], the absence
of vulnerabilities or weaknesses [13]. Risk-based approaches
have also been proposed, such as [14], [15]. Finally, assurance
cases are high-level objectives supported by evidence prepared
by the system developers [16]. They have been successfully
applied in self-adaptive systems [17], [18], and the research
community is investigating their adoption for IoT assurance
as well [9], [19], [20]. Assurance frameworks are typically
strictly-coupled with the corresponding processes they im-
plement, thus making difficult to reuse the same flexible
implementation for different processes [5].

In short, current approaches for security assurance in IoT
systems are not generic enough, limiting their evaluations to
specific aspects of the target systems. In turn, this hinders
the applicability of assurance in the real world. An effective
evaluation requires instead higher level processes with less
formalisms than in the past, while corresponding assurance
frameworks should be flexible enough to accommodate differ-
ent requirements instantiated on different target systems.

III. ASSURANCE EVALUATION

An effective assurance evaluation for IoT must be i) multi-
layer, ii) multi-phase, and iii) holistic, as follows.

A. Multi-Layer Evaluation

The three layers composing modern IoT systems have intrin-
sic differences from the functional and non-functional point of
view. For instance, cloud and edge layers often rely on well-
known and (partially) trusted providers. Instead, IoT devices
are resource-constrained and opaque, that is, little is known
about their internals. This makes it difficult to define a proper
assurance process even at high level, and the corresponding
results may be a false negative (e.g., the IoT device does not
respond because it is busy, not because it is offline). For these
reasons, we put forward the idea of lightweight IoT assurance
in [5]: our assurance evaluations target IoT devices indirectly,
and rely on the edge and cloud layers to infer the behavior
of the IoT layer. We note that this typically translates into
querying some metrics already offered by the edge layer (as
discussed in Section V), and the goal is to evaluate the target
system as a whole, rather than individual nodes. In addition,
we note that traditional and well-known assurance evaluations
can still be used against the cloud layer [3].

B. Multi-Phase Evaluation

Edge and cloud layers are increasingly developed using ap-
proaches such as DevOps [21], and operated with orchestration
platforms such as Kubernetes. In this scenario, development

artifacts become part of the system artifacts, for instance,
continuous delivery pipelines and Kubernetes deployment files
(i.e., manifests). These development artifacts describe the com-
plete system deployment, and therefore become relevant for
assurance, in terms of requirements to verify at run time, and
of targets of evaluation. For instance, an assurance evaluation
for availability can be executed against the manifest looking
for High-Availability policies, in addition or in replacement
of being executed against the system [22]. This brings crucial
advantages when the system cannot be assessed directly (e.g.,
because of resource constraints), and constitutes a complemen-
tary and less-invasive means of evaluation.

C. Holistic Evaluation

The dynamic boundaries and complex interactions of IoT
imply that rigid modeling of assurance processes (e.g., in terms
of non-functional properties [23]) is no longer viable. Instead,
assurance processes must rely more on the behavioral analysis
of the target system to build an holistic view thereof, relying
on and adapting, for instance, solutions based on anomaly and
intrusion detection. In this context, the literature points to high-
accuracy solutions based on artificial intelligence (AI) [24],
[25]. However, accuracy is not the only indicator that mat-
ters [26]; other aspects to consider include explainability,
robustness, and edge-readiness, as detailed in the following.

Explainability refers to understanding the logic behind a
prediction of an AI model (local explainability), or how the
model works in general (global explainability) [27], [28], [29].
Explainability is fundamental to increase trust in AI in any
domains [28], and is even more important in the assurance do-
main, where assurance evaluations can result in the release of
certificates that, by definition, should be trusted [3]. Here, we
require local interpretability, which can be achieved either by
i) white-box models, that is, models explainable by definition,
such as decision trees [28]; ii) open black-box models, that is,
techniques explaining neural networks-based models such as
surrogate white-box models [28]. Intuitively, solutions based
on white-box models should be preferable, as they are also
simpler. We note that explainable models [28] based on the
paradigm of attention [30] are being explored in the context of
intrusion detection (e.g., [31]) and could boost IoT as well. We
finally note that explainability is related also to requirements
such as law compliance, accountability, fairness [28], [29].

Robustness refers to the resistance of AI models against data
poisoning and adversarial attacks [32]. In fact, models can
be attacked at training time by injecting poisoned inputs in
the training set, or at inference time by sending specially-
crafted inputs. This scenario becomes even more serious when
working in an adversarial setting [32]. The assurance scenario
is in fact adversarial, for instance in terms of a target system
wishing to be certified without supporting the corresponding
requirements [33]. Here, we require robustness to inference-
time attacks, assuming that the training set is under the control
of the entity performing the assurance evaluation. Currently,
the preferred method to achieve robustness is adversarial



training, which augments the training set with adversarial data
points [34], [35], [36].

Edge-readiness refers to AI models and corresponding de-
ployments that are ready for an edge scenario. Typically, an
IoT system can be divided in different vertical subsystems,
according to, for instance, the location; each subsystem con-
trolled by one or more edge nodes. Edge nodes are the first
system component that can be directly targeted by assurance
evaluations (Section III-A) and also the last where IoT traffic
can be seen, it therefore is a crucial point. This leads to a
behavioral assurance grounded on i) distributed and continuous
learning/inference, and ii) lightweight models. Distributed
inference and continuous learning refer to AI models deployed
nearby edge nodes, analyzing the corresponding subsystems.
Models are then fine-tuned and continuously re-trained accord-
ing to the subsystems’ peculiarities. Behavioral evaluations are
then aggregated at a central location in the assurance frame-
work. This paradigm can be easily realized with ensembles,
that is, individual models whose predictions are combined
in an improved model [37]. Lightweight models refer to AI
models suitable for execution on resource-constrained edge
nodes. There exist several techniques in this regards, often
based on compression [38].

The above three aspects are strictly related one to each
other. On the one hand, white-box and simple models are typ-
ically more lightweight than black-box models, hence fitting
resource-constrained scenarios. In addition, black-box models
are typically not necessary to obtain the holistic view [25].
On the other hand, their susceptibility to adversarial attacks
vary. For instance, decision tree-based models are still vulner-
able to adversarial attacks as any other neural network-based
models [39], yet ensembles can improve their robustness [40].

IV. ASSURANCE FRAMEWORK

We refine the assurance framework in [5] to support the
assurance approach in Section III. The framework in Fig-
ure 1 is based on Kubernetes, which natively supports edge
computing [41] and guarantees the high scalability needed to
evaluate large and complex target systems. The framework
is implemented as a set of REST API-based microservices
written mostly in Go. Its deployment is split between the edge,
where collected data are preprocessed, and the cloud, where
aggregated results are analyzed and stored, as follows.

Edge components include components operating on the edge
layer nearby the target systems. Assurance evaluations are
implemented in scripts called probes, packaged as containers
executed by Kubernetes. The framework ships traditional
assurance evaluations (dashed lines) targeting the cloud layer
of the target system, and behavioral AI models (double dashed
lines) targeting the remaining layers. The result produced by
each evaluation is called evidence and consists of three parts:
i) a Boolean value indicating the success or the failure of
the evaluation; ii) a human-readable text briefly indicating
reason behind the result’s outcome; iii) additional low-level
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Figure 1. Architecture of the proposed framework.

details. These results are cleaned, aggregated, and stored by the
Evidence Writers according to the evaluations’ peculiarities.

Cloud components include components operating on the
cloud layer of the assurance framework. Stored results are
processed asynchronously by the Central Analyzer, taking
the final decision of whether the assurance evaluation is
successful or not, and re-orchestrating the evaluation process
accordingly. The assurance framework interacts with end users
by exposing a REST API service called Interface Manager,
receiving requests for assurance evaluations and showing the
corresponding results. Those requests are sent from Interface
Manager to the Translator, where they are mapped into
low-level Kubernetes objects to be executed. In particular,
Translator encodes and schedules the execution of the probes
as Job or CronJob.

V. EXPERIMENTS

We evaluated the quality of our approach in a simulated IoT
environment closely resembling a real-world smart lighting
system for road illumination. Figure 2 shows the architecture
of the system, consisting of: i) IoT nodes (microcontrollers)
directly controlling street lamps; ii) edge nodes implemented
with the Mainflux platform managing IoT nodes by sending
and receiving data and commands; iii) cloud node where
historical data from the below layers are aggregated and
visualized in a web frontend (dashboard). Edge and cloud
nodes are microservices implemented in Go and deployed as
28 pods on a Kubernetes cluster.

Evaluations. We executed 6 probes against the system, as
follows: i) Robust-TLS checking that mutual TLS authen-
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Figure 2. Architecture of the lighting system.

tication is enabled between edge and IoT nodes, to en-
sure that only authorized IoT devices can connect to the
edge nodes; ii) Availability checking that edge nodes and,
indirectly, IoT nodes are healthy and stable; iii) Manifest-
Checker checking adherence of Kubernetes manifests to best
practices; iv) Backend-Dependency and v) Frontend-Depen-
dency checking the dependencies of cloud and edge mi-
croservices, and of the dashboard respectively, looking for
vulnerable libraries; vi) Image-Scanner checking the images of
the microservices, looking for vulnerable software. The probes
are executed periodically, with interval varying according to
their purpose, from 1 minute for Availability to automatic
CI/CD triggers for Manifest-Checker, Backend-Dependency,
Frontend-Dependency, and Image-Scanner. We chose these
probes to maximize coverage and diversity. Probes Robust-
TLS and Availability evaluate the target system at different
layers, exploiting the edge layer to infer information on the
IoT layer (multi-layer evaluation in Section III-A). Such
probes also cover the execution phase of the system lifecycle,
while the remaining probes cover the preceding phases, that
is, development and deployment (multi-phase evaluation in
Section III-B). In addition, Availability partially covers holistic
evaluation in Section III-C, despite not using any AI models.

Results. Table I shows a summary of the results, where column
“Passed” indicates the Boolean result of the evaluation, and
column “Reason” indicates why the evaluation succeeded or
failed (Section IV). Altogether, these evaluations show that
the security of the lighting system is lacking, with only
1 out of 6 being successful. They also show that there
is no much discrepancy between development, deployment,
and execution time. In fact, only one execution-time probe
successfully concluded (Availability), while all development
and deployment-time probes concluded with a negative result.

Table II(a) shows an excerpt of the issues found in the
manifests by Manifest-Checker, in percentage over the number

Table I
SUMMARY OF EXPERIMENTAL RESULTS

Probe Passed Reason
Robust-TLS 7 Mutual TLS is configured
Availability 3 System and its node always up
Manifest-Checker 7 377/1904 sub-checks failed
Backend-Dependency 7 22 vulnerabilities found
Frontend-Dependency 7 20 vulnerabilities found
Image-Scanner 7 165 vulnerabilities found

Table II
EXCERPT OF RESULTS OF PROBES MANIFEST-CHECKER AND BACKEND-

DEPENDENCY

Issue N. of findings (%)
AppArmor and Seccomp Any 100
No CPU and Memory Limit 100
No CPU and Memory Requests 89

(a) Manifest-Checker

Severity N. of findings
High 3
Medium 19
(b) Backend-Dependency

of pods. In particular, AppArmor Any and Seccomp Any mean
that all pods’ containers do not have any restrictions to
resources and system calls, respectively, therefore having a
large attack surface. No CPU and Memory Limit mean that all
pods do not have any upper bounds on the CPU and memory
they can use, eventually exhausting the system. No CPU and
Memory Requests mean that most of the pods do not have any
lower bounds on the CPU and memory they are assigned with,
eventually not being able to complete their computation.

Table II(b) shows the number of vulnerabilities found by
Backend-Dependency, categorized according to the CWE score
(a community-driven list of software and hardware weak-
nesses). In particular, the probe revealed 3 vulnerabilities with
high severity, referred to a weak pseudorandom number gen-
erator and to a possible incorrect TLS configuration. Although
these vulnerabilities might not be a problem in practice, they
are still indicators of a weak security posture.

Discussion. From the above results, it emerges that a holistic
approach for security assurance in IoT systems is needed. An
assessment based on a limited and traditional range of threats
does not provide a complete security perspective. A com-
prehensive assessment must instead encompass the complete
system lifecycle, inspecting also development and deployment
artifacts. This approach is non-invasive with respect to run-
time evaluation, and can uncover issues earlier. For instance,
our experiments uncovered several relevant issues without
stressing the system execution. In this context, DevSecOps
stands out as a cornerstone, to the point that assurance eval-
uations can become a part of a DevSecOps pipeline [22]. At
the same time, the system must be evaluated at all layers,
possibly exploiting the edge layer to (indirectly) assess IoT
nodes without impacting on their resources.



VI. CONCLUSIONS

Modern IoT systems promise unmatched benefits to our
lives, yet they are perceived as unsafe and untrustworthy. To
address this gap and fully unleash their potential, security
assurance must be redesigned towards less rigid and static
solutions. The approach in this paper provides a first boost
in this direction, proposing an assurance evaluation based on
multi-layer, multi-phase, and behavioral activities. As a future
work, we aim to put more emphasis on the latter, evaluating
AI models matching the posed requirements.

REFERENCES

[1] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and A. Marrs,
Disruptive technologies: Advances that will transform life, business, and
the global economy. McKinsey Global Institute San Francisco, CA,
USA, 2013.

[2] M. Anisetti, C. A. Ardagna, and E. Damiani, “A Low-Cost Security
Certification Scheme for Evolving Services,” in Proc. of IEEE ICWS
2012, Honolulu, HI, USA, June 2012.

[3] C. Ardagna, R. Asal, E. Damiani, and Q. Vu, “From Security to
Assurance in the Cloud: A Survey,” ACM Computing Surveys, vol. 48,
no. 1, August 2015.

[4] M. Anisetti, C. A. Ardagna, F. Gaudenzi, and E. Damiani, “A Certifica-
tion Framework for Cloud-Based Services,” in Proc. of ACM SAC 2016,
Pisa, Italy, April 2016.

[5] M. Anisetti, C. A. Ardagna, N. Bena, and R. Bondaruc, “Towards an
Assurance Framework for Edge and IoT Systems,” in Proc. of IEEE
EDGE 2021, Guangzhou, China, December 2021.

[6] K. C. Park and D.-H. Shin, “Security assessment framework for IoT
service,” Telecommunication Systems, vol. 64, no. 1, 2017.

[7] C. A. Ardagna, E. Damiani, J. Schütte, and P. Stephanow, A Case for
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