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Abstract—This paper focuses on improving the resource allo-
cation algorithm in terms of packet delivery ratio (PDR), i.e.,
the number of successfully received packets sent by end devices
(EDs) in a long-range wide-area network (LoRaWAN). Setting the
transmission parameters significantly affects the PDR. Employing
reinforcement learning (RL), we propose a resource allocation
algorithm that enables the EDs to configure their transmission
parameters in a distributed manner. We model the resource
allocation problem as a multi-armed bandit (MAB) and then
address it by proposing a two-phase algorithm named MIX-MAB,
which consists of the exponential weights for exploration and
exploitation (EXP3) and successive elimination (SE) algorithms.
We evaluate the MIX-MAB performance through simulation
results and compare it with other existing approaches. Numerical
results show that the proposed solution performs better than the
existing schemes in terms of convergence time and PDR.

Index Terms—IoT, LPWAN, LoRaWAN, LoRa, distributed
resource allocation, reinforcement learning, multi-armed-bandit.

I. INTRODUCTION

The maturity of internet of things (IoT) technology is

already rapid. According to projections for the next ten years,

over 125 × 109 IoT devices are expected to be connected

worldwide [1]. The Low-power wide-area network (LPWAN)

can provide the network connection for many end devices

(EDs) in a wide range consuming low battery power [2]. Many

protocols for LPWAN exist including long-range wide area

network (LoRaWAN) [2], SigFox [3], and NB-IoT. LoRaWAN

is one of the most promising candidates for IoT, attracting

more attention and can support many applications such as elec-

tricity metering, localization, and industrial applications [4-5].

The transmission parameters, i.e., radio resources, including

spreading factors (SFs), sub-channels (SCs), and transmis-

sion power (TP), have a significant role in determining the

throughput of LoRaWAN [6]. Legacy LoRa runs an adaptive

data rate (ADR) mechanism in the central controller, i.e., a

network server (NS), to compute the transmission parame-

ters of EDs and send them back as a MAC command [7].

However, frequent communication between EDs and the NS

is inefficient because of the EDs’ limited energy and duty

cycle (DC) restrictions. Furthermore, the NS cannot respond

to all the messages due to strict deadlines. Therefore, it is
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essential to design a distributed resource allocation algorithm

in LoRaWAN.

Machine learning makes it possible to use distributed algo-

rithms. Reinforcement learning (RL) is a machine learning

technique that does not need any training data sets, mak-

ing it the best choice for LoRaWAN. The literature review

shows that RL techniques can improve resource allocation

performance in LoRaWAN by enabling each LoRa ED to

select the most suitable configuration settings through the self-

learning process. More especially in [8-9], a non-stationary

RL-based resource allocation algorithm called LoRa-MAB is

proposed, using an adversarial environment similar to Lo-

RaWAN’s circumstances. However, LoRa-MAB suffers from

high convergence time due to the long exploration process.

This paper shows that combining the non-stationary adver-

sarial algorithms, suitable for LoRaWAN environment, with

stochastic ones, having the advantage of a short exploration

process, improves the convergence time and increases the

packet delivery ratio (PDR) in LoRaWAN. Contributions of

this paper are as follow:

• We model the resource allocation problem in LoRaWAN

as a Multi-armed bandit (MAB) problem. Then we em-

ploy a mixture of exponential weights for exploration

and exploitation (EXP3) as a non-stationary adversarial

scheme and the successive elimination (SE) as a non-

stationary stochastic scheme to propose our solution

called MIX-MAB.

• Through simulation results, we compare the performance

of our algorithm with LoRa-MAB [9] and Legacy LoRa

[11] approaches in terms of convergence time, energy

consumption (EC), and PDR. Simulation results show

that the convergence time of the MIX-MAB is half of the

LoRa-MAB while achieving the higher PDR than others

in different scenarios.

• We also present a simulation scenario in which EDs have

the freedom to select their SFs, SCs, and TP simulta-

neously. Our numerical results show that the proposed

MIX-MAB algorithm achieves high PDR with the lowest

EC in such a scenario compared to those where the EDs

can configure only one or two transmission parameters.

• Finally, the effect of the number of packets sent by each

ED is examined, showing the more frequently transmitted

packets leads to reduced the PDR and the EC.

http://arxiv.org/abs/2206.03401v1


Fig. 1. LoRaWAN network architecture.

Rest of this paper is organized as follows. Section II presents

the background and related works. Our proposed MIX-MAB

algorithm is described in Section III. Sections IV and V

contain the numerical results and conclusion, respectively.

II. BACKGROUND AND RELATED WORKS

This section reviews LoRa physical layer and transmission

parameters in LoRaWAN. Then, it examines the related works.

A. LoRa and LoRaWAN overview

LoRaWAN is a long-range wireless interconnections system

composed of two core components: LoRa and LoRaWAN.

LoRa is a physical layer using the chirp spread spectrum (CSS)

radio modulation developed by Semtech [3]. LoRaWAN, im-

plemented on top of the LoRa, includes data link and network

layers using star network topology for data transmission.

LoRaWAN network architecture is shown in Fig.1. As seen,

the EDs send data to the NS through the gateways (GWs). Lo-

RaWAN specifications are documented by LoRa Alliance [7].

B. LoRa transmission parameters

In LoRa physical layer, each transmission depends on the

following parameters:

• SFs: EDs can select an SF value from 7-12 based on the

environmental condition between the ED and the GW.

Selecting SF creates a trade-off between the data rate,

communication range, and energy utilization.

• SCs: Depending on the world region, LoRa commu-

nications can operate over license-free sub-GHz radio

frequency bands including {433, 868, 915} MHz.

• TP: The LoRa radio TP is adjustable from −4 to 20 dBm

in steps of 1 dBm.

Successful transmissions in LoRaWAN, leading to the raised

PDR, rely on the interference management performed by

adequately adjusting the transmission parameters depending

on the conditions between the EDs and GWs. There are two

ways to control transmission parameters in LoRaWAN: link-

based approach and network-aware approach [2]. In the link-

based approach, transmission parameters are asynchronously

configured in a centralized manner by commands that ED

receives from the NS [10]. In the network-aware method, each

ED configures its transmission parameters in a distributed way.

C. Related Works

Several research efforts have improved LoRa/LoRaWAN

performance, focusing on optimization or performance anal-

ysis [7-11]. The ADR algorithm has been proposed in [7]

for setting the LoRa transmission parameters. The proposed

approaches in [2] and [10] worked on improving the original

ADR algorithm by using the history of received packets in the

NS. However, the ADR mechanism as a centralized link-based

approach has two shortcomings. The first one is that its PDR

decreases by increasing the number of EDs. The second one

is the increased EC in dens deployment of IoT EDs. Current

research has focused on using machine learning techniques

such as RL, enabling EDs to use innovative and inherently dis-

tributed techniques, thus preventing them from evacuating their

limited power by permanently communicating with the NS

[8-9], [12]. The MAB [8-9] and Q-learning [12] are two RL

algorithms used in the literature to propose distributed radio

resource allocation in LoRaWAN. In [12], authors applied Q-

learning to offer a resource allocation for LoRaWAN, aiming

at decreasing the collision rate and improving the network

PDR. However, despite increasing the EC using the method

in [12], the PDR is still a function of available channels.

Moreover, the Q-Learning solution requires the database to

save its processing data. The LoRa-MAB algorithm proposed

in [8] suffers from a severe drawback of high convergence

time (equal to 200 kHours as discussed in [9]). The SE is a

MAB-based algorithm presented in [13] while the adversarial

environment of LoRa has not been taken into account.

III. OUR PROPOSED MIX-MAB ALGORITHM

This section proposes a distributed resource allocation algo-

rithm in LoRa. Machine learning techniques as a distributed

approach are divided into supervised, unsupervised, and rein-

forcement learning. There is no need to train data sets in RL-

based methods, where learning happens through interaction

with the environment. RL agent can perceive and analyze

its environment, take actions and learn through trial and error

[14]. We employ RL to propose our resource allocation

algorithm. Therefore, there is no need to provide predefined

data to EDs, and they will learn through sending messages on

the network. Thus, our proposed algorithm imposes no com-

putational overhead on the network from this point of view.

In LoRaWAN, the agents are the LoRa EDs interacting with

the environment, including GWs and the other EDs, to take

actions defined as selecting their transmission parameters set.

The agent learns the best actions based on the received re-

ward defined based on the acknowledgment (ACK) messages.

More specifically, a LoRa ED selects a set of transmission

parameters and sends its data packet based on the selected

setting. If the NS receives the packet, it sends a confirmation

ACK message to the ED. Receiving the ACK, the ED assigns

a binary reward (defined later) to the selected action set and

uses it for subsequent transmission parameters index.

We model the transmission parameters configuration by

LoRa EDs as a MAB problem, an RL-based technique, and

formulated it using k-armed bandits. Accordingly, an agent

selects from k-different actions and receives a reward based

on its chosen action.

Three general categories of stochastic, adversarial, and

switching bandit algorithms exists to address the MAB prob-

lems. EXP3 is a non-stationary adversarial MAB problem.



LoRa EDs are placed in this type of algorithm because

selecting the same parameter like SFs affects the other EDs.

But the lack of a short exploration process in this approach will

expand the convergence time. Stochastic algorithms such as

SE are not suitable for the LoRaWAN individually because of

their adversarial nature. However, the long exploration process

of EXP3 results in a high convergence time, which is a critical

performance criterion in LoRaWAN. On the other hand, the

SE algorithm has the advantage of short convergence time due

to a short exploration process. So, Inspired by the benefits of

EXP3 and SE algorithms used in [9] [13], respectively, we

combine these two approaches and propose a new algorithm

called MIX-MAB.

We assume that there are U EDs in the LoRaWAN network

forming the set of U = {1, 2, · · · , U}. Each ED aims at

maximizing its PDR in a decentralized manner by learning

to select the most appropriate transmission parameters set.

Let S, C, and P denote the set of SFs, SCs, and TP, respec-

tively. Assuming that each action is a vector composed of three

parameters representing SF, SC, and TP, Ik = {sk, ck, pk}
denote the kth vector of parameters, means kth action, in

which sk ∈ S, ck ∈ C, and pk ∈ P are the values of SF, SC

and TP in kth action, respectively. We assume that there are K
actions whose set denoted by K = {I0, I1, · · · , IK−2, IK−1}.

Let Au(t) ∈ K describe the selected action of the uth ED at the

tth iteration. Each iteration corresponds to a packet arrival in

the ED. Taking the kth action, the uth ED receives the related

reward presented by Ru
k(t) ∈ {0, 1}, where Ru

k(t) = 1 for

successful transmissions, i.e., the ACK message is received,

while receiving the NACK message is denoted by Ru
k(t) = 0

for fail transmissions. We assign a probability of selection

to each action. Let Pu
k (t) be the probability of taking the

kth action by the uth ED at the tth iteration. To obtain the

probabilities, we assign a weight to each action. Wu
k (t) is

the weight of the kth action selected by the uth ED at the tth
iteration. The goal of each ED u is to update Pu

k (t) to achieve

the largest reward during T iterations.

Our proposed MIX-MAB algorithm presented in Algorithm

1 composed of two phases. The first phase, called the pre-

processing phase, only includes exploration process. The

second phase, called the main processing phase, consists of

exploration and exploitation processes. Fig. 2 illustrates the

proposed MIX-MAB scheme for the uth ED as explained in

what follows.

A. The pre-processing phase of MIX-MAB algorithm

Let Nu
k represent the number of times that uth ED selects

the kth action. At the first time, when the uth ED has a

packet to send, it selects the first configuration setting, i.e.,

I0. The next packet of the uth ED takes the action of I1 of

setting parameters in a round-robin manner and so on (line 8

of Algorithm 1). This process, taken from the SE algorithm,

continues until the uth ED takes all actions once. Then, the

exploration process is repeated for lEXP times starting from the

beginning by selecting I0 to IK−1 (line 7).

Fig. 2. Proposed two-phase solution scheme for the uth ED.

Based on our simulation results, setting lEXP = 5 leads to

a short exploration, generating the best results. Each time uth

ED takes action, the weight and probability of that action are

updated based on the reception of the ACK message. Lines

14-16 in Algorithm 1 present the equations for calculating the

probability and weight of an especial index for the following

iteration. According to these equations, taken from the EXP3

algorithm, if kth action does not result in receiving the ACK

message by the uth ED, i.e., Ru
k(t) = 0, the relevant weight

and probability of that action, i.e., Wu
k and Pu

k are not updated,



Algorithm 1: MIX-MAB

1 Initialization:

2 Set u ∈ U as a uth ED

3 Set learning rate γ=min
{

1,
√

K log(K)
(e−1)T

}

, e=2.71

4 Set lEXP = 5, αu = 1, lEE = 100,

5 Set Pu
k (0) = nan,Nu

k = 0,Wu
k (0) = 1, ∀k ∈ K

Result: Au(t), ∀t = {1, 2, · · · , T }
6 for t = 1 to T do

7 if mink∈K{N
u
k } ≤ lEXP then

8 Select action k ∈ K by round-robin selection

9 else

10 Select action k ∈ K by PDF selection

11 end

12 Set Au(t) = Ik and perform the action

13 Ru
k(t) =

{

1 if ACK is received

0 otherwise.

14 Pu
k (t+ 1) = (1 − γ)

(

Wu k(t)∑
k∈KWu k(t)

)

+ γ

K

15 Pu
k (t+ 1) =

Pu

k
(t+1)∑

k∈K
Pu

k
(t)

16 Wu
k (t+ 1) = Wu

k (t)× exp
(

γRu

k
(t)

K×Pu

k
(t+1)

)

17 Nu
k = Nu

k + 1
18 if Nu

k > lEXP &&

Pu
k (t+ 1) < 1

2 max∀k∈K{P
u
k (t)} then

19 Pu
k (t+ 1) = 0

20 end

21 if Nu
k > αu × lEE then

22 Nu
k = 0, ∀k ∈ K

23 αu = αu + 1
24 end

25 end

so they remain as the value in the previous iteration. Note

that the summation of all probabilities should be one. So,

after calculating the probability using line 14, we normalize

the probabilities in line 15. In Fig. 2, ✓ and ✗ represent the

reception and non-reception of ACK, respectively. As seen in

Fig. 2(a), the value of Nu
k for all k ∈ K reaches lEXP at the

end of the pre-processing phase. The whole actions’ weights

and probabilities are the first phase’s output, which will be

used as input in the second phase.

B. The main processing phase of MIX-MAB algorithm

After finishing the first phase, the second phase, i.e., the

main process, starts as shown in Fig. 2(b). In this phase,

the actions are selected based on their probability density

function (PDF) values (line 10). Based on this condition,

which originated from the EXP3 scheme, actions with a high

probability have a higher chance of being chosen. Taking

individual action k in each iteration t, the uth ED updates

that action’s weight and probability by receiving the ACK.

Suppose the updated probability of the kth action is smaller

than half of the maximum probability of all actions in K.

In that case, the uth ED removes the kth action from its

available actions not to be selected in subsequent steps (lines

18-20). This removal process is done implicitly by setting the

probability of the kth action equal to zero. Note that the above

threshold for removing an action is obtained heuristically

through the simulation results, leading to the best performance.

This process continues until the number of times one of

the actions is selected, e.g., Nu
k reaches a threshold value

(lines 21-24). Actually, the action with the greatest Nu
k is

the most suitable one with the best transmission parameter

configuration. One of our novelties in this phase is considering

dynamic values for the threshold. Let αu × lEE denote the

considered threshold, where lEE = 100 is a constant parameter

and αu is a variable parameter. At the initialization, we set

αu = 1 making the threshold be equal to lEE = 100. When

Nu
k for special action like k reaches the threshold of 100, the

αu’s value is increased by one leading to a grown threshold

value to 2 × lEE = 200 and so on. Whenever the value

of Nu
k of one action achieves the threshold, the Nu

k for all

actions are set to zero while the weight and probabilities values

remain unchanged. Through resetting the number of selected

actions, the algorithm continues from line 7. So it starts the

exploration process, i.e., pre-processing phase, again and gives

a new chance to the actions that already have been removed

in the second phase and may have become an appropriate

option by changing the environmental conditions. Note that

by not zeroing the weight and probabilities of the actions in

the reset process, the proposed algorithm does not eliminate

the previous experiences learned from the environment.

IV. NUMERICAL RESULTS

This section evaluates our algorithm performance by simu-

lation results and compares it with other approaches.

A. Simulation Setup

We use the LoRa-MAB simulator proposed in [9] and

customize it to evaluate our algorithm performance1. We

consider a LoRaWAN network composed of one GW, located

at the center of a disc-shaped cell of radius r = 4.5 km, with

N = 100 EDs uniformly distributed as in [9]. We use the

log-distance path loss model, presented in [11]. The 1% DC

limitation is satisfied by setting the packet generation rate of

each ED to 15 packets/hour and the packet length of 50 bytes

generated through an exponential distribution. We assume that

there is no collision between the ACK and uplink messages.

The GW delivers the ACK message on a separate channel with

a higher DC. Thus, when the ED does not receive the ACK,

it shows that the packet has been lost. We also consider the

inter-SF collision and capture effect. We run the simulations

for 72 × 1010 millisecond, which is equal to 200 KHours

horizon time. Other parameters that affect the performance

of LoRaWAN, including bandwidth and coding rate, are set

as 125KHz and 4/5, respectively.

To evaluate the proposed algorithm performance and com-

pare it with other schemes, we use three following metrics:

1) Convergence time: an RL algorithm converges when

the learning curve gets flat and no longer increases.

1This framework is available in https://github.com/Farzad-Azizi/MIX-MAB



2) PDR: described the total received packets by the GW

divided by the total sent packet from all EDs.

3) EC: defined as the average EC per transmitted packet

per ED.

We also consider five following scenarios:

• Scenario 1: Each ED can select one SF ∈ [7, 12], SC and

TP are fixed at SC = 868100 Hz and TP = 14 dBm.

• Scenario 2: Each ED can select one SF ∈ [7, 12], one

SC ∈ {868100, 868300, 868500} Hz, and TP is fixed at

TP = 14 dBm.

• Scenario 3: Each ED can select one SF ∈ [7, 12], one TP

∈ {8, 11, 14} dBm, and SC is fixed at SC 868100 Hz.

• Scenario 4: Each ED can select one SF ∈ [7, 12],
one SC ∈ {868100, 868300, 868500} Hz, and one TP

∈ {8, 11, 14} dBm.

• Scenario 5: Options are like the previous scenario, but

the number of packets sent by EDs changed from 1 packet

per hour to 1 packet per day and 1 packet per week.

B. Simulation Results

Now, we provide the simulation results comparing the per-

formance of our proposed algorithm with the LoRa-MAB [9]

and the Legacy LoRa [11] algorithms in five defined scenarios.

The LoRa-MAB algorithm proposed in [9] is based on RL that

uses the EXP3 scheme. The EDs configure their transmission

parameters randomly in the Legacy LoRa method.

1) Scenario 1: Fig. 3 shows the PDR and EC in MIX-

MAB, LoRa-MAB, and Legacy LoRa in Scenario 1. As we

observe, the PDR of our proposed solution is higher than

LoRa-MAB and Legacy LoRa algorithms. This is due to the

nature of our proposed algorithm, which uses a combination

of short-term exploration at the first phase and long-term

exploitation and exploration processes at the second phase

together. On the contrary, LoRa-MAB does not apply the

short-term exploration initially, and Legacy LoRa does not

employ the learning process at all. Additional to that, the

probability initialization in LoRa-MAB is defined as a uniform

distribution, i.e., Pu
k (0) = 1

K
, ∀k ∈ K, u ∈ U . However, we

do not assume equal probability initialization for each action

and ED in MIX-MAB. Instead, we set the initial probabilities

as an undefined number, i.e., nan, and then update them based

on the ACK reception. Besides that, MIX-MAB gives a second

chance to all removed actions, but LoRa-MAB does not.

Fig. 3. PDR & EC in MIX-MAB, LoRa-MAB, and LoRa in Scenario 1.

We also see in Fig. 3 that the EC of the MIX-MAB is

the same as the Legacy LoRa and LoRa-MAB. The reason is

that each ED transmits with TP of 14 dBm in all algorithms

leading to the same EC. Another important observation from

Fig. 3 is that our proposed algorithm’s PDR converges after

100 KHours in horizon time while the LoRa-MAB converges

after 200 KHours. Therefore, the convergence time of the

proposed solution is half of the LoRa-MAB. Actually, uniform

probability initialization in LoRa-MAB causes wrong choices

to take a long time removing from the actions, leading to an

increase in the convergence time. The Legacy LoRa scheme is

not a learning-based algorithm, so its PDR and EC remained

unchanged in time.

2) Scenario 2: In this scenario, we evaluate the effect of

SCs selection on overall performance. For this purpose, the

EDs have the freedom of choosing one of three SCs compared

to Scenario 1. Fig. 4 shows the PDR and EC in MIX-MAB,

LoRa-MAB, and Legacy LoRa in Scenario 2. As seen, the

PDR of the MIX-MAB is higher than that in scenario 1. Thus,

we can conclude that increasing the number of SCs increases

the PDR. We also see that in Scenario 2, the PDR of the MIX-

MAB is still higher than the Legacy LoRa and LoRa-MAB

while their consumed power is the same.

3) Scenario 3: In this scenario, we investigate the effect

of TP on the proposed algorithm performance. For this goal,

EDs have the freedom of transmitting with one of three TP

values compared to Scenario 1. Fig. 5 shows the PDR and EC

in MIX-MAB, LoRa-MAB, and Legacy LoRa in Scenario 3.

As observed, the EC of the proposed algorithm is lower than

that in Scenario 1, while its PDR is decreased. The reason is

that having different values of TP to select by the EDs results

in reduced TP, leading to lower EC. However, sending packets

with less TP reduces PDR compared to Scenario 1, where all

packets are sent with maximum TP. From this figure, we also

see that the PDR of the MIX-MAB is still higher than the

Legacy LoRa and LoRa-MAB. However, the EC of the MIX-

MAB is a little bit more than Legacy LoRa and LoRa-MAB.

This is due to the goal of MIX-MAB, to achieve the maximum

PDR; thus, the ED transmits data with higher TP leading to

higher EC.

4) Scenario 4: Here we evaluate the MIX-MAB perfor-

mance when the EDs have the most freedom to select trans-

mission parameters. Fig. 6 shows PDR and EC in MIX-MAB,

LoRa-MAB, and Legacy LoRa in Scenario 4. As shown,

Fig. 4. PDR & EC in MIX-MAB, LoRa-MAB, and LoRa in Scenario 2.



Fig. 5. PDR & EC in MIX-MAB, LoRa-MAB, and LoRa in Scenario 3.

Fig. 6. PDR & EC in MIX-MAB, LoRa-MAB, and LoRa in Scenario 4.

the PDR of the MIX-MAB is higher than that in Scenario

1, while the EC decreased. It concludes that the proposed

algorithm achieves a high PDR when the EDs configure all

three parameters. At the same time, it consumes lower energy

than the other three previous scenarios. We also see that,

similar to Scenario 2, the PDR of MIX-MAB is higher than

the Legacy LoRa and LoRa-MAB at the cost of higher EC.

5) Scenario 5: This scenario evaluates the number of

transmitted packets’ effects on EC and PDR of the proposed

algorithm. The setting is similar to Scenario 4, except that

packet transmission frequency varies. As seen in Fig. 7, in-

creasing the frequency of sent packets leads to both improving

the EC and the PDR due to receiving more feedback from the

NS, which in turn leads to an improvement in the learning

process. So, based on observations and considering the trade-

off between results, we have the best outcome for 1 packet

per day, which is more consistent with the IoT application

and fulfills its requirements.

V. CONCLUSION AND FUTURE WORKS

This paper focused on improving LoRaWAN’s resource

allocation algorithm in terms of PDR. We presented an RL-

based resource allocation algorithm enabling the LoRa EDs

to configure their transmission parameters in a distributed

manner. Our proposed MIX-MAB algorithm combines two

MAB schemes, i.e., SE and EXP3, making the LoRa more

efficient in interference management, leading to higher net-

work throughput. We evaluated the performance of the MIX-

MAB and compared it with the Legacy LoRa and LoRa-

MAB mechanisms in five different scenarios. Our simulation

results show that the convergence time of the MIX-MAB

Fig. 7. number of transmitted packets’ effects on EC & PDR.

is half of LoRa-MAB while our solution achieves higher

PDR than Legacy LoRa and LoRa-MAB in all scenarios.

We will reduce the computational overhead for future works

by proposing a new version of the MIX-MAB algorithm on

the NS side. Furthermore, we will deploy and evaluate our

proposed algorithm for QoS requirements of various industrial

applications, including unmanned aerial vehicles.
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