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Abstract—We consider a delivery food service operated by
Unmanned Aerial Vehicles (UAVs). Due to the absence of a
dataset on UAVs deliveries in the literature, and since it is not
possible to perform real tests, we create a dataset using an open
Air Traffic Simulator (ATS). Precisely, we converted a set of food
deliveries operated by wheeled vehicles, proposed in the literature
[1], into a set of simulated UAVs deliveries. For each delivery, we
ran a UAV flight from the source to the destination. The results
showed that, as expected, the UAV’s course is shorter than the
vehicle trajectory on the ground because the UAV follows an
Euclidean path. Following that path, UAVs can be 5 to 8 times
faster than wheeled vehicle, in absence of wind. Highly important,
the ATS simulator allows to take care of the wind impact in a
realistic way. Tailwind increases UAVs speed which becomes up to
10 times faster than the wheeled vehicles, whereas the headwind
and crosswind slowdown the UAVs as the traffic slowdown the
wheeled vehicles. Our work proves that air traffic simulators
pave the way for realistic simulations of UAVs systems.

Index Terms—Drone, Delivery Goods, Favorable winds, Sim-
ulation, Dataset, UAV.

I. INTRODUCTION

The rise in popularity of drones or Unmanned Aerial
Vehicles (UAVs) has made them a very appealing subject
for different applications, like agriculture [2], environmental
protection [3], video monitoring [4], localization [5], [6],
and logistic [7]–[9]. In particular, deliveries with drones are
potentially faster compared to standard vehicles (e.g., wheeled
vehicles) because, at a suitable altitude, the drones can reach
the destination by following the shortest path, that is, the
line’s segment that connects its position with the destination,
avoiding traffic and long routes. However, the drones are
limited in the flight range and in the payload weight because
they are powered with battery limited in size and weight.
For this reason, drones are considered suitable for the last
mile deliveries of small parcels or in general for short trips.
In this paper, we envision the drones as a perfect means
of transportation for food deliveries. Namely, the customers
usually select the food provider nearby to avoid long waiting
times and thus the drone flight range results not too long.
Also, quick lunch boxes, like pizzas, are well transportable by
weight and bulk even by a small commercial drone.

So, for range and size, fast-food deliveries perfectly fit
the drones capabilities in logistic. Moreover, food delivery
is required in a burst at peak times, e.g., at dinner time,
when the traffic on the roads is intense. So flying instead of
driving should make the service faster because the contention

on the sky-roads is not an issue yet, and also the ground-
roads will be relieved by the food delivery traffic. Drones are,
however, much more sensible to meteorological conditions,
e.g, wind, than wheeled vehicles. To test if UAVs are a
promising solution for food delivery, we need a dataset of
flights of drones operating food deliveries. Since it is not yet
allowed to create a test-bed that runs the service, we converted
a dataset of online food deliveries [1] operated by wheeled
commercial vehicles into a dataset of online food deliveries
operated by UAVs by using BlueSky, an open Air Traffic
Simulator (ATS) [10]. Our contributions are:

• the creation of the first, although simulated, UAV-based
delivery dataset (UAV-DB) made available on GitHub
GitHub;

• the evaluation of the gain in time and distance when
the deliveries of [1] are operated by UAVs rather than
wheeled vehicles;

• the impact of winds on drone’s performances.
The rest of the paper is organized as follows. Section II
presents some relevant works in the same field. Section III
describes the dataset creation and simulation process. In Sec-
tion IV, we evaluate our solution comparing it with a standard
truck-based system, considering different wind conditions.
Lastly, Section V offers conclusions.

II. THE RELATED WORK

UAVs are gaining visibility in the delivery scenario, espe-
cially recently, after the Big company of e-commerce tested
UAVs in different cities and the new regulations laws from
FAA just released early this year. Literature offers algorithmic
solutions for several combinatorial problems, like path plan-
ning, facility location problem, vehicular salesman problem,
that raise in collaborative truck-drone deliveries. An interesting
survey of this area of research can be found in [11], [12].

Some attention has received the impact of the wind on
the drone flight. Authors in [13] solve what they call the
Mission-Feasibility Problem (MFP), where the impact of the
wind on the UAV energy consumption is considered to state
the feasibility of the delivery. In [14], the authors consider
a delivery system, where UAVs work in cooperation with a
truck and perform the last mile of some deliveries. Precisely,
on the truck route, it is proposed a way to select, in presence
of wind, the take-off and the landing points of the drone to
minimize the UAV’s energy consumption.
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In [15], [16], the energy and the CO2 spent by a delivery
system that transports small parcels from a central depot to
customers using a mixed UAVs and electric vehicles (EVs)
fleet is analyzed. In those papers, the effects of environmental
conditions (like wind speed and traffic conditions) on potential
energy savings are estimated using a numerical energy model.
According to [15], [16], in rural settings drones can help
to save 5% of total energy. Under drone-favoring conditions
like calm winds and heavy traffic, the energy saving potential
can double. Also our paper studies a delivery system based
on UAVs. However, our paper, instead of using a numerical
model, to evaluate the flights uses an Air Traffic Simulator
(ATS). At the best of our knowledge, our is the first paper that
evaluates the UAVs on flights simulated by an ATS. This is the
closest simulation to a test-bed implementation as to date it is
not allowed to run UAVs flights in an inhabited city setting.
Instead of comparing the energy as in [15], [16], our paper
compares the distance and the time duration of real deliveries
operated by wheeled vehicle available in literature [1] with the
distance and the time duration of the UAVs flights simulated
by ATS. Highly important, the ATS BlueSky simulator allows
us to take care of the wind conditions in a realistic way.

III. OUR SYSTEM

In this Section, we first present our dataset, especially its
composition and its origins. Then, we explain how we built it,
focusing on its core assumptions and the tool we utilize for
the purpose.

A. The Dataset

The first step is the creation of a UAV-based delivery dataset
(i.e., UAV-DB) considering that, in the literature, there are
none available. We built our own UAV-DB starting from a
delivery dataset, referred from now as T-DB [1], built on
real food deliveries in Bogotá. The most important columns
of T-DB are described in Table I. Using BlueSky open Air
Traffic Simulator (ATS) [10], with a UAV plugin built-in, we
perform (by simulation) with drones the original deliveries in
Bogotá. T-DB underwent a pre-processing phase: we selected
the deliveries whose length (i.e., Distance mts) is under 5 km
to ensure the drone feasibility. After the pre-processing, the
T-DB consisted of a total number of ≈ 7000 deliveries that
are simulated, in the next step, to create the UAV-DB dataset
to be analyzed. The simulator creates .log files as simulation
output, where at a fix time step (i.e., 1 second) different
values are saved for each delivery simulated. In the logs
are reported, for each delivery, some UAVs parameters, such
as the UAV altitude, ground speed, true airspeed, calibrated
airspeed, latitude and longitude, and flown distance. We added
the course1 field that stores the direction of the straight
line that connects the starting point with the customer [17].
Fixed the source point a = (lata, lona) and destination point
b = (latb, lonb), the course is calculated by taking the inverse
of tangent function of X and Y where X and Y are defined

1Note that since BlueSky denotes the course as track, we use course and
track interchangeably in GitHub.

TABLE I
BOGOTÁ DATASET MAIN HEADERS.

Headers Description

Moment Time of delivery. Morning, Afternoon or Noon
Name of Provider Name of Provider
Expected Delivery Time Expected time t reach the customer
Cost Delivery Delivery cost for the customer
Latitude and Longitude Starting point for the delivery
DailyTraffic Daily traffic in colors (green, orange, red)
ClientLatitude and ClientLongitude Customer location
Distance mts Distance from starting point to the customer
Time sec Actual time to reach the customer

as follows: X = cos(latb) ∗ sin(lonb − lona), and Y =
cos(lata)∗sin(latb)–sin(lata)∗cos(latb)∗cos(lonb− lona).

The .log files are made available to the community under
GitHub. The .log files created by BlueSky with different
speeds of the drone and different winds are made available
to the community under GitHub. A script parses the .log files
and extracts information for all the simulated deliveries, and
stores them in an organized manner in a .csv file, called
UAV-DB. To create the UAV-DB, first of all, we create a
UAV identifier for each delivery. For reducing the overhead
time in simulation, we create as many UAVs as the number
of deliveries and all the drones fly simultaneously. All the
deliveries are performed by UAVs of type DJI Matrix 600,
which is a real UAV available on the market, in principle suited
for fast-food deliveries because it carries a payload up to 6 Kg
and size 525 mm × 480 mm × 640 mm. According to DJI
product information, DJI Matrix 600 can reach the maximum
speed of 65km/h, which is approximately 20 m/s, and resists
wind up to 10 m/s.

When a UAV is created, the default altitude is set to
approximately 10 meters, after that the UAV has to climb to the
desired altitude while moving towards the destination. Once
the destination is reached, the UAV starts the descent to the
ground.

BlueSky ATS follows the meteorological coordinate system
for the wind and the UAV courses. Precisely, the 0 direction
is when the wind blows from North to South, and the number
of the directions increase clockwise. In this article, however,
we refer to all (both wind and course) directions using the
Cartesian coordinate system, which is more usual for us.

We consider the 4 main wind directions in the Cartesian
coordinate system:

• 0 degree (◦) wind - the wind is blowing from West to
East and has a meteorological direction of 270 degrees;

• 90 degree wind - the wind is blowing from South to North
and has a meteorological direction of 180 degrees;

• 180 degree wind - the wind is blowing from East to West
and has a meteorological direction of 90 degrees;

• 270 degree wind - the wind is blowing from North to
South and has a meteorological direction of 0 degrees.

Moreover, we group the Cartesian directions in four sectors:
We run four different simulation scenario. Precisely, we

consider two UAV speeds, vd = 10m/s or vd = 20m/s, and
two wind speeds ωs = 5m/s or ωs = 10m/s.
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TABLE II
GROUPING DIRECTIONS IN SECTORS.

Sector Cartesian Coordinates ◦

S1 [0, 45] ∪ [315, 360]
S2 [45, 135]
S3 [135, 225]
S4 [225, 315]

B. The wind effect

To understand the effect of the wind on the UAVs trajecto-
ries, let us explain the wind triangle rule [16], which is applied
by the BlueSky ATS for steering the UAV in presence of wind.
Let denote the ground UAV course as c⃗ = (cd, gs), the air UAV
movement as d⃗ = (h, vd), and the wind as ω⃗ = (ωs, ωd). For
the sake of simplicity, all the vectors are measured in Cartesian
coordinate system. Then, the wind triangle ties these three
vectors together as follows: c⃗ = ω⃗ + d⃗. In our simulation, the
wind ω = (ωd, ωs) is known in advance, whereas only the
direction cd of the course and the air speed of the drone vd
are known in advance. So, given in input cd, vd, ωs, and ωd,
BlueSky ATS computes the ground-speed gs and the direction
of the UAV air movement h [18]. The former is called the
tailwind/headwind effect, the latter the crosswind effect. The
ground speed is computed as follows

gs = vd + ωs cos(ωd − cd) (1)

The heading, instead, is given by:

h = cd + wca, (2)

where the Wind Correction Angle (wca) is:

wca = − arcsin

(
ωs sin(ωd − cd)

vd

)
(3)

Note that when ωs = 0, it holds gs = vd and h = cd. When
the wind speed is not null, for each delivery and at every time
slot, BlueSky ATS steers the UAV using the wind triangle rule.

Table III shows the simulation of 4 different UAV courses
with cd = {0◦, 90◦, 180◦, 270◦}. The source and the destina-
tion are at distance approximately 10Km on the ground. The
UAV air speed is set to vd = 20 m/s. The wind direction is
ωd = 90◦.Table III compares the distance traversed log dist
and the duration of the flight log time when the wind speed
is ωs = 15m/s with the distance log dist no w and the time
log t no w in the case without wind (i.e., ωs = 0m/s). All
the data with prefix ’log’ are extracted from the simulation
.log files. Table III reports also the ground speed gs when
ωs = 15m/s and the gs no w when ωs = 0m/s, computed
according to Eq. 1. The heading and wca in Table III are
the values initially computed by BlueSky, according to Eqs. 2
and 3, to steer the UAV when ωs = 15m/s. They are then
recomputed at regular interval of time by BlueSky until the
destination is not reached.

It is evident the impact of the wind from the example
reported in Table III. When ωs = 0, the distance traversed and
the duration time of the flight is the same for all the four course

directions. Moreover, vd = gs = 20. When ωs = 15m/s,
the log dist varies with cd because the UAV heading is
recomputed from time to time to steer the UAV towards the
course. The effect of the wind is even more evident looking
at the log time column. It decreases under the tailwind effect
(i.e., cd = 90, gs = 35m/s), increases under the headwind
effect (i.e., cd = 270, gs = 5m/s), and is the same under the
crosswind (i.e., cd = 0, 180 and gs = 20m/s). It is important
to note that when ωs = 15m/s and gs = 20m/s, the duration
time of the flight is greater than that when ωs = 0m/s and
gs = 20m/s. Although there is a strict correlation between
the gs and the duration of the flight, the duration of the
flight cannot be simply computed by dividing the traversed
distance by the ground speed. This observation reinforces
the importance of evaluating the distance traversed and the
duration time of the flight by an ATS simulator rather than
via analytical models.

C. UAV-DB Deliveries Distribution

The sources (restaurants) and destinations (clients) of UAV-
DB deliveries are illustrated in Fig. 2, where the background
map is taken directly from the DJI site [19]. In Fig. 2,
the airport in red is a strict “no-fly-zone”; from there, two
gray zones expand in opposing directions. In the gray zones
flights are restricted below 150 meters. Since in our system
the flight altitude is set at 100 meters, all deliveries are
feasible in the gray zone. In the map, we have also plotted
the closest 150+ meters buildings (9 in total); as we can
observe from the Fig. 2, most of those reside on the edge of
the “altitude-restricted-zone”, therefore, we can ignore them.
Roughly speaking, because we can easily change the flight
altitude on-demand before each delivery, we can avoid all
crashes between UAVs and with buildings. This solution also
reduce the overall complexity of the UAV delivery system.

IV. EVALUATION

In this Section, we will analyze the average traversed
distances and duration time of the simulated flights, without
and with wind, stored in the UAV-DB. The touchstone for
comparing the UAV performances will be the average distance
and time travelled by the wheeled vehicle extracted from T-
DB, respectively, shown in Fig. 1a and 1b. We grouped the
deliveries into 4 different groups based on the vehicle delivery
distance: (i) under 1km, (ii) from 1km to 2km, (iii) between
3km to 4km, and (iv) from 4km to 5km. Then, we reordered
the deliveries in each distance group according their course
sectors S1, S2, S3, and S4, in Table II. Notice that some sectors
are void.

A. UAV-based delivery in absence of wind

In absence of wind, Fig. 4a reports on the y-axis the actual
distance covered by the UAV preserving on the x-axis the
grouping of Fig. 1 (that is, the delivery are gouped according
to the distance traversed by the wheeled vehicle). It is evident
that the UAV average distance is always smaller than that
of the ground vehicle. Specifically, the deliveries in S2 and
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TABLE III
UAV SPEED vd = 20m/s, WIND SPEED ωs = 15m/s, WIND DIR ωd = 90◦ degree

cd (◦) gs (m/s) gs no w (m/s) log time (s) log time no w (s) heading (◦) wca (◦) log dist (m) log dist no w (m)

0 20.0 20.0 994 548.0 41.4 -48.6 9992.333 9864.524
90 35.0 20.0 308 548.0 180.0 -0.0 10074.524 9864.524
180 20.0 20.0 994 548.0 -41.4 48.6 9992.333 9864.524
270 5.0 20.0 3280 548.0 -0.0 -0.0 9899.774 9864.524

(a) (b)
Fig. 1. Vehicle deliveries grouped by distance and sectors.

Fig. 2. UAV-DB deliveries distribu-
tion in Bogotá.

Fig. 3. Number of trajectory oc-
curence every 10 degree.

S4 cover a distance that is always slightly less than 500m
independently of the distance covered by the ground vehicle.
Hence, we observe that to serve the deliveries in S2 and S4, the
UAV trajectories are much shorter than those of the ground
vehicles. To better quantify the gain of the UAV’s journey,
for each delivery, we compute the ratio between the distance
traveled by the ground vehicle and the distance covered by the
UAV. We then plot in Fig 4b the average of the delivery ratios
along with the confidence interval at 95% level. Note that the
confidence interval is larger for the deliveries in S2 and S4
than for those in S1 and S3 because much less deliveries
fall in the S2 ∪ S4, as depicted in Fig. 3. All the directions
in Fig. 3 are reported in the Cartesian Coordinate system.
The distance ratio in Fig. 4b is constant, equal to 1,5-2, and
independent from the distance in S1 and S3. We deduce that
the ratio 1,5 in S1 and S3 is the scaling factor to convert the
UAV distance (Euclidean distance) into the vehicle distance in
downtown Bogotá. Instead, in S2 and S4, the ratio between
UAV trajectories and vehicle trajectories in Fig. 4b is higher
than 4 and increases up to 10 for the deliveries between 3-
5 km. In order to explain this behavior, recall that the drone
follows a straight line between the source and the destination,
while the ground vehicle must follow the road map. The largest

distance gain in S2 and S4 can be explained by the fact that
the wheeled vehicles follow longest paths perhaps due to the
presence of orographic obstacles (parks, lake) as shown in the
map of Bogotá reported in Fig. 2. Such obstacles are easily
ignored by the UAVs. This could also be the reason restaurants
do not have many clients in S2 and S4, as reported in Fig. 3.

We have noticed that the distances traversed by the UAV
when it moves at 20m/s (Fig. 4) are slightly longer than
those traversed when the drone moves at 10m/s (Fig. 5). So a
slower UAV traverses shorter courses than a fast one. This is
probably due to the fact that the course can be approximated
smoothly when UAV goes slow.

Regarding the flight duration in Fig. 4c in absence of wind,
the duration of the UAV journeys is entirely consistent with the
fact that in the simulation the drone speed is fixed to 20 m/s.
As said, comparing the duration of the vehicle’s trajectories
with their average length, we derive that the vehicle moves
at the speed of 5 m/s (or 18 Km/h) in S1 and S3 and 6.5
m/s in S2 and S4. These wheeled vehicle speeds, although
so moderate, are realistic when the wheeled vehicle travels
in a big city, with multiple intersections, often controlled by
traffic lights. In order to evaluate the gain in time using the
drone, again, for each delivery, we calculate the ratio between
the vehicle-trip duration and the UAV-trip. Then, we plot in
Fig. 4d and 5d the average value of the ratios along with the
confidence interval at 95% level when the drone moves at 20
m/s or 10 m/s, respectively.

The high observed gain in time is easily justified when one
considers that the speed of the drone is at least 3 times that of
the vehicle and the distance traveled by the drone is 2 to 10
times shorter than that of the vehicle. Again we notice a much
larger confidence interval for the sectors S2 and S4 than S1
and S3.

Our analysis confirms that, using UAVs in absence of wind,
food deliveries via UAVs are significantly faster than those
made by wheeled vehicles in a large city such as Bogotá.

B. The wind impact

In this Section we analyze the four wind scenarios described
in Section III-A, and to better understand how the wind
influences the flight of a UAV, we keep the delivery grouped
based on their course. For each delivery course (i.e., trajectory
direction between source and destination), we expect to see the
effect of a favorable wind (i.e., wind with the same direction
of the UAV course), not favorable wind (i.e., a wind with a
direction opposite to the course), and lateral wind that partially
affects the UAV.
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(a) (b) (c) (d)
Fig. 4. Absence of Wind: UAV moving at 20 m/s at altitude 100 m. Distance and time performance.

(a) (b) (c) (d)
Fig. 5. Absence of Wind: UAV moving at 10 m/s at altitude 100 m. Distance and time performance.

(a) (b) (c) (d)
Fig. 6. In presence of wind: UAV moving at 20 m/s at altitude 100 m, and wind speed 10 m/s. Distance and time performance.

(a) (b)
Fig. 7. In presence of wind: UAV moving at 10 m/s at altitude 100 m, and
wind speed 5 m/s. Time performance.

In the following, we abandon distance grouping and analyze
the effect of wind on deliveries grouped only by courses. Since
the effect of the wind depends on the trajectory course, we
first count the occurrences of the courses (see Fig. 3) in each
sector. This will help us to interpret the results on the sectors.
In our analysis, both the drone trajectories (a.k.a. courses) and
the wind are reported in the Cartesian coordinate system.

In UAV-DB, the deliveries are not evenly distributed among
the sectors: there are many more deliveries in S1 and S3 than
in S2 and S4. Moreover, in S1 and S3, the (Cartesian) course

0◦ and 180◦ dominate. We then expect that the wind directions
0◦ and 180◦ 2 have more impact that the other wind scenarios.

Fig. 6 describes how the 4 wind scenarios (Cartesian wind
directions 0◦, 90◦, 180◦, and 270◦) impact the time and the
distance traveled by the UAV when the UAV moves at 20m/s
and the wind speed is 10m/s. We also report in Fig. 6 (leftmost
bars) the results in absence of wind as a baseline. The 4 wind
scenarios have minimum impact on the distance, as shown in
Fig. 6a, 6b, and confirmed by the examples in Table III.

The effect of the tailwind and headwind on the time of
the flight is, instead, strong. As regards the flight time (see
Fig. 6c and 6d), when the wind blows at 0 ◦, the flight time
for the deliveries whose course fall in Sector S1 significantly
decreases, while the flight time for the deliveries whose
courses fall in Sector S3 increases. Namely, as explained in
Section III-B, the deliveries with course 0 in S1 have the wind
in favor and their ground speed increases, while the ground
speed decreases when the wind is against as for the trajectories
with course 180 in S3. With respect to the baseline, S3 loses
more than S1 wins. The deliveries in S3 move at an average
speed of about 8 m/s (the UAV speed decreases by 12 m/s),

2The direction of the wind is reported in the Cartesian coordinate system.
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while those in S1 at an average speed of 27 m/s (the UAV
speed increases 7m/s). The increase and decrease are different
because the effect on the ground speed is weighted by the
number of courses in the different directions (see Fig 3). With
the wind at 180 ◦, the results are opposed as expected. The
deliveries in S3 have tailwind and they take less time than in
the scenario with no wind, while those in S1 take a longer
time because they experience headwind. The wind is in favor
of the course dominant in S3 and against the course dominant
in S1. On average the speed in S3 is 28 m/s, while in S1 is
8.5 m/s.

Under the wind 0 and wind 180 scenario, S2 and S4 don’t
change much from the baseline. The directions in S2 and S4
are subject to a crosswind and the impact is minimal.

Under the wind 90 and 270 scenarios, the courses with
wind in favor fall, respectively, in S2 and S4. However, the
impact of the tailwind is moderate with respect to the speedup
achieved with wind 0 and 180 on S1 and S3 because there are
fewer deliveries in S2 and S4. The time flight for the deliveries
in S1 and S3 which experience crosswind does not differ much
from the baseline although many deliveries belong to S1 and
S3. So we deduce that the impact of the crosswind remains
minimal and not comparable in strength with the impact of
the tailwind or headwind.

Fig. 7 reports how the wind affects the time of the flight if
the UAV moves at 10m/s and the wind speed is 5m/s. We do
not report the distance performance because we have already
seen that the wind speed impacts it in a minimal way. Fig. 7
presents the same trends as the time performance in Fig. 6
both qualitatively and quantitatively. The time ratio in Fig. 7b
degrades with respect that in Fig. 6d, but it is worthy to note
that it remains well above the half of Fig. 6d Our analysis
confirms the results in Table III: the food delivery time changes
considerably when the wind is factored in. Especially, when
the course cd is opposite to the wind direction or completely
in favor.

V. CONCLUSIONS

We created the first UAV-based delivery dataset, obtained
by simulating a real truck dataset in Bogotá. Our preliminary
dataset shows that the drone is definitely faster than the truck
both in the city and in the suburbs. So we believe it is worthy
to explore the use of this means of transportation.

Next, we found that with a favorable wind the drone and
wind speed almost add up, while headwinds can slow down the
drone. The impact of wind on the flight duration is definitely
crucial for deriving the expected delivery time to the customer.
Therefore, the wind cannot be ignored devising a delivery
system based on drones. Finally, the UAV speed impacts all
the aspects of the flight: time, duration, and effect of the wind.
It is then crucial to better understand the UAV speed role for
implementing a UAV food delivery system. Although these
early results are very interesting, more work is required on
the following aspects that are currently not covered by the
simulator: (i) the energy consumed of the drone, (ii) the impact

of the payload on all the aspects of the flight, and (iii) the no-
fly zones.

Beyond the delivery food system, this preliminary study
offers also interesting research sparks, like the possibility
of obtaining information on the overflown territory from the
superimposition of information deduced from different means
of transport.
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