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Abstract—Channel fingerprinting entails associating a point
in space with measured properties of a received wireless signal.
If the propagation environment for that point in space remains
reasonably static with time, then a receiver with no knowledge
of its own position experiencing a similar channel in the future
might reasonably infer proximity to the original surveyed point.
In this article, measurements of downlink LTE Common Refer-
ence Symbols from one sector of an eNodeB are used to generate
channel fingerprints for a passenger vehicle driving through a
dense urban environment without line-of-sight to the transmitter.
Channel estimates in the global azimuthal-delay domain are used
to create a navigation solution with meter-level accuracy around
a city block.

Index Terms—Channel Fingerprinting, Terrestrial Navigation,
Software-Defined Radio, Convolutional Neural Networks.

I. INTRODUCTION

Wireless signals are used for positioning on a massive scale,
with end-users for such systems numbering in the billions. The
expansion of Global Navigational Satellite System (GNSS)
constellations and commodification of receivers means that
any modern mass-market electronic consumer device including
phones, watches or vehicles can tap into a network of high-
accuracy positioning reference signals wherever the receiver
antenna has an un-attenuated view of the sky [1]. The availabil-
ity restriction of clean sky views, paired with other limitations
like susceptibility to spoofing and jamming, create a desire for
alternative wireless positioning solutions based on terrestrial
transmitters. 4G Long-Term Evolution (LTE) commercial base
stations provide a rich basis for opportunistic positioning [2].

Localization methods aside from trilateration (used in
GNSS) are triangulation, proximity, and fingerprint matching,
all of which have attracted attention in both industry and
academia. The focus of this paper is on fingerprint matching
using statistical tools, in which we seek to find a mapping from
the received wireless signal to a position in space through
domain knowledge about electromagnetic wave propagation
and signal processing [3]. This offers advantages in that no
knowledge of transmitter locations is required, it allows for
capturing of channel behavior in complicated propagation
environments that are tough to model parametrically, and
position estimates are provided in a reference frame of the
user’s choice.

The simplest feature available to the user by most com-
mercial wireless receivers is received signal strength, but the
low dimensionality of this parameter precludes anything close
to a bijective mapping in a large outdoor environment, and
the combination of large- and small-scale fading weakens
the correlation even further in heavy multipath environments
where alternatives to GNSS are most desirable. To benefit
from the full richness of the wireless channel information,
it is desirable to use an observation model that includes
the geometrical information embedded in multipath propaga-
tion [4]. Channel State Information (CSI) is a raw form of
measurement data, a complex-value for each subcarrier of
the LTE signal per antenna. With a sufficiently large data
set and network architecture, end-to-end learning from this
information should be able to extract the relevant features.
However, feature engineering allows for more computationally
tractable and memory-efficient network design, portability to
different hardware and software platforms, intuition about
what the network is “learning” and the ability to augment the
network with external information to attain better results with
limited training data.

The problem of channel representation for outdoor finger-
printing with a single sector of a commercial base station is
an interesting benchmark. In [5], 11 channel representations
were investigated and 75-meter median error was achieved. In
[6], 19-meter median accuracy was achieved with CSI vectors.
[7] considers the problem of tracking with an angular-delay
representation of the channel. Our research builds on these
ideas, and contributions are as follows:

• We apply and extend [7], which suggests using an
azimuthal-delay representation of the received signal as
input to a Convolutional Neural Network (CNN). We
demonstrate that the choice of a global azimuthal-delay
domain allows for effective fingerprinting not only with
CNNs, but through a non-parametric k-Nearest Neighbors
(kNN) estimator.

• Downlink channel measurements are visualized in a
world reference frame to motivate the choice of a global
azimuth-delay domain representation.

• Results for the two estimators (CNN and kNN) are shown
for both raw data and with a Kalman filter applied.



We demonstrate that without line-of-sight, a meter-level
navigation solution can be generated with signals of limited
bandwidth and no input regarding transmitter location. These
results are predicated on having known User Equipment (UE)
orientation and clock synchronization.

II. MEASUREMENT SETUP

Cell-Specific Reference Symbols (CRS) in LTE are signals
that are known to the UE in advance as a function of physical
cell identity, with 504 possible sequences distributed across
resource blocks to facilitate down-link channel estimation [8].
What makes CRS appealing for channel estimation also makes
them appealing for opportunistic localization, in that they
are open, frequently transmitted, known to the UE a priori
and of higher bandwidth than the Primary and Secondary
Synchronization Sequences.

A system was built for receiving and logging CRS symbols
from commercial LTE base stations operating at 2.6 GHz,
based on a National Instruments USRP-2953R Software-
Defined Radio. Sampling of CRS symbols was done at a
rate of 30.72 MHz, or approximately 32.56 ns per sample
and logged onto a laptop hard drive. The USRP-2953R also
controlled a 128-element switched Stacked Uniform Circular
Array consisting of 4 vertically-stacked rings of 16 dual-
polarized antenna elements each, which was mounted on the
roof of a passenger vehicle. A rubidium standard, disciplined
by GPS, was used as a frequency reference and a GPS
receiver provided an absolute time reference for correlation
with localization ground truth data.

Fig. 1. Block diagram of key measurement system components.

A high-end localization reference system [9] with a survey-
grade GNSS receiver and high-grade Inertial Measurement
Unit (IMU) was used to provide estimates of vehicle and
antenna position and orientation, through Post-Processed Real-
Time Kinematics. A block diagram of key system components
is shown in Figure 1, and a photo of the test vehicle with all
components mounted is shown in Figure 2.

Four laps of around 400 meters each were driven around
one block in central Lund, Sweden for an aggregate distance
of 1628 meters over 28 minutes and 17 seconds at an average
speed of 0.96 m/s (driving speed was limited to 1.5 m/s to
avoid exceeding the channel coherence time1). The driving

1This is a limitation of the measurement system, which switches at the rate
of CRS symbol transmission. Sampling antennas in parallel would negate
limitations in speed.

Fig. 2. Photo of array antenna mounted on Volvo V90 Passenger Vehicle.

area spanned 103 meters East-West and 108 meters North-
South. Two laps were driven in each direction, as depicted in
Figure 3.

Fig. 3. Visualization of Ground Truth position for one of four laps driven
in Lund, Sweden (55.71◦N, 13.19◦E). The approximate position of the Base
Station (eNodeB) is displayed as well. Image created with Google Earth.

The surrounding buildings consist of four- to five-story
residential or mixed-use buildings. The receive antenna array
never had line-of-sight to the transmitting eNodeB, as the
line-of-sight trajectory was always obstructed by multi-story
buildings.

A sweep among all antenna elements (a channel snapshot)
was completed every 75 LTE subframes (75 ms), and a total
of 22,626 75-ms snapshots were generated over the drive
trajectory.

III. DATA REPRESENTATION AND ESTIMATORS

A. Channel and Position Representation

For every snapshot at time index i, a channel estimate
in the UE frame, Y UE

i , is associated with a localization
vector xi. Channel estimation is done using the Expectation-
Maximization-based RIMAX algorithm [10], and parameter-
ized into a variable and discrete number Li of multipath
components, e.g., Y UE

i , [τl, αl, θ
UE
l , φUE

l ] where l spans



from 1 to Li. τl represents component delay2, αl represents
component signal strength, and θUE

l , φUE
l represent com-

ponent azimuth- and elevation-of-arrival in the UE frame,
respectively. Doppler was not estimated, under the assumption
that reflecting objects which contribute significant energy to
the channel impulse response were static and that the ego-
vehicle was moving slowly.

In [7], simulated channel data consisting of several multi-
path clusters based on a COST 2100 channel model realization
are processed into the azimuth-delay domain, motivated as a
sparse channel representation that maps to position xi ∈ R2×1

in a manner described as approaching bijective for most
practical propagation scenarios. For this to hold true for a
static transmitter and a mobile UE unconstrained in both
position and orientation, a more complete parameterization
of xi is necessary. A complete 6 degree-of-freedom repre-
sentation is xi ∈ R6×1 = [ei, ni, ui, γi, λi, ηi]

T , including
three-dimensional position ei, ni, ui (East-North-Up Cartesian
Frame) and three-dimensional orientation3 γi, λi, ηi (yaw,
pitch, and roll [11]). We extend [7] through our use of external
orientation information γi, λi, ηi to rotate the angles-of-arrival
of multipath components from the UE coordinate system yUE

l,i

to express them in an East-North-Up coordinate system yENU
l,i ,

expressed in Cartesian form in Equation 1.

yENU
l,i = yUE

l,i

1 0 0
0 cos(ηi) sin(ηi)
0 −sin(ηi) cos(ηi)


cos(λi) 0 −sin(λi)

0 1 0
sin(λi) 0 cos(λi)

 cos(γi) sin(γi) 0
−sin(γi) cos(γi) 0

0 0 1

 (1)

The components yENU
l,i constitute the global angular repre-

sentation of the channel, Y ENU
i , [τl, αl, θ

ENU
l , φENU

l ]. The
footprints were discretized into a matrix of azimuthal-delay
bins with M delay bins and N azimuthal bins, Hi ∈ RM×N

with signal power αl contributing to the power for a given
azimuthal-delay bin. Elevation values are not considered in
the formulation of Hi, but extension to three dimensions, e.g.,
[12] is possible. The M azimuthal bins can be interpreted as
a discretization of the full span of compass directions. We
ignore the altitude ui component of the position because the
route does not have variable elevation for the same East and

2Delay measurements (equivalently expressed in meters) were biased,
but not time-varying based on a visual inspection of delay domain data
over the full test drive. Built into this representation is effectively absolute
clock synchronization between transmitter and receiver, a parameter which is
typically estimated on a per-epoch basis for time-of-arrival systems built on
low-cost crystal oscillators on the UE side. CNNs are effective if the shape
of information features is invariant to the location in the input space, but
absolute time synchronization provides a large amount of information about
proximity to the base station, even if the mapping is highly non-linear for
an urban canyon scenario. We leave the investigation of sensitivity to time
synchronization for future work.

3Non-isotropic UE antenna pattern and variable propagation environment
(vegetation or dynamic objects such as traffic) will also preclude a bijective
representation. Effective channel footprinting entails finding representations
of Yi that are both sparse and robust to these types of effects.

TABLE I
CNN ESTIMATOR DESCRIPTION

Parameter Value
Input Layer Dimensions 69 x 71

Delay Range (meters / ns) 0 to 700 / 0 to 2333
Azimuthal Range (degrees) -180 to 180

Delay Resolution (meters / ns) 10.1 / 33.8
Azimuthal Resolution (degrees) 5.1
CAP Layer 1 Filters / Weights 16 / 272
CAP Layer 2 Filters / Weights 32 / 8224
CAP Layer 3 Filters / Weights 64 / 32832

Dense Layer 1 Weights 524416
Kernel Size (All conv. layers) 3
Pool Size (All pooling layers) 2x2

Output Layer Shape 2

North coordinates4, leaving us with the same two-dimensional
localization estimate xi ∈ R2×1 = [ei, ni]

T that now accounts
for freedom in orientation. A desirable extension which we
leave for future work is to add orientation (primarily heading)
as an estimable parameter.

B. Data Aggregation

Training on individual snapshots provides both higher-
frequency position estimates at run-time and a larger training
data set, but averaging over a longer time interval allows
for more energy to be aggregated in each estimate. Using
discretized multipath components as the basis for populating
the matrix Hi results in very few non-zero angle-delay bins
for an individual snapshot if the number of components Li is
low, resulting in most subsequent estimator operations being
multiplication of zeros. Therefore, energy contributions from
snapshots are summed, 20 at a time, into snapshot groups
(indexed hereafter with k) to produce position estimates every
1.5 seconds, e.g., Gk =

∑20+20(k−1)
i=1+20(k−1) Hi.

In a multi-sensor navigation system, unbiased and low-rate
estimates of absolute position are complementary to high-rate
sensors such as IMUs or wheel odometry with unbounded
long-term bias [13], so for this application it is reasonable to
produce position estimates at a lower rate.

C. Estimators

1) Convolutional Neural Network Estimator: The CNN
estimator consists of three Convolution-Activation-Pooling
(CAP) layers, a flattening layer, a fully-connected layer and an
output layer estimating position ek, nk for each snapshot group
k. Relevant parameters of the CNN estimator are summarized
in Table I.

Moderate changes to parameters including number of layers,
filters, kernel size and learning rate did not significantly
impact performance and are not included in this text. Network
optimizing is left to future work.

4Some driving scenarios could benefit from altitude estimates, such as
parking garages, freeway over- and under-passes, stacked highways, etc.



TABLE II
KNN ESTIMATOR DESCRIPTION

Parameter Value
Input Dimensions 4899 x 1

Delay Range (meters / ns) 0 to 700 / 0 to 2333
Azimuthal Range (degrees) -180 to 180

Delay Resolution (meters / ns) 10.1 / 33.8
Azimuthal Resolution (degrees) 5.1

Neighbors n used 5
Neighbor weights Uniform

2) k-Nearest Neighbors Estimator: A kNN estimator was
used, with the intention of establishing a performance bench-
mark for the CNN using the same underlying input data.
Unlike the CNN estimator, there are no learned parameters.
The two-dimensional azimuthal-delay representation from the
CNN is flattened, and the same angular-frequency bins are
used without any convolution operation that considers adjacent
values within Y UE

i . The estimator is described in Table II.

D. Kalman Filtering

For each estimator, a Kalman Filter employing a constant
velocity model is used to filter the series of independently
predicted points from the kNN and CNN estimators. The state
vector includes two-dimensional positions and velocities, e.g.,
xk = [ek, nk, e

′
k, n
′
k]

T . The filter is initialized at xk=1 with
position estimates from the estimator predictions after the first
snapshot group, velocities of zero (e.g., ê′k=1 = n̂′k=1 = 0) and
a covariance matrix Pk=1 = diag([9, 9, 1, 1]).

IV. RESULTS

A. Channel Footprints

Azimuthal-delay domain spectra for four geographically
proximate snapshot groups (spread within 2 meters), one on
each lap, are shown in Figure 4. A visual inspection of these
channel footprints shows visibly similar clusters, even with
position offsets on the order of tens of wavelengths and head-
ing differences of 180 degrees, and dynamic environmental
changes such as size and location of other vehicles. This
supports the choice of global azimuthal-delay representation
of Hi.

It is also clear that significant energy is contained in clusters
that have path differences on the order of several hundred
meters (several hundred nanoseconds), and that the channel
estimation shows “smeared” angle-of-arrival estimates where
clusters appear to occupy a broad range of azimuthal values.

B. Estimator Performance

Laps 1-3 were used as a training set in the case of the
CNN and as the underlying search space in the case of the
kNN estimator. Lap 4 was used for testing. The positioning
performance for Lap 4 with each estimator is shown as a
time series and error distribution function in Figure 5 and
as a map in Figure 6. Performance metrics are listed in
Table III. The kNN estimator is more prone to extreme
errors, but still manages to produce a navigation solution that
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Fig. 4. Azimuthal (East-North) - Delay spectra for one snapshot group
on each of four laps around Central Lund, Sweden. e0, n0 corresponds to
55.7107◦N, 13.1898◦E, and a Universal Transverse Mercator projection is
applied to generate a two-dimensional representation of position. The points
are taken from the Northwest corner of the route.

TABLE III
HORIZONTAL ERROR VALUES FOR ESTIMATORS

Estimator Avg. Error (m) Error Std. (m) Max Error (m)
CNN 6.2 4.9 35.9
kNN 10.4 17.3 108.8

CNN (Filtered) 5.7 2.4 12.1
kNN (Filtered) 7.2 4.5 25.9

traces the trajectory of UE in a counter-clockwise manner
around the block. Each estimator shows similar directional
performance, with the exception of high East-West error for
the kNN, possibly caused by a single point. This represents
a performance improvement as compared with [5], [6], but
different environmental conditions, survey areas and densities
preclude such comparisons being considered comprehensive.

The CNN appears to be a superior estimator, likely owing
to the ability to better integrate larger quantities of data in the
individual estimates rather than discarding all but a few points,
some of which may contain large errors.
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Fig. 5. Time series and cumulative distribution functions of absolute and
directional position errors for Lap 4.
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Fig. 6. Ground Truth vehicle trajectory, as well as Filtered Position Estimates
from kNN and CNN.

V. CONCLUSIONS AND FURTHER WORK

The results show that with a single sector of a single eN-
odeB in non-line-of-sight conditions, meter-level estimations
of absolute position can be generated based on limited drive
data over the same road segment through an azimuthal-delay
representation of the wireless channel. They show that the
statistics of the wireless channel can be used to create a
navigation solution even in non line-of-sight conditions. The
estimates are augmented by external information regarding UE

orientation and presume effective clock synchronization with
the transmitter.

In future work, it would be interesting to alter the CNN
architecture including input and output parameters, investigate
sensitivity to timing errors, and to integrate multiple sectors
and base stations.
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