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Abstract—Unmanned Aerial Vehicles (UAVs) can be used as
low altitude platforms in several applications. In this paper, we
propose their use to localize a ground Radio Frequency (RF)
emitter by collecting measures of the Received Signal Strength
Indicator (RSSI) at different positions. The main contribution of
the work consists in the definition of an experimental setup for the
simultaneous measures of RSSI and receiver position. The RSSI
is measured by an actual transceiver, the Adalm Pluto Software
Defined Radio (SDR) development board, programmed with
the open-source software GNU Radio. The position is provided
by GPS and Inertial Measuring Unit (IMU) sensors on the
drone. The measures are acquired in the 865MHz Short Range
Device (SRD) and 2.4GHz Industrial Scientific Medical (ISM)
unlicensed frequency bands. Since the ISM measures can be
affected by interference generated by different sources (e.g. Wi-Fi
access points and UAV controller), the SRD band is exploited for
collecting the RSSI measures with less interference. A maximum
likelihood (ML) algorithm is applied to the collected data for
estimating the transmitter location. For the considered setup
we show that the mean absolute localization error is around
4m without interference and 5m with interference. A threshold-
based technique is proposed to improve the accuracy in presence
of interference.

Index Terms—Unmanned Aerial Vehicles (UAVs), Received
Signal Strength Indicator (RSSI), Software Defined Radio (SDR),
Localization, Interference.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are revolutionizing the
telecommunication industry thanks to their mobility. They find
applications in the fast on-demand deployment of aerial base
stations and in search and rescue operations [1]. In such appli-
cations, the localization of ground targets is often a helpful fea-
ture or even a critical requirement [2]. For instance, in search
and rescue operations the possibility of re-establishing the
connectivity and localizing the ground terminals can save lives
by accelerating the search activities and saving the workforce
for the rescue activities. In general, the localization of targets
can be classified as passive or active: in passive localization,
targets do not emit signals useful for their position estimates
and they are typically localized by employing radar, lidar, or
other sensing technologies while, in active localization, targets
emit Radio Frequency (RF) signals [3].

Given the wide availability of hardware (HW) equipment
capable of measuring the Received Signal Strength Indicator
(RSSI), active localization of RF transmitters is largely used in
practical systems [2], [4]–[7]. However, other approaches can
be adopted to tackle the localization problem: Time of Arrival
(ToA) [8], Time Difference of Arrival (TDoA) [9], and Angle

of Arrival (AoA) [10] are the main exemplary techniques. It is
worth noting that all of them require more complex and heavier
HW in comparison to RSSI, thus increasing computational
complexity and total weight, which is a critical constraint for
UAV applications. On the other hand, an aerial platform based
on pure RSSI, or difference of RSSI [11], can be implemented
with much simpler HW and even the simplest Wireless Sensor
Network (WSN) nodes are typically able to measure it [4], [7].

A. Related Work

In recent years, researchers have deeply investigated the
deployment of UAVs for the localization of a ground RF
transmitter. In the simulation study [5] a UAV is used as
an anchor point in the localization process and its measures
are mixed with those obtained from ground anchor nodes for
localizing a ground emitter. In [6], it is studied a localization
method where three fixed-wing UAVs cooperate for scanning
a wide area of 10× 10 km2 and looking for an RF emitter with
unknown transmit power. On the other hand, articles that tackle
RSSI localization in the presence of interference focus mainly
on indoor scenarios, with solutions often based on measures
taken from multiple directional antennas [12] or on the use of
frequency hopping capability to avoid the interference [13].

There are not so many experimental works that implement
RSSI-based localization and only a few of them exploit UAVs
as anchor points. In [7] a ground RF emitter localization is
implemented deploying multiple ground anchor nodes based
on ZigBee transceivers. Others exploit the capability of the
UAVs for the localization process but use the collected data
to understand how to manoeuvre the drone [14], [15]. In [14],
front and rear-facing directional antennas are mounted on the
UAV to localize and move towards the ground RF emitter by
comparing the RSSI from the two antennas. In [15], many
directional antennas connected to a single receiver with a fast
switch sense the power. The implementation of this strategy
allows for a fast estimation of the bearing of the ground RF
transmitter and move towards it.

B. Main Contributions

In this paper, we present an experimental UAV platform for
RSSI-based localization. RSSI measures are taken in different
positions from the 2.4GHz Industrial Scientific Medical (ISM)
band. A Maximum Likelihood (ML) approach is applied to the
collected data for offline localization of the ground RF emitter.



The accuracy of localization at 2.4GHz can be affected by spo-
radic interference, which may come, for example, from nearby
WiFi transmissions or the remote controller. To overcome
this problem, a threshold-based RSSI technique is proposed.
For validating the accuracy without strong interference, the
865MHz band is also considered. Note that the two frequency
bands are available for unlicensed use nearly worldwide.
Moreover, we have performed a set of flights in the 865MHz
band with 3 transmitters on the ground to verify further the
potential of our localization procedure.

Our work differs from others in the literature of RSSI-
based UAV localization since it considers scenarios with and
without interference. To the best of the authors’ knowledge,
this aspect was not investigated before with an experimental
validation. Our approach is based on a single omnidirectional
antenna connected to an ADALM-Pluto, a low-cost SDR
board [16]. Furthermore, we provide a baseline localization
algorithm through ML estimation based on multi-lateration,
taking into account the impact of WiFi interference and
providing a threshold-based solution to mitigate its impact on
RSSI ranging. Differently from the interference management
approach in [12], ours does not require directional antennas
and additional HW, so reducing the weight and complexity of
UAV operations.

C. Organization

Section II introduces the scenario with focus on the path loss
model, the interference mitigation through a threshold, and the
ML localization algorithm. Section III describes the measure-
ment campaign carried out to gather the RSSI values, including
the UAV path control. Sec. IV presents the localization results,
with a specific focus on the target position estimation using
the threshold-based technique. Finally Sec. V concludes the
paper and discusses briefly the future work.

II. SYSTEM MODEL

A. Path Loss Model

The signal attenuation is related to the RSSI through the
path loss model, expressed in the log-domain. In this relation,
inaccuracy is mainly due to the shadowing impact, which
increases linearly with the distance (a constant error in the
log-distance implies a constant multiplicative error in the dis-
tance) and to the multipath (in particular for indoor scenarios)
where RSSI fluctuations cannot be predicted by deterministic
theoretical models. Thus, the measured power is

Pr(dBm) = Pref(dBm)− np · 10 log10
(

d

dref

)
+ n, (1)

where Pref is the power received at the reference distance dref ,
np is the path loss exponent, and n is the random shadowing
component, which is Gaussian and zero-mean (in dB). We
can adapt this model to our scenario by setting np and, given
the lack of large structures such as buildings or trees, the
channel model that fits best the scenario is the two-ray ground
reflection. This model is validated by the real measurements
taken in the field.

Fig. 1: Experimental setup of the ground-to-air link. There
are two ADALM-Pluto SDRs on the roof of a car: one is the
transmitter and the other is used for monitoring.

B. Proposed Threshold-based Approach

To improve the accuracy of the ML localization algorithm,
a pre-processing phase can refine the raw data and reduce
the impact of noise and interference [17]. In this paper, we
are using an approach based on the definition of lower and
upper thresholds to make the data usable. For the initial
measurements, the UAV is close to the transmitter, as shown
on the roof of the car in Fig. 1, and there is also human
interference before the take off and multipath reflections.
Therefore, the measurements when the UAV is close to the
transmitter are neglected and an upper threshold of −50 dB
is used for this aim. RSSI measurements lower than a certain
value are also discarded because from our experiments we
have found that they are comparable to the SDR noise floor.
The lower and upper thresholds were derived empirically from
the measures as discussed in Sec. IV.

C. Maximum Likelihood Algorithm

In the considered scenario, each UAV position defines an
Anchor Point (AP). Let u and si be the three-dimensional
(3D) state vectors that give the coordinates of the active RF
target and of the UAV associated with the ith RSSI measure,
respectively. A single RSSI measurement ρi at position si is
modelled as [18]

ρi = hi(u, si) + ni, i = 1, . . . , NAP , (2)

where NAP is the number of APs, ni is the zero-mean additive
Gaussian noise with standard deviation σi, and

hi(u, si) = Pref − np · 10 log10
∥u − si∥
dref

, (3)

is a non-linear function of the state vectors (u,si) obtained
from (1) with d= ∥u − si∥, being ∥v∥ the norm of the vector
v. Now, we want to estimate the position û from the set



Fig. 2: The light blue signal is the drone controller transmis-
sion in the 2.4GHz band and the yellow one is the max-hold
of the received power. The frequency hopping nature of the
transmission is the main cause of interference.

of measurements in (3) and this can be obtained by the ML
estimation, as

ûML = argmax
u

NAP∏
i=1

1√
2π(σi)2

e
−
(

ρi−hi(u,si)
2σi

)2

. (4)

The absolute error is calculated as the distance between the
true position of the transmitter and the ML estimation.

III. EXPERIMENTAL MEASUREMENT CAMPAIGN

For our experimental measurement campaign, we set up a
simple and efficient architecture. For the ground segment, we
placed a stable transmitter at the height of 1.7m on the roof of
a car, as shown in Fig. 1. The SDR used for transmission and
reception is an ADALM-Pluto [16]. This board was selected
for its light weight and wide frequency range, which allowed
the collection of measures in both the 865MHz [19] and
2.4GHz bands.

The signal transmitted by the SDR is a QPSK modulated
signal at the carrier frequency fc =865MHz, in the first set of
trials. This measurement campaign is used for the validation
of the system, in absence of interference. Afterwards, we
collected the same measures at fc =2.4GHz, in presence of
the interference. The interference was generated by the Wi-Fi
hotspot and by the drone controller, as clearly shown by the
light blue line in Fig. 2 reporting the intermittent transmission
that causes interference. We have chosen these frequencies
because they are part of the unlicensed spectrum and we
can transmit with the SDR maximum available power, i.e.,
7 dBm. Moreover, the two frequencies are close to those used
in cellular communications and the result can be generalized
even for this case. The QPSK modulated signal is sent to the
SDR by a laptop running GNURadio, an open-source software
used for digital signal processing [20]. For the receiver, the
same SDR board was chosen and connected to a RaspberryPi
3B, installed on board a Tarot X6 Hexacopter. In Fig. 3, it is

Fig. 3: The Tarot UAV in the complete configuration: we can
see the ADALM Pluto SDR and the RaspberryPi with the
SenseHat IMU board.

shown the complete setup of the drone, with the SDR and the
RaspberryPi 3B. The choice of this minicomputer was driven
by its light weight and sufficient computing power for our
application. The RSSI value is computed directly by the SDR
and we collected it with a GNURadio script that read the
value every 10ms, a sampling time achievable also with a low
cost transceiver like the one described in [21]. The transceiver
inside the ADALM-Pluto, the AD9361, measures first the
power level in dB and then compensates for the receiver gain.
Therefore, the collected value is valid also in case we are using
an Adaptive Gain Control (AGC) system on the board. Since
the board is not calibrated, the RSSI measure is not absolute
but only relative and, for this reason, we took a calibration
measure at 1m of distance: this is used to estimate the values
of all the gains at the receiver and match the relative RSSI
measures to the actual values of path loss.

A. UAV Path Control

One fundamental aspect of the localization process is the
definition of the flight path of the drone. An example of path
optimization is reported in [22], where a set of way points
that lay on a circle covering the area of interest is defined.
The radius of the circle must be large enough to cover all the
possible target locations but also kept as low as possible to
reduce battery use. Some of the measures were acquired with
programmed flight paths while some others were acquired with
manual flight, to simulate both scenarios of autonomous and
operator-controlled flights. In Fig. 4 it is shown the serpentine-
like pattern we had programmed. To keep low the tilt angle
of the drone we always moved it at a low controlled speed
between 2 and 3m/s. Moreover, the RSSI measuring interval
of 10ms corresponds to a space interval of ∆d=2.3 cm. With
these values, we achieved a high spatial sampling frequency,
which gave us also the possibility of averaging the measures.

The UAV flight telemetry may or may not be accessible,
particularly during a flight, because the log file stored in the



Fig. 4: UAV flight track that was planned before the flight.
Here we used a serpentine-like pattern covering the area of
operations.

Fig. 5: Polar representation of the RSSI collected by the UAV
while it was rotating around its vertical axis. We can clearly
see how the variation of the bearing affects directly the RSSI,
probably due to the shadowing caused by the drone itself.

drone is not always available. Therefore, attitude and position
data were acquired utilizing an external add-on board to the
Raspberry Pi mounted on the drone. For the attitude, we
chose an Inertial Measuring Unit (IMU) board [23] capable
of collecting pitch, yaw and roll angles using an accelerom-
eter, gyroscope and compass. This sensor returns very noisy
measures but we can still get a quite realistic representation of
the attitude of the drone. In Fig. 5 we can visualize the effect of
the bearing on the measured RSSI: by rotating the drone away
from the transmitter we experience an instantaneous fading in
the received power that follows exactly the trend of the yaw
measure. This data can be of great help for the localization
algorithm because we can compute the precise directivity of
the antenna on board to weigh each collected RSSI sample.
We remark that all the attitude data provided by the IMU
board are relative angles w.r.t. the orientation at the start-up
time. Furthermore, the same IMU board provides barometric
measures, from which we computed the drone altitude with
the barometric formula [24]. We have preferred this method in
place of the straightforward GPS altitude because of the high
fluctuations and low precision of the satellite 3D position [25],
as represented in Fig. 6.

We consider the condition where the rate of variation of

Fig. 6: Comparison between the altitude returned by the GPS
and an estimate computed by the barometric sensor on the
IMU. It is visible how the GPS altitude fluctuates around the
more realistic values of the barometric altitude.

Fig. 7: The wind generated by the propellers causes spikes in
the computed altitude.

temperature at increasing altitudes, known as lapse rate, is
equal to zero because all the operations were carried out near
to the ground. Thus, with this assumption, we can define the
pressure at a given altitude h as

P (h) = Pref · exp
(
−g0 ·M · (h− href )

R∗ · Tref

)
, (5)

where Pref (Pa) is the reference pressure, g0 (m/s2) is the
gravitational acceleration, M (kgmol−1) is the molar mass of
Earth air, href (m) is the reference height, R∗ (J/(mol ·K))
is the universal gas constant, and Tref (K) is the reference
temperature. If we define the auxiliary constant C as

C = − g0 ·M
R∗ · Tref

, (6)

it is possible to write the altitude variation from the reference
as a function of the pressure change, which is given by

h(P ) =
ln (P/Pref )

C
. (7)

Therefore, by recording the maximum value of pressure on
the ground as the reference we can compute a precise value of
the altitude variation. However, the resulting altitude measure
could be affected by the wind. In Fig. 7 we can see the
spikes in the computed altitude, which are the effect of sudden
changes in the air pressure. Indeed, the IMU board senses also



Fig. 8: Example of collected RSSI measures with interference.

Fig. 9: ML estimation of the transmitter position with and w/o
interference for the shown circular UAV flights.

the wind generated by UAV propellers and it is necessary to
mount the board upside down in order to limit this problem.

For evaluating the error in the 2D position, we used an
external GPS dongle [25] that provides also altitude, even if
highly unreliable compared to the barometric one. The position
accuracy of the 2D estimate is around 2.5m but really depends
on the number of satellites visible at the time of the trial.

IV. LOCALIZATION RESULTS

Here, we present the results of the ML localization algo-
rithm obtained from the collected RSSI measurements without
interference at 865MHz and with interference at 2.4GHz. For
the estimation of the transmitter position, we used np =2.2 in
(1), which was empirically derived. Essentially, the scenario
is that of a two rays channel, i.e. line-of-sight plus a reflection
from the ground, with transmitter placed on the rooftop of a
car. An example of RSSI values that were gathered in presence
of interference is reported in Fig. 8. The RSSI is logged every
10ms while the position twice per second. From data collected
in our experiments, both without and with interference, we
obtained a standard deviation between 2 and 6 dB from the
estimated mean value associated with multiple measurements
taken in each position, which gives the value of σi to be
used in (4). The measured RSSI exhibits fluctuations that
affect the accuracy of localization. Therefore, to improve the

performance, and reduce the load on the localization algorithm
at the same time, only a subset, i.e. the most reliable, of the
RSSI measurements obtained by the UAV in different positions
must be considered. These are obtained by thresholding RSSI
between a lower and upper value (see Sec. II.B).

Figure 9 reports an example of the estimated position after
the application of ML algorithm with RSSI thresholding for
two circular tracks with and without interference. Here, the
same value σ̂i =4 dB, i=1, . . . , NAP , was used in (4), which
was obtained as mid way of the estimated standard deviation
in the range (4− 6 dB) observed from the collected RSSI.
We can observe which UAV APs are considered for the
localization after the threshold-based approach, visible in the
figure as green and purple points, for the experimental tests
without and with interference respectively. The circular track
is an effective path for localization as there are measurements
from all the directions. The numeric values of the likelihood
associated with different estimated positions of the target are
shown according to the grey scale reported on the right of
the figure. The mean of the absolute location error is 4m
when there is no interference while it increases to 4.8m
with interference. This absolute error mean value is less
than a meter worse than the best localization error without
interference. Table I reports a summary of the results obtained
in different experimental tests for the circular and serpentine
tracks, shown in Fig. 4, together with the values used for the
lower and upper thresholds. From the reported results we can
observe that the presence of interference does not introduce
significant degradation compared to the case where it is absent.

A. Multiple Transmitters

In order to verify the performance of our algorithm also in
case of multiple ground transmitters, we collected measures
in presence of 3 different transmitters positioned in an area
of 300m× 300m. For this case, a serpentine track was used.
We adapted the original algorithm for working in this new
scenario, just by slicing the full set of recorded samples into
3 clusters. The slicing was done by analyzing the RSSI values
and finding hot spots in the UAV track that suggested the
presence of a transmitter. In this case we set σ̂i =6 dB from



TABLE I: RSSI range (thresholds) and mean absolute position
error for circular and serpentine tracks.

RSSI Thresholds
(upper and lower)

Mean Absolute Position Error
Circ.

w\Int.
Serp.

w\Int.
Circ.

No Int.
Serp.

No Int.
-50 to -90 dBm 7 m 17 m 5.1 m 11.3 m
-50 to -95 dBm 5.5 m 14 m 4.1 m 16.4 m

-50 to -100 dBm 7.2 m 19 m 9.5 m 17.0 m
-50 to -105 dBm 10.8 m 14 m 12.2 m 16.5 m
-60 to -90 dBm 6.7 m 17.7 m 5.1 m 10.2 m
-70 to -90 dBm 6.1 m 16.7 m 5.1 m 16.4 m

-70 to -100 dBm 7.1 m 10.5 m 9.4 m 17.1 m
-70 to -110 dBm 12.9 m 13.2 m 12.3 m 16.2 m

the observation of the standard deviation in raw RSSI data
associated with the considered serpentine path. Then, the lo-
calization procedure is applied in the 3 clusters independently
and each result is merged. Figure 10 represents the estimated
positions returned by the ML algorithm.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the application of the
ML algorithm for localizing an active RF transmitted from
RSSI measures collected by a UAV in two unlicensed fre-
quency bands. An experimental setup that uses inexpensive
and lightweight ADALM Pluto SDR development board,
programmed with the open-source software GNU Radio was
described. Circular and serpentine tracks have been considered
as trajectories for the UAV. The performance has been eval-
uated in terms of mean absolute position error either without
interference at 865MHz or with interference at 2.4GHz. A
threshold-based solution on the measured RSSI inputs has
been proposed to improve the accuracy of the estimates. Our
results show that the performance in presence of interference
at 2.4GHz is comparable to the scenario without interference
at 865MHz. The applicability of this approach to a multi-
transmitter case has been demonstrated for a scenario with
three RF emitters, in which a good accuracy is achieved.
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