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Abstract—At 5G and beyond networks, accurate localization
services and nanosecond time synchronization are crucial to
enabling mission-critical wireless communications technologies
and techniques such as autonomous vehicles and distributed
multiple-input and multiple-output (MIMO) antenna systems.
This paper investigates how to improve wireless time synchro-
nization by studying time correction based on the Real-Time
Kinematics (RTK) positioning algorithm. Using the multiple
Global Navigation Satellite System (GNSS) receiver references
and the proposed binary GNSS satellite formation to reduce the
effect of the ionosphere and troposphere delays and recede the
measurement phase-range and pseudorange errors. As a result,
it improves user equipment’s (UE) localization and measures the
time difference between the Base Station (BS) and the UE local
clocks. The results show that the positioning accuracy has been
increased, and a millimetre accuracy has been achieved while
attaining the sub-nanosecond time error (TE) between the UE’s
and BS local clocks.

Index Terms—RTK, Time synchronization, Time error, Binary
satellites, 5G, Baseband Unit (BBU), Ambiguity number.

I. INTRODUCTION

High-precision global positioning system (GPS) real-time
kinematics (RTK) positioning is extensively used in land, sea,
and air surveying and navigation applications. However, in
time synchronization applications such as 4G and 5G networks
such as critical Internet of Things (IoT), where data latency
is less than 50ms and reliability is higher than 99.9%, mainly
the Global Navigation Satellite System (GNSS) and Precision
Time Protocol (PTP) are mainly under research at the Base
Station (BS) side only [1][2][3]. The RTK technique unique-
ness depends on sending a correction observation message to
the user equipment’s (UE) GNSS receiver through wireless
technology from an accurate reference such as the GNSS
receiver at the BS, which improves the UE’s positioning
accuracy and measures the Time Error (TE) between the UE
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and BS clocks to improve the synchronization for critical
missions and real-time application in 6G. For example, in
autonomous cars, for critical missions, group coordination
is the backbone for mission success and avoiding collisions
or diversion from the targets, which requires highly accurate
synchronization between all the On-Board Units (OBU) in the
vehicles group. . The distance from the UE receiver to the
BS reference receiver may range from a few kilometers to
hundreds of kilometers. Even positioning with a short baseline
distance between the UE and the BS receivers provides a
theoretical positioning for UE in millimeter accuracy and a
sub-nanosecond time error between the clocks. In practice, it
shows that the achievable is within decimeters and centimeters
under field conditions and with synchronization of several
nanoseconds out of time [4][5]. The problem of accounting
for distance-dependent biases between the system elements,
which are: the satellite transmitters, UE and BS receivers,
grows and, as a consequence, reliable ambiguity resolution for
the number of cycles between each satellite and both UE and
BS receivers for the same frequency band becomes an even
more significant challenge. However, the Double Difference
(DD) technique can help avoid residual biases or errors when
the distance between the two GNSS receivers is less than
1 km [5]. For baselines greater than 10 Km, increasing the
distance causes significant ionospheric tropospheric delays,
and the orbital error becomes significant [6]. Additionally,
when GPS signals are continuously tracked and no loss of lock
occurs, the integer ambiguities resolved at the beginning of a
survey can be kept for the entire user kinematic positioning
span. However, GPS satellite signals may occasionally be
shaded by buildings, jammed by other signals, or even blocked
inside a building or tunnel. Generally speaking, the integer
ambiguity values are not available and must be re-calculated
in such cases. These calculations can take from a few tens of
seconds to several minutes [7]. As a result, time correction
and synchronization accuracy will be affected. In distributed
wireless networks, the level of time synchronization should



be within several nanoseconds [8]. Some effort has been
recently showing the potential of using the carrier phase-based
synchronization [9]. However, to provide a new method based
on the RTK that helps in increasing the short baseline accuracy
to better than a millimeter, we propose an algorithm that takes
into consideration the spatial distribution of the references and
satellites in the perspective of the user so that the errors due to
the baseline distances, delays of ionosphere and troposphere
can be corrected using statistical approach.

Our main contributions are summarized as follows:
• Propose to use the existing infrastructure of the 4/5G

base station GNSS receiver as a reference and use the
mobile network to provide UE with observation messages
to improve the positioning accuracy of UE and the time
synchronization between the local clocks of the BS and
UE.

• Propose new selection criteria for optimal satellite for-
mation to reduce the effect of phase range measurement
errors. In this proposal, the selection of a binary satellite
system depends not only on signal strength and elevation
but also on azimuth with respect to the UE and BS GNSS
antennas.

• Propose to use more than one reference with symmetrical
distribution around the UE GNSS antenna to provide
more than one solution. The final solution for the position
and TE takes the expectation of all individual solutions
to reduce ambiguity calculation errors.

II. SYSTEM MODEL

In this article, the system model has M Base References
R located in 4/5G BS and serving the UE User Rover U and
each R, the observation message is available at R through the
4/5G wireless network connection as in Fig.4.

Fig. 1. System Model for Multi-Reference RTK Algorithm

The positioning and TE are based on the following assump-
tions, many Rs around the U are available, and a subset of
only M will be used in the calculation procedure. The U is

in the center, and the Rs are equally far from each other.
The second assumption is that there are many satellites in
the view of the UR, and a special formation will be used
that depends on the signal strength elevation and the binary
condition. The definition of binary conditions is a system
consisting of two satellites that orbit Earth, while U view
each of the satellites at opposite azimuths, for instants, in
Fig.4 S1,2

b1
is the binary satellite with S1,2

b1
and the azimuth

from the U perspective is 0 and π, respectively. In the case
of the pseudo-range calculation, two binary satellite systems
are required. However, in practice, the system may not satisfy
such conditions, the best two semi-binary satellite systems can
be used. The following equations will describe the model and
explain the reasons behind the assumptions. To calculate the

pseudo-range P
Sbn
2n−1,2n

Rm,Li
between satellite Sbn

2n−1,2n and the
Rm for frequency band Li

(1)P
Sbn
2n−1,2n

Rm,Li
= c(tRm

− tS
bn
2n−1,2n)

Similarly, the pseudorange P
Sbn
2n−1,2n

U,Li
between satellite

Sbn
2n−1,2n and U for the frequency band Li:

(2)P
Sbn
2n−1,2n

U,Li
= c(tU − tS

bn
2n−1,2n)

where tRm
, tU and tS

bn
2n−1,2n are the signal reception time

measured by the Rm, U clocks and the measured signal
transmission time measured by the satellite clock Sbn

2n−1,2n in
seconds, respectively. The n is the binary formation number
of two satellites and the c is the speed of light. The previous

equation can be also written using geometrical range ρ
Sbn
2n−1,2n

Rm,Li

[10]:

P
Sbn
2n−1,2n

Rm,Li
= ρ

Sbn
2n−1,2n

Rm
+ c(δtRm − δtS

bn
2n−1,2n) + I

Sbn
2n−1,2n

Rm,Li

+ T
Sbn
2n−1,2n

Rm
+ εP

(3)

where δtRm
and δtS

bn
2n−1,2n are the U and Sbn

2n−1,2n clock

biases, respectively. The I
Sbn
2n−1,2n

Rm,Li
and T

Sbn
2n−1,2n

Rm
are the

ionosphere and troposphere delay effect, respectively . While
the εP is the measurement error of the pseudo range.

Similarly, the geometric range ρ
Sbn
2n−1,2n

U :

(4)P
Sbn
2n−1,2n

U,Li
= ρ

Sbn
2n−1,2n

U + c(δtU − δtS
bn
2n−1,2n)+ I

Sbn
2n−1,2n

U,Li

+ T
Sbn
2n−1,2n

U + εP

In addition, the carrier phase measurement model that shows
the phase difference between Rm and Sbn

2n−1,2n is :

(5)ϕ
Sbn
2n−1,2n

Rm,Li
= ϕRm,Li

− ϕSbn
2n−1,2n

+N
Sbn
2n−1,2n

Rm,Li
+ εϕ

where ϕRm,Li
is the measured phase of Rm receiver local

oscillator of Li at time tRm
and ϕSbn

2n−1,2n
is the satellite

phase measured at time tS
bn
2n−1,2n , εϕ is the carrier phase



measurement error and N
Sbn
2n−1,2n

Rm,Li
is the carrier phase integer

ambiguity according to [10] :

ϕ
Sbn
2n−1,2n

Rm,Li
=

c

λLi

(tRm
− tS

bn
2n−1,2n) +

c

λLi

(δtRm
− δtS

bn
2n−1,2n)

+ ϕ
(0)
Rm,Li

− ϕ
(0)

Sbn
2n−1,2n

+N
Sbn
2n−1,2n

Rm,Li
+ εϕ

(6)

where ϕ
(0)
Rm,Li

and ϕ
(0)

Sbn
2n−1,2n

are the initial phases of the Li

band signal of the satellite transmitter Sbn
2n−1,2n and base

reference Rm,Li
local oscillators and the initial time to signal.

similarly for the user U GNSS receiver :

ϕ
Sbn
2n−1,2n

U,Li
=

c

λLi

(tU − tS
bn
2n−1,2n) +

c

λLi

(δtU − δtS
bn
2n−1,2n)

+ (ϕ
(0)
ULi

− ϕ
(0)

Sbn
2n−1,2n

+N
Sbn
2n−1,2n

U,Li
) + εϕ

(7)

and the term B
Sbn
2n−1,2n

Rm,Li
= ϕ

(0)
ULi

− ϕ
(0)

Sbn
2n−1,2n

+ N
Sbn
2n−1,2n

U,Li
is

the carrier phase bias. This leads to the measurement of the
phase range ΦRm,Li

for Li is the carrier phase multiplied by
the carrier wavelength λLi

[10]:

(8)Φ
Sbn
2n−1,2n

Rm,Li
= λLiϕ

Sbn
2n−1,2n

Rm,Li

From Eq. 3 and Eq. 8 of the pseudorange, carrier phase

range, and with the use of carrier phase bias B
Sbn
2n−1,2n

Rm,Li
and

carrier correction δΦ
Sbn
2n−1,2n

Rm,Li
terms to take into account the

antenna phase center, earth tides, and the wind-up of the
phase to formulate the relation between the geometrical range

ρ
Sbn
2n−1,2n

Rm
and carrier-phase range Φ

Sbn
2n−1,2n

Rm,Li
as:

Φ
Sbn
2n−1,2n

Rm,Li
= ρ

Sbn
2n−1,2n

Rm
+ c(δtRm − δtS

bn
2n−1,2n)− I

Sbn
2n−1,2n

Rm,Li

+ T
Sbn
2n−1,2n

Rm
+ λLi

B
Sbn
2n−1,2n

Rm,Li
+ δΦ

Sbn
2n−1,2n

Rm,Li
+ εΦ

(9)

where [10]:

δΦs
r,Li

= −dT
r,pco,Li

esr,enu + (Esds
pco,Li

)Tesr + dr,pcv,Li
(El)

+ dspcv,Li
(θ)− dT

r,dispe
s
r,enu + λLi

ϕpw

(10)

with the definitions:
• dr,pco,Li

: receiver antenna phase center offset in local
coordinates.

• esr,enu: LOS vector from receiver antenna to satellite in
local coordinates

• Es: coordinates rotation matrix from ECEF to satellite
body-fixed coordinates.

• ds
pco,Li

: satellite antenna phase center offset in satellite
body-fixed coordinates.

• esr: LOS vector from receiver antenna to satellite in ECEF
• dr,pcv,Li(El): receiver antenna phase center variation

• dspcv,Li
(θ): satellite antenna phase center variation

• dr,disp: displacement by the tides of the earth at the
receiver position at local coordinates

• ϕpw: wind-up effect of the phase
Similarity for U :

Φ
Sbn
2n−1,2n

ULi
= ρ

Sbn
2n−1,2n

U + c(δtU − δtS
bn
2n−1,2n) + I

Sbn
2n−1,2n

U,Li

+ T
Sbn
2n−1,2n

U + λLiB
Sbn
2n−1,2n

ULi
+ δΦ

Sbn
2n−1,2n

ULi
+ εΦ

(11)

III. RTK SOLUTION USING THE DOUBLE DIFFERENCE
(DD) AND SINGLE DIFFERENCE (SD) METHOD

The Double Difference (DD) measurement model for base-
line less than one km between U and the Rm for signal band
Li using the binary satellites Sbn

2n−1,2n and Sbn
2n,2n−1can be

described by the two following equations:

(12)

ΦSbn

URm,Li
= (Φ

Sbn
2n−1

ULi
− Φ

Sbn
2n−1

Rm,Li
)− (Φ

Sbn
2n

ULi
− Φ

Sbn
2n

Rm,Li
)

= ρS
bn

URm
+ λLi

(B
Sbn
2n−1

URmLi
−B

Sbn
2n

URmLi
)

+ δΦ
Sbn
2n−1,2n

ULi
+ εΦ

Similarly, for the pseudo-range:

(13)PSbn

URm,Li
= ρS

bn

URm
+ εP

It is important to emphasise that each Rm has a well-
known stationary and accurate ECEF location rRm , while
the rU it does not. So the classical RTK targets improv-
ing the rU accuracy using the observations and corrections
the Rm sends through the 5G network to the U . Once
the measurement vector from Eq. 12 and Eq. 13: y =
(ΦL1 ,...,ΦLi ,...,ΦLI ,PL1 ,...,PLi ,...,PLI ) observed per bi-
nary satellite system per reference U . The classical extended
Kalman filter (EKF) uses y(x) to calculate the matrix of the
partial derivatives Y (x)=∂y(x)

∂x
and write the measurement

error covariance matrix R to solve the unknown state vector x
of the unknown model parameters and the covariance matrix
Cov. Where x = (r

U
, v

U
, BU,Rm,L1

, ..., BU,Rm,LI
) contains

the position of the user receiver antenna U at the epoch time
tk in ECEF r

U
, the velocity of the receiver antenna v

U
at

the epoch time tk and Bi = (B1
URm,Li

, ..., Bm
URm,Li

) is the
SD carrier phase bias SD. With the user U kinematic mode
such as the autonomous cars the time update for the EKF is
taking in consideration esr,,the standard deviation of Li the
phase-range σs

Φ,Li
and the pseudo-range σs

P,Li
. In addition

to the updating of EKF time, the U velocity system east,
north, and up noises (σve,σvn,σvu) between the epochs tk and
tk+1 are considered as well. Once the estimated states are
calculated, the EKF applies the float carrier phase ambiguity
as a new variable in the unknown states x = (rU ,vU ,NU,Rm)
to predict N̂U,Rm , which will be next used in the modified
Lambda algorithm to solve the integer ambiguity of the
integer least square (ILS) problem and find ṄU,Rm . The
produced ṄU,Rm use (r̂,v̂)TQNRQ

−1
N ((̇N)− N̂) to calculate



the accurate ṙU and v̇U [10]. In this paper, the EKF, the
EKF time update and the resolution of integer ambiguity
using modified lambda algorithms [11][12] are beyond the
scope and have been used according to [10]. Lastly, the
corrected position and the resolution of the integer ambiguity
are updated (r̂

U
, v̂

U
, N̂U,Rm)T → (ṙ

U
, v̇

U
, ṄU,Rm

)T for U
using the observation Rm and satellites (Sbn

2n−1,2n, S
bn
2n,2n−1).

The statistical and final position and velocity of U using all
Rm’s are E[ṙ

U
] = 1

M

∑M
m=1 ṙU

and E[v̇
U
] = 1

M

∑M
m=1 v̇U

are used as r̂
U

and v̂
U

, respectively. After obtain all the
solutions for U using all Rm, where m ∈ {1, ...,M} for each
(Sbn

2n−1,2n, S
bn
2n,2n−1), where n ∈ {1, ..., N} the next step is

to calculate the from Eq. 6 and Eq. 7 the single difference
(SD) to find the only unknown TE: δtU,Rm

= δtU − δtRm

from:

(14)
ϕ
Sbn
2n−1,2n

U,Rm,Li
=

c

λLi

(tU − tRm
) +

c

λLi

(δtU − δtRm
)

+ (ϕ
(0)
ULi

− ϕ
(0)
Rm,Li

+ Ṅ
Sbn
2n−1,2n

U,Rm,Li
)

Lastly, after obtaining all the solutions δtU,Rm
for each binary

satellite formation (Sbn
2n−1,2n, S

bn
2n,2n−1), n ∈ {, ..., N}, the

final solution is the following:

(15)
δ̄tU,Rm

= E[δtU,Rm
]

=
1

N

N∑
n=1

(δtU − δtRm
)(S

bn
2n−1,2n,S

bn
2n,2n−1)

The summary of the proposed algorithm is at Alg. 1

Algorithm 1 Time Error δtU,Rm
evaluation between UE

GNSS receiver Uand the 5G BBU GNSS receiver Rm local
clocks

1: Initialization: {
a) Reading GNSS signal raw broadcasting measurements
for phase-range and Pseudo ranges for the U and
Rm:(ΦL1 ,...,ΦLi

,...,ΦLI
,PL1 ,...,PLi

,...,PLI
)

b) Allocate the best two binary Satellite systems in respect to U sky
azimuth view
c) Allocate M BSs that satisfy the condition : The U is located in the
center of the BSs locations, and the Rms are equally far from each other.
}

2: for epoch k do
3: for each Rm,m ∈ {1, ...,M} do
4: for each (Sbn

2n−1,2n, S
bn
2n,2n−1), n ∈ {1, ..., N} do

5: calculate the initial geometrical locations of ρU , ρRm
using

classical Single Point Positioning and the accurate Rm location,
respectively [10].

6: Predict by EKF the initial float ambiguity resolution N̂U,Rm .
7: Send the Measurements and Observations to the RTK algorithm
8: Use the Modified Lambda algorithm to solve the ILS problem

and find the ambiguity resolution ṄU,Rm .
9: Use the calculated ṄU,Rm to find the δtU,Rm in Eq. 14.

10: end for
11: Find δ̄tU,Rm = E[δtU,Rm ] using Eq. 15.
12: end for
13: Find E[ṙU ] and E[v̇U ]
14: end for
15: Output: δ̄tU,Rm .

IV. SIMULATION SETUP AND EXPERIMENT PARAMETERS

In this paper, the MATLAB simulation con-
siders two formations of binary satellite systems
(Sbn

2n−1,2n, S
bn
2n,2n−1), where n ∈ {1, 2} and three BS

references to calculate and evaluate the position accuracy
in ECEF for one U and the TE between U and each
Rm, where m ∈ {1, 2, 3}. The synthesized ground truth
data consist of the three stationary BSs locations in geodetic
latitude, longitude, altitude (LLA) coordinates and a ground
truth trajectory for one UE in LLA and constant velocity
vector. Table. I summaries the most important parameters
used in the simulation.

TABLE I
PARAMETERS USED FOR SIMULATIONS

Parameter Value
GNSS system GPS

Carrier frequency fc = 1575.42
Short base distance 100 meters

Carrier-Phase Bias noise σεϕ = 10−3 Cycle
Ionospheric Delay noise σI = 10−3m/10 Km

Tropospheric Delay noise σT = 10−4 m
No. of experiments (Monte-Carlo Sim.) 10000 samples

V. SIMULATION RESULTS AND DISCUSSION

By using Monte-Carlo simulation to repeat 10’000 exper-
iments for ECEF ’U’ positioning error in comparison to the
ground truth and TE in t̄U,Rm

: the results in Fig. 2 shows
that the RTK algorithm in blue lines outperforms the classical
single point positioning using the GPS data only in black
lines. However, the proposed algorithm with binary satellite
formation systems and multi references improves the U posi-
tioning accuracy in green lines. The accuracy of the proposed
algorithm at Fig. 3 shows the approximate improvement of 1.5
centimeters in comparison to the conventional RTK algorithm.
The explanation of such an improvement that the symmetrical
geometry of binary satellite formation with respect to U

reduces I
Sbn
2n−1,2n

Rm,Li
, T

Sbn
2n−1,2n

Rm
, and λLi

B
Sbn
2n−1,2n

Rm,Li
in Eq. 9. In

addition, the three Rm used to correct the location U are
improving the SD ambiguity ṄU,Rm and reducing the σs

Φ,Li

and pseudo-range σs
P,Li

noises, also improving of theEKF the
U velocity system east, north and up noises (σve,σvn,σvu)
between the epochs tk and tk+1. Which produces more accu-
rate positioning capabilities for U than the conventional RTK.
Finally, in Fig. 4 the improvement in measuring the clock
time difference between the ’U’ and the Rm in comparison
with both the classical GPS and RTK algorithms shows a
better performance. Furthermore, the range of TE difference
is within ±10 ps. This timing accuracy results from obtaining
a higher baseline accuracy between the U and the Rm using
the correction observations from all Rm.

VI. CONCLUSION

This paper investigates improving the positioning and TE
for the UE U as a rover by proposing spatially correlated
satellites as a binary formation system. Furthermore, helping



Fig. 2. Positioning Error in U ECEF coordinates

Fig. 3. RTK vs RTK with Multi Rm and Binary Sat. Positioning Error for
U ECEF coordinates

to obtain U correction observations using more than one BS
increases positioning accuracy, improves the TE between the
local clocks of the UE and the BS, and maintains within the
sub-nanosecond range.
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