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Abstract—In this study, we intend to make an in-depth investi-
gation of the performance-complexity trade-off of low complexity
Multiple-Input Multiple-Output (MIMO) signal detection based
on message passing algorithms. Several detection algorithms
such as Belief Propagation (BP) and Expectation Propagation
(EP) have been proposed to approximate symbol Maximum A
Posteriori (MAP) for high dimensional signaling. We propose a
thorough examination of those algorithms and some of their low-
complexity versions, through a complexity/performance trade-off
analysis to identify modes of operation depending on the number
of antennas and constellation order. Finally, we propose a new
simplified BP detection scheme, which combines the advantages
of QR precoding and Interference Cancellation (IC).

Index Terms—Multiple-Input Multiple-Output, Maximum A
Posteriori, Belief Propagation, Expectation Propagation, QR
factorisation, Parallel Interference Cancellation

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) has become a
widely used technology, at the heart of major telecommu-
nication standards like Long Term Evolution (LTE), New
radio (NR) and Wi-Fi. The two main improvements of MIMO
systems over Single-Input Single-Output (SISO) systems are
fading robustness and spectral efficiency thanks to higher spa-
tial diversity and stream multiplexing, respectively, but these
gains come with a computational cost [1]. The optimal detec-
tion becomes exponentially computationally complex with the
number of antennas and polynomial with the modulation order.
For MIMO systems of size greater than 4 × 4 or using high
modulation order, the optimal soft detection algorithm, the
Maximum A Posteriori (MAP), is hardly considered in practice
due to the huge number of possible received symbols. This
computational complexity, even greater for massive MIMO
(mMIMO), has led to emerging solutions based on Message
Passing Algorithms (MPAs), like Expectation Propagation
(EP), Belief Propagation (BP) and various variations on Ap-
proximate Message Passing (AMP). Low complexity versions
of these detection algorithms present a reduced complexity and
quasi-optimal performance obtained through iterations within
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the detector and possibly with the decoder [2][3][4].
While such simplified MPAs are the only viable choices in
mMIMO systems, this study aims at having a deeper inves-
tigation into their relevance for 5G’s ”V2V-NR” applications
[5]. For vehicular 5G communications, 3GPP has standardized
only 2× 2 MIMO schemes, and constellations up to 64QAM.
Future evolutions will add few antennas, but it is highly
probable that V2V will still use small MIMO configurations.
It is hence interesting to compare simplified MPAs with the
optimal algorithm on complexity and performance basis in this
V2V-NR context.

Our investigation focuses on a simplified BP scheme: Par-
allel Interference Cancellation (PIC) BP, which is compared
to EP and to optimal BP and MAP according to a com-
plexity/performance trade-off. Our first contribution is the
presentation of a new simplified BP algorithm that benefits
both from QR and PIC processing. Our second contribution
consists in a fair and precise estimation of the computational
complexity. Contrarily to many studies which computes only
asymptotic complexity orders, here all operations are taken
into account by using realistic weights in FLoating Point
OPerations (FLOPs) for each one of them.

The paper is organized as follows: the system model is
introduced in Section II. In Section III, EP is presented,
followed by BP and its reduced complexity version PIC
BP. A new reduced-complexity BP-based algorithm, referred
to as QR PIC BP, is introduced too. The methodology for
assessing algorithms’ computational complexity is proposed in
Section IV. It is used to calculate the performance/complexity
trade-off. The Symmetric Information Rate (SIR), a theoretical
rate upper bound, is discussed to further understand the
behavior of such receivers. Finally, conclusions are given and
future research perspectives are drawn in Section V.

II. SYSTEM MODEL

We consider a Nt×Nr MIMO system using bit-interleaved
coded modulation (BICM) and spatial multiplexing. Let F2 de-
notes the binary field. K information bits b = [b1, · · · , bK ] ∈
FK
2 are encoded using a binary error correcting code of rate

R = K/N , here either a convolutional or a Low-Density
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Fig. 1. Block diagram of a generic turbo MIMO receiver with the random
interleaving (π) / de-interleaving (π−1) functions.

Parity-Check (LDPC) code. The coded bits c = [c1, · · · , cN ]
are interleaved and then Gray-mapped to a constellation S with
|S| = M, each symbol carrying a group of m = log2 (M)
bits. We note φ : Fm

2 → S the mapping function and
φ−1
k : S → F2, for k = 1, . . . ,m, the inverse modulation

functions which give the value of the k-th bit of s ∈ S . The
obtained symbols are split across the Nt emitting antennas.
Let s = [s1, · · · , sNt

]T ∈ Ψ ⊂ CNT , where Ψ ≜ SNt . The
received signal can be written as

y = Hs + w (1)

where y = [y1, · · · , yNr
]T is the vector of observations,

H ∈ CNr×Nt is the channel matrix, whose entries hj,i ∼
CN (0, 1) are supposed to be perfectly known at the receiver
∀i, j ∈ J1, NtK × J1, NrK. Moreover, w ∼ CN (0, N0INr

),
ie. w = [w1, · · · , wNr ]

T is an additive white Gaussian noise
vector with mean E(w) = 0 and covariance matrix E(wwH) =
N0INr

, where E(.) , (.)H and (.)T denote respectively the
expectation operator, the conjugate transpose and transpose op-
erators, and IN is the identity matrix of size N . Furthermore,
∀η ∈ S, we define Ψη

i ≜ {z ∈ Ψ|zi = η} and ∀k ∈ J1 . . . NrK,
Ψ+

i,k ≜ {s ∈ Ψ|si,k = 0} (resp. Ψ−
i,k ≜ {s ∈ Ψ|si,k = 1})

with si being the i-th symbol of the vector s and si,k the
k-th bit of the i-th symbol of the vector s respectively.

Optimal soft output detection can be achieved by applying
the MAP algorithm [6], which computes a posteriori log
likelihood ratio (LLR) as follows. Let us denote λi,k

p and
λi,k
a ,∀i, k ∈ J1, NtK× J1,mK respectively the a posteriori and

a priori LLRs associated with the k-th bit of the symbol sent
on the i-th antenna. The a posteriori LLRs is given by

λi,k
p = log

(
P (zi,k = 0|y,H)

P (zi,k = 1|y,H)

)
(2)

= log


∑

z∈Ψ+
i,k

e−
||y−Hz||2

N0

Nt∏
i′

m∏
k′
exp(−zi′,k′λi′,k′

a )

∑
z∈Ψ−

i,k

e−
||y−Hz||2

N0

Nt∏
i′

m∏
k′
exp(−zi′,k′λi′,k′

a )


where the prior LLR λi,k

a = log (P(zi,k = 0)/P(zi,k = 1)) is
provided by the channel decoder if turbo-detection is used.
We also note λi,k

e = λi,k
p − λi,k

a ,∀i, k ∈ J1, NtK × J1,mK
the extrinsic LLR values in case of turbo-detection. Indexing
related to the number of turbo iterations is voluntarily omitted
for the sake of readability. MAP complexity quickly becomes
unbearable, as it scales as O(MNt). Further simplifications

can be done by considering the max-log approximation, where
the log-sum-exp in (2) are replaced by max-operations, but its
complexity always scales as O(MNt). The structure of the
considered receiver is highlighted in Fig.1.

III. MESSAGE PASSING RECEIVERS

In this section, we review some efficient low-complexity
receivers derived within a message passing framework.

A. Expectation Propagation

Expectation Propagation (EP) is a soft-input soft-output
(SISO) message passing approach to solve high computational
complexity detection problems. As depicted in Fig. 2, EP
exchanges messages between the detection node and the
demapping node. The detection node applies an IC-LMMSE
equalizer/detector [7], i.e. a linear minimum mean square
error spatial filtering with an interference cancellation step.
On the demapping node side, two types of messages are
computed: one type for the channel decoder which computes
the extrinsic LLRs and another one for the detection node
which corresponds to the computing of prior probabilities used
by the IC-LMMSE equalizer. The inner iterative exchanges
between the detector and the demapper are referred to as
auto-iterations, while the possible outer iterative exchanges
between the demapper and the channel decoder are referred
to as turbo iterations. The inner messages, denoted mequ→dem
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Fig. 2. Block diagram of the EP receiver with the several messages exchanged
and the random interleaving (π) / de-interleaving (π−1) functions.

and mdem→equ, are modeled as follow

mequ→dem ∝ CN (−→µµµ , diag
{−→σ 2

1, . . . ,
−→σ 2

Nt

}
) (3)

mdem→equ ∝ CN (←−µµµ , diag
{←−σ 2

1, . . . ,
←−σ 2

Nt

}
) (4)

where −→µµµ = [−→µ 1, · · · ,−−→µNt ]
T , ←−µµµ = [←−µ1, · · · ,←−−µNt ]

T , and
diag{x1, · · · , xNt

} is a diagonal matrix of size Nt×Nt whose
non-zero elements are given by {x1, · · · , xNt

}.
The message mequ→dem for antenna i ∈ [1, · · · , Nt], can be
computed as

−→µi =
←−µi +

hH
i Cy

−1
(
y −H←−µµµ

)
hH
i Cy

−1hi

−→σi
2 = (hH

i Cy
−1hi)

−1 −←−σi
2 (5)

with hi the i-th column of the matrix H, and

Cy = HCxH
H +N0INr ,Cx = diag

{←−σ 2
1, . . . ,

←−σ 2
Nt

}
. (6)

The message mdem→equ is computed, for antenna i ∈
[1, · · · , Nt], as

←−µ i =
µi
−→σ 2

i −
←−µiσ

2
i−→σ 2

i − σ2
i

and ←−σ 2
i =

−→σ 2
iσ

2
i−→σ 2

i − σ2
i

(7)



with

µi =
∑
s∈S

fi(s)s and σ2
i =

∑
s∈S

fi(s)||s− µi||2. (8)

We note fi(s) the a posteriori categorical distribution

fi(s) =
1

Z
exp

(
−|s−

−→µ i|
2

−→σ 2
i

−
m∑

k′=1

φ−1
k′ (s)λ

i,k′

a

)
(9)

with Z such as
∑

s∈S fi(s) = 1. Finally, the extrinsic LLR
computation is done with the latest −→µ and −→σ as

λi,k
e = log


∑

s∈S:φ−1
k (s)=0

fi(s)∑
s∈S:φ−1

k (s)=1

fi(s)

− λi,k
a . (10)

The global receiver is a double loop receiver for which one or
several successive updates (auto-iterations) of mequ→dem and
mdem→equ can be applied within one global turbo iteration.
The inner EP detector applying zero auto-iteration leads to
a classical LMMSE detector, while the classic EP detector
introduced by [7] is done with one auto-iteration with a reset
of messages mequ→dem between each global turbo iteration.
Refined EP detection strategies have been proposed by [2],
considering an extension to the case of more than one auto-
iteration and no message reset between turbo iterations.

B. Belief Propagation based receivers

1) Standard Belief Propagation: A MIMO channel can
be represented by a factor graph as given in Fig. 3 where
variable nodes are associated with the Nt emitted symbols,
and function nodes are referred to as the MIMO channel
constraints at the Nr received antennas. Using this representa-
tion, the symbol BP algorithm can be applied, which consists
in exchanging extrinsic messages (symbol probabilities or
equivalent non-binary LLRs) between function and variable
nodes using both a priori probabilities and channel likelihoods.
At each iteration, for each pair of connected nodes, the
algorithm updates the messages along the edges of the factor
graph by computing two types of messages, referred to as α
for messages exchanged between variable nodes and function
nodes and β for messages exchanged between function and
variable nodes. Each iteration starts with the computation of
β messages followed by the computation of α messages.

In this paper, the messages are homogeneous to symbol
LLRs, defined as the logarithm of the symbol probability
minus the logarithm of the probability of a conventional
reference symbol ηref ∈ S. First, the a priori symbol LLRs are
given by ∀i ∈ J1, NtK,∀η ∈ S, λi

a(η) = log (P (si = η)) −
log (P (si = ηref )) . By definition, we have λi

a(ηref ) = 0.
∀(i, j) ∈ J1, NtK × J1, NrK, and ∀l ∈ J0, LK, we denote αl

i,j

(resp. βl
i,j) the message vector of size M −1 exchanged at it-

eration l between the variable node i, corresponding to the i-th
antenna and the function node j, corresponding to the MIMO
channel constraint as observed at the j-th received antenna

(resp. exchanged between the function node j and variable
node i). For a given i, j and l we have, ∀η ∈ S \ {ηref},

αl
i,j(η) = λi

a(η) +

Nr∑
t=1,t̸=j

βl
i,t(η) (11)

βl
i,j(η) = log


∑

z∈Ψη
i

e−
||yj−Hjz||

2

N0

Nt∏
i′=1,i′ ̸=i

e
αl−1

i′,j (zi′ )

∑
z∈Ψ

ηref
i

e−
||yj−Hjz||2

N0

Nt∏
i′=1,i′ ̸=i

e
αl−1

i′,j (zi′ )


(12)

with Hj the j-th row of the matrix H. Similarly to the MAP
detector, the log(sum(exp( . ))) operation can be approxi-
mated by using a max to reduce the complexity. After L inner
iterations, the output is computed as

λi
p(η) = λi

a(η) +

Nr∑
t=1

βL
i,t(η). (13)

In a MIMO system, there are NtNr connections (a fully
connected graph) which lead to a high number of iterations
for convergence.

2) PIC Belief Propagation: Parallel Interference Cancella-
tion (PIC) BP is a reduced complexity version of BP presented
in [3]. It consists in making a PIC step at the beginning of each
BP auto-iteration. Recall that the received signal on antenna
j can be written as

yj =

Nt∑
i=1

hj,isi + wj

= hj,isi +

Nt∑
i′=1,i′ ̸=i

hj,i′si′ + wj (14)

with j ∈ J1, NrK the receiving antenna and i ∈ J1, NtK
the emitting antenna. A PIC is carried out by cancelling the
sum term at the right-hand side of (14) using a soft symbol
interference cancellation based on soft symbol estimates com-
puted from α messages of the previous auto-iteration. The
soft estimation of this sum term is computed for each edge
between the emitting antenna i and the receiving antenna j
and iteration l:

ŝli,j =
∑
s′∈S

s′
eα

l
i,j(s

′)∑
s′′∈S

eα
l
i,j(s

′′)
(15)

σ2
ŝli,j

=
∑
s′∈S
||s′ − ŝli,j ||2

eα
l
i,j(s

′)∑
s′′∈S

eα
l
i,j(s

′′)
. (16)

Once every soft symbol has been estimated, interference
cancellation can be applied. Each β message update can
be computationally complex because of the fully connected
nature of the graph. To drastically decrease complexity, the
number of variable nodes, connected to the updated function
node, treated as in standard BP can be chosen very small
compared to the complete set. An extreme choice is to keep
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Fig. 3. Factor graph representation of the MIMO channel where red edges
are remaining edges after QR pre-processing of the channel matrix.

only one edge, the edge of interest on which the message is
sent as in [3], thus reducing the set of possible sent symbols
from Ψ to S. So when updating the β message between each
connected function node j and variable node i, the updated
channel observation on receiving antenna j and the updated
noise variance associated with the node pair (i, j) (thermal
noise + residual interference noise) becomes

ỹli,j = yj −
Nt∑

i′=1,i′ ̸=i

hj,i′ ŝ
l
i′,j (17)

σ̃2
ŵl

i,j
= N0 +

Nt∑
i′=1,i′ ̸=i

σ2

ŝli′,j
. (18)

For a real constellation, the pseudo variance needs to be
divided by 2. We apply the extreme option where only one
variable node is selected, reducing as much as possible the
computational complexity of β messages while keeping a
minimal performance loss as shown in [3]. The β message
update between every connected function node j and variable
node i, ∀η ∈ S \ {ηref}, is done as

βl
i,j(η) = −

||ỹl
i,j − hiη||2

σ2
ŵl

i,j

+
||ỹl

i,j − hiηref||2

σ2
ŵl

i,j

. (19)

Note that the proposed PIC BP differs from [3] because α
and β are updated at symbol level and not at bit level. The α
update is carried out exactly as in classic BP as described in
(11), i.e. as the sum of βs from every connected node, except
the edge of interest, plus the a priori LLRs.

3) Proposed QR PIC Belief Propagation: To further im-
prove the performance of the preceding algorithm, we propose
QR PIC BP detection, which aims at combining the advantages
of QR [8] and PIC processing. QR PIC BP requires computing
less a posteriori soft symbol estimates and fewer multiplica-
tions for β messages than classic BP or PIC BP approaches.
The first step consists in pre-conditioning the factor graph
thanks to a QR decomposition of H as shown in (20). The
second step is to generate a posteriori soft symbols for every
variable node still connected in the updated graph (remaining

TABLE I
TABLE OF OPERATIONS COST [9]

Operations Symbols Mult. Add. FLOPs

Real Addition/Subtraction Ar 0 1 0.5
Real Multiplication/Division Mr 1 0 0.5
Comparison Cr 0 0 0.5
Complex-Real Mult./Div. Mrc 2 0 1
Complex Addition Ac 0 2 1
Complex Mult. Mc 4 2 3
Complex Div. Dc 8 3 5.5
Real Square Root Sr 0 0 3
Squared Complex Norm Pc 2 1 1.5
Exponential [10] Xe 1 4 2.5
Memory Access Ma 0 0 0

red edges in Fig. 3) and the update of the remaining βs and
αs is done.

The QR pre-processing on the channel matrix is done to re-
duce the number of non-zero elements. H = QR decomposes
the channel matrix into an upper triangular matrix R and a
unitary matrix Q. The observation model can be updated as

y← QHy and H← R (20)

and PIC BP is applied to the new observation and channel
matrix. Statistical properties of the additive noise remain
unchanged due to the unitary property of Q. QR PIC BP
works on a less connected graph, with only Nt(Nt + 1)/2
edges instead of NtNr edges of the original graph. There
are fewer messages exchanged which results in a even less
complex algorithm than PIC BP.

IV. COMPLEXITY ANALYSIS

A. Computational Complexity

We now analyse the complexities of the preceding al-
gorithms, which scale very differently. On one hand, the
MAP complexity is dominated by the need of comparing the
probability of each multi-dimensional symbol of Ψ with the
channel observations. The algorithm complexity is of the order
of O(MNtNtNr).

Standard symbol BP also relies on joint MIMO symbol
detection (see (12)), which is the complexity main contributor.
In addition, for each of the L auto-iterations, there are NtNrM
messages exchanged (i.e. α and β updates). So, standard BP
has a complexity of the order of O(MNtNtNr +NtNrML).

PIC BP has a much lower overall complexity than MAP
or standard BP since it does not require to work with the
set Ψ but only with the set S when it comes to the β
messages computation. The number of required auto-iterations
is lower because of the reduced number of selected edges.
The complexity of the BP part is impressively reduced to
O(NtNrML). The cost of the additional PIC process is of
the same order as the BP part.

QR PIC BP requires less soft symbol generation and less
BP message exchanges thanks to the QR pre-processing. The
overall cost of QR PIC BP is O(Nt(Nt + 1)ML). The cost
of the QR factorisation is much smaller than the cost of



TABLE II
NUMBER OF AUTO-ITERATIONS FOR EACH RECEIVER.

THE FORMAT IS: {2× 2 MIMO} - {4× 4 MIMO} AUTO-ITERATIONS.

Modulation EP BP QR BP PIC BP QR PIC BP
BPSK 1 - 1 2 - 6 1 - 3 1 - 4 1 - 1
QPSK 1 - 1 2 - 6 1 - 3 1 - 4 1 - 2
8PSK 1 - 1 2 - 6 1 - 3 2 - 4 1 - 2

16QAM 1 - 2 - 1 - 2 - 1 -
32QAM 1 - 2 - 1 - 4 - 1 -
64QAM 1 - 2 - 1 - 4 - 1 -
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Fig. 4. Complexity function of the modulation order for 2 × 2 , 4 × 4 and
8 × 8 MIMO with a convolutional code [(133, 171)8, R = 1/2] without
turbo iteration.

PIC BP. Finally, EP’s complexity is dominated by the matrix
inversion done in (5) with a complexity of the order of O(N3

t ).
The LLR computation (10) has a complexity of the order of
O(MNt), which is way lower than the one required for a
matrix inversion.

Besides the previous asymptotic complexity behaviours, we
have conducted a deeper computational complexity analysis.
First, we have written an efficient software implementation of
each given algorithm. Then, the number of occurrences of each
elementary operation in the implementation has been counted.
Finally, a reasonable weight in FLOPs has been assigned to
each elementary operation (see Table. I). The cost of the
exponential operation Xe is estimated at Xe = Mr + 4Ar

based on the analysis of the implementation proposed in [10].
In this way, it is possible to associate a unique computational
cost per algorithm, as a function of its parameters, which has
been used to produce all the complexity figures in this section.
Fig. 4 shows the complexity of every presented algorithm for
several MIMO contexts and constellation size using the unique
computational cost per algorithm.

B. Complexity/Performance Trade-off

In this section, we compare the different complex-
ity/performance points achieved by BP-based and EP detectors
for a target coded BER. Random interleaving has been used
for every simulation. The number of auto-iterations of each al-
gorithm, reported in Tab. II, has been determined by numerical
trials (not reported here) in order to let the algorithm converge
to its best performance. In the complexity vs SNR figures, each
curve represents the trade-off for a given algorithm applied
to a specific modulation, coding and MIMO scheme. Every
point of a given curve shows the trade-off at a different turbo
iteration of the associated detector. The lowest point (in terms
of complexity) of each curve corresponds to turbo iteration 0.

Simulations shown in Fig. 5 are done using a convolutional
code with polynomials (133, 171)8 and rate 1/2. After random
interleaving, a codeword is mapped to 1000 MIMO symbols,
which are then sent through an ergodic spatially uncorrelated
Rayleigh channel, known at the receiver side. The maximum
number of turbo iterations is set to 8 in this 2 × 2 MIMO
context. For small constellations (BPSK and QPSK), MAP is
the least complex algorithm with the best performance. When
the constellation order starts growing (e.g. 8PSK, 16QAM,
32QAM, 64QAM), MAP, BP and QR BP become too complex
compared to EP, PIC BP and the proposed QR PIC BP. We
can note that PIC BP has a worst performance than any other
detector. Finally, EP and QR PIC BP have almost the same
complexity/performance trade-off.

Fig. 6 and Fig 7 shows results on the same 2 × 2 MIMO
system, but with a LDPC code of length K = 1944 and
rate R = 1/2 and R = 3/4 respectively. Turbo iterations
with LDPC have a much lower impact on performance than
with convolutional code, due to the different extrinsic transfer
functions of the two codes [9], even with an higher code
rate. However, Fig. 6 shows that the conclusions found with
a convolutional code hold true also for the LDPC case.
Fig. 7 shows on one hand that, with small spectral efficiency
modulations, the MAP and QR BP achieve better performance
than EP, QR PIC BP and PIC BP. On the other hand, with
high spectral efficiency modulations, the EP and QR PIC BP
achieve the same performance of MAP and QR BP while
requiring much smaller complexity.

The complexity/performance trade-off of a 4 × 4 MIMO
system using a convolutional code (133, 171)8 with codewords
mapped to 1000 MIMO symbols is shown in Fig. 8. For
the smallest constellation (i.e. BPSK) MAP is still the best
algorithm because of its optimal performance and lowest
complexity. Then, for QPSK and 8PSK, EP and QR PIC BP
have the lowest complexity and similar performance (MAP,
BP and QR BP were too complex to be simulated with
higher constellations). Finally, Fig. 9 shows the behaviour of
the algorithms in a large 16 × 16 MIMO system. Without
turbo iterations, EP is the best performing algorithm. With
turbo iterations, EP and QR PIC BP converge to the same
performance. Hence, QR PIC BP seems a promising candidate
also for application in massive MIMO systems.
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Fig. 5. Complexity for a target BER of 10−3 in a 2× 2 MIMO system with
a convolutional code (133, 171)8 and rate 1/2.
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Fig. 6. Complexity for a target BER of 10−2 in a 2×2 MIMO system using
a LDPC of length 1944 and rate 1/2.

C. Symmetric Information Rate

In this section, we compare the symmetric information rate
(SIR) of the low complexity detectors to the coded modulation
capacity. We introduce the coded modulation (CM) as the best
achievable constrained capacity. It is calculated as the mutual
information between the estimated MIMO symbol with the
MAP criterion and the sent symbol x ∈ Ψ. We define the
BICM capacity as the mutual information between estimated
bits at the output of the detector, after marginalisation, and
the actual sent bits. Fig.10 shows the SIR using BICM of the
different detectors for a2 × 2 MIMO system with a 64QAM
modulation. Each detector uses the same number of auto-
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Fig. 7. Complexity for a target BER of 10−2 in a 2×2 MIMO system using
a LDPC of length 1944 and rate 3/4.
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Fig. 8. Complexity for a target BER of 3 ∗ 10−2 in a 4× 4 MIMO system
with a convolutional code (133, 171)8 and rate 1/2.

iterations as described in Table II. The best achievable rate
is 12 bits per channel use (2 antennas and 6 bits per symbol).
To achieve a SIR of 6 bits per channel use, one should use
a forward Error Correcting (FEC) code of rate 1/2, where
EP, QR BP and QR PIC BP can deliver 6 bits per channel
use at 13.5 dB. MAP algorithm (name Coded Modulation -
CM here) can do it at 11.5 dB while BP and PIC BP can
only do it at 14.3 dB. We notice that PIC BP cannot achieve
the upper bound of capacity (it needs 20 auto-iterations to
do so) whereas QR PIC BP achieves it with only 1 auto-
iteration. In this MIMO V2V-NR context, EP and QR PIC
BP have the same SIR, no matter the code rate, which makes
them good competitors for this kind of vehicular applications,
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Fig. 10. SIR of low complexity receivers and coded modulation in MIMO
2× 2 64QAM.

as seen in section IV-B for their similar complexity. Those
SIR performances are achievable only if we use a optimally
designed FEC code for each detector. Turbo-iterations are the
way of closing the gap between CM and the other detectors.

V. CONCLUSION

This study has identified two clear zones (or sets) of MIMO
and system configurations, where the selection of the most
appropriate algorithm on a complexity/performance trade-off
basis is different. The first highlighted zone is for small MIMO
systems (2× 2 MIMO with BPSK, QPSK and 8PSK - 4× 4
MIMO with BPSK). In these scenarios, the algorithm with
the best complexity/performance trade-off is (Max-Log) MAP.
EP, PIC BP and QR PIC BP have a slightly less interesting

complexity/performance trade-off than MAP, whereas BP and
QR BP are much more complex. The second zone is for more
complex MIMO systems (2×2 MIMO with 16QAM, 32QAM
and 64QAM - 4 × 4 MIMO with QPSK and 8PSK). In this
zone, MAP becomes obviously much more complex than in
the first area, while EP, PIC BP and QR PIC BP do not have
much higher complexity. In most cases, EP and QR PIC BP
have a substantially equivalent complexity/performance trade-
off, whereas PIC BP is slightly less performing. One should
consider using EP or the proposed QR PIC BP when it comes
to those MIMO systems. In the V2V-NR [5] scenario, MIMO
2×2 64QAM, EP and QR PIC BP are much less complex and
achieve great performance which results in an advantageous
performance/complexity trade-off.

Moreover, we have shown that the proposed QR PIC BP
algorithm performs similarly to EP in MIMO contexts up
to 16 × 16. Investigating the behaviour of QR PIC BP in
mMIMO systems seems a very interesting perspective, due to
its low computational cost. Another path of future research is
to compare QR PIC BP with simplified EP algorithms and/or
low-complexity AMP algorithms.
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