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Deep Learning-based List Sphere Decoding for Faster-than-Nyquist

(FTN) Signaling Detection
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Abstract—Faster-than-Nyquist (FTN) signaling is a candidate
non-orthonormal transmission technique to improve the spec-
tral efficiency (SE) of future communication systems. However,
such improvements of the SE are at the cost of additional
computational complexity to remove the intentionally introduced
intersymbol interference. In this paper, we investigate the use of
deep learning (DL) to reduce the detection complexity of FTN
signaling. To eliminate the need of having a noise whitening filter
at the receiver, we first present an equivalent FTN signaling model
based on using a set of orthonormal basis functions and identify
its operation region. Second, we propose a DL-based list sphere
decoding (DL-LSD) algorithm that selects and updates the initial
radius of the original LSD to guarantee a pre-defined number
NL of lattice points inside the hypersphere. This is achieved
by training a neural network to output an approximate initial
radius that includes NL lattice points. At the testing phase, if
the hypersphere has more than NL lattice points, we keep the
NL closest points to the point corresponding to the received FTN
signal; however, if the hypersphere has less than NL points, we
increase the approximate initial radius by a value that depends
on the standard deviation of the distribution of the output radii
from the training phase. Then, the approximate value of the log-
likelihood ratio (LLR) is calculated based on the obtained NL

points. Simulation results show that the computational complexity
of the proposed DL-LSD is lower than its counterpart of the
original LSD by orders of magnitude.

Index Terms—Deep learning, Faster-than-Nyquist signaling,
list sphere decoding, intersymbol interference, Sequence estima-
tion.

I. INTRODUCTION

There are increasing demands to improve the spectral effi-

ciency (SE) to meet the requirements of future communication

systems. Faster-than-Nyquist (FTN) signaling is a promising

candidate technology that can increase the data rate without

increasing the transmission bandwidth [1]. In FTN signaling,

the data symbols are transmitted at a rate of 1/(τT ), τ ≤ 1,

when compared to the Nyquist rate of 1/T when using T -

orthogonal pulses, and hence, inter-symbol interference (ISI)

is intentionally introduced.

The early contribution of Mazo [2] showed that increasing

the data rate by accelerating the sinc pulses carrying binary

phase shift keying (BPSK) symbols up to τ = 0.802 will

not deteriorate the asymptotic error rate when compared to

Nyquist signaling that operates in the same bandwidth. How-

ever, such improvement of the SE is at the cost of prohibitive

(at Mazo’s time) computational complexity to remove the

introduced ISI. In the past decade, there have been several

research works based on conventional signal processing and

estimation theory that detect the transmit data symbols of FTN

signaling at reduced computational complexity, e.g., [3]–[6].
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We refer the reader to [1] for a summary of key FTN signaling

detection techniques and to [7] for a more recent survey.

Recently, the application of deep learning (DL) to physical

layer problems shows promising results mainly when there is

a lack of appropriate mathematical models, i.e., model deficit,

or a lack of low complexity algorithms, i.e., algorithm deficit

[8]. Given the fast development of artificial intelligence chips,

it is expected that DL will find more applications in physical

layers problems.

The applications of DL have been extended to design FTN

signaling systems in [9], [10]. In particular, the authors in [9]

proposed an efficient DL-based architecture for FTN receivers

that can replace either the signal detection block or both the

signal detection and channel decoding blocks for uncoded

and coded FTN signaling, respectively. Their proposed DL-

based FTN receivers showed near optimal performance for

non-severe ISI operating regions. In [10], the authors proposed

a DL-based sum-product algorithm for FTN signaling that

operates on a modified factor graph and concatenates a neural

network function node to the variable nodes to approximate

the optimal error rate performance.

Against the aforementioned literature, in this paper, we

investigate the use of DL to reduce the detection complexity

of FTN signaling. To eliminate the need of having a noise

whitening filter at the receiver, we first present an equivalent

transmission model for FTN signaling with the help of or-

thonormal basis functions, and we show its operation region.

Second, we propose a DL-based list sphere decoding (DL-

LSD) algorithm that selects and updates the initial radius of the

original LSD to guarantee a pre-defined number NL of lattice

points inside the hypersphere. This is achieved by training a

neural network to output an approximate initial radius that

includes NL lattice points. During the testing phase, if the

hypersphere has more than NL lattice points, we keep the NL

closest points to the point corresponding to the received FTN

signal; however, if the hypersphere has less than NL points,

we increase the approximate initial radius by a value that

depends on the standard deviation of the distribution of the

output radii from the training phase. Then, the approximate

value of the log-likelihood ratio (LLR) is calculated based

on the NL points. Simulation results show that the average

number of flops of the proposed DL-LSD algorithm is three

order and one order of magnitude lower than its counterpart of

the original LSD, with a selection of the initial radius based on

the noise variance, at low and high Eb/N0 values, respectively.

The rest of the paper is organized as follows. In Section

II, we present an equivalent transmission model for FTN

signaling based on using a sum of orthonormal basis; while

in Section III we discuss the proposed DL-LSD algorithm.

Simulation results are presented in Section IV, and the paper

is concluded in Section V.
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Fig. 1: Block diagram of an FTN signaling system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Figure 1 shows a block diagram of an FTN signaling

communication system. At the transmitter side, information

bits are encoded, interleaved, and then mapped to data symbols

where each symbol is carried by a unit-energy pulse h(t). The

widely used FTN signaling model expresses the transmit signal

s(t) as:

s(t) =
∑

n

anh(t− nτT ), (1)

where 0 < τ ≤ 1 is the time acceleration factor, T is the

symbol duration, and an, n = 1, ..., N, is the binary phase

shift keying (BPSK) data symbol with average bit energy Eb.

In our work, we assume that h(t) is a T -orthogonal root

raised cosine (rRC) pulse with a roll-off factor βh. However,

such transmission of non-orthogonal pulses in additive white

Gaussian noise (AWGN) will require additional discrete-time

whitening filter at the receiver to process the colored noise

samples after the matched filter. Designing an exact causal

and stable discrete-time whitening filter can be challenging

at small values of τ [11]. To avoid using a whitening filter,

one possibility is to use models based on the Ungerboeck

observation model that deals directly with the colored noise,

e.g. [12]. Another possibility which we adopt in this work is

to use an equivalent FTN signaling model that uses a set of

orthonormal basis function to whiten the noise samples after

the matched filter. This model appeared in [13], [14] but has

not received enough attention in the state-of-the-art literature,

and it will be discussed here in detail for completeness of the

presentation.

In the equivalent FTN signaling model based on orthonor-

mal basis functions, the T -orthogonal pulse h(t) is approxi-

mated as a sum of τT -orthonormal pulses v(t− nτT ) as:

h(t) ≈
∑

n

hnv(t− nτT ). (2)

In Lemma 1, we discuss how to find the constant coefficient

hn such that the approximation in (2) is valid.

Lemma 1. For a T -orthogonal h(t) pulse, where H(f) = 0,

|f | > W and W < 0.5/(τT ), let a τT -orthonormal pulse

v(t) have the Fourier transform:

V (f) =

{

Co, |f | < W,
0, |f | > 1

τT
−W,

(3)

where Co is a constant. Then h(t) may be expressed as h(t) =
∑

n hnv(t− nτT ), where:

hn =
τT

Co

h(nτT ). (4)
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Fig. 2: (a) τ = 0.6, (b) τ = 0.9. The solid line is the exact h(t)
pulse and the dashed line is its approximation based on (2).

Proof: see Appendix.

As one can see from Lemma 1, h(t) can be approximated as

a sum of τT -orthogonal basis functions v(t−nτT ) weighted

by the scaled samples of h(t) in (4), if W < 0.5/(τT ) and

V (f) is constant for |f | < W . For example and as shown in

Fig. 2 (a), when h(t) is a T -orthonormal rRC with a roll-off

factor βh = 0.35 with a bandwidth W = 0.5(1 + βh)/T , it

can be represented as a sum of 20 rRC τT -orthonormal pulses,

i.e.,
∑20

n=1 hnv(t−nτT ), with a roll-off factor βv = 0.12 and

τ = 0.6, if W < 0.5/(τT ), which yields:

τ <
1

1 + βh

. (5)

Hence, the condition in (5) defines the operation region of the

FTN signaling equivalent model. On the other hand, in Fig. 2

(b), τ = 0.9 does not satisfy (5), and hence, the approximation

is not accurate.

Given Lemma 1 and substituting (2) in (1), the equivalent

FTN signaling transmit signal using the orthonormal basis

function is expressed as:

s(t) =
∑

n

bnv(t− nτT ), (6)

where bn =
∑

l an−lhl and hl is given in (4). Assuming

AWGN channel, the received signal is passed through a filter

matched to the orthonormal basis v(t), and for a real and

symmetric v(t), it is given as:

y(t) = (s(t) + w(t)) ∗ v(t), (7)

where w(t) is additive white Gaussian noise (AWGN) with

zero mean and variance of σ2 and ∗ denotes the convolution.

Then, this signal is sampled every τT and is written as:

yn = bn + wn. (8)

The received sampled FTN signal can be expressed in a matrix

form as:

y = Ha+w, (9)

where a and w are the transmit data symbol and white noise

vectors, respectively.



The received vector y needs to be processed by an FTN

signaling detector to produce a soft output that can be used

by the channel decoder. This soft output can be obtained from

maximizing a posteriori probability (APP) for a given bit, and

it is expressed as a log-likelihood ratio (LLR) value. The LLR

for a bit xk given the received vector y is written as:

LD (xk | y) = log
P (map(xj) = +1 | y)

P (map(xj) = −1 | y)
, (10)

where xk is the kth bit of N × 1 vector x of all bits in one

transmit block. We map the binary bits of 0 and 1 to −1
and +1, respectively. Assuming that xk, k = 0, ..., N − 1, are

statistically independent, we use the Bayes theorem to re-write

(10) as [15]:

LD (xk | y) = (11)

LA (xk) + ln

∑

x∈Xk,+1 p(y | x) · exp
∑

j∈Jk,x
LA (xj)

∑

x∈Xk,−1
p(y | x) · exp

∑

j∈Jk,x
LA (xj)

,

where X is the set of all 2N possible lattice points x, X k,+1 =
{x | xk = +1}, X k,−1 = {x | xk = −1}, Jk,x = {j|j =
0, ..., N − 1, j 6= k, xj = 1}, and

LA(xj) = ln
P (map(xj) = +1)

P (map(xj) = −1)
, (12)

and the likelihood function p(y | x) is given as follow:

p(y | x) =
exp

(

− 1
2σ2 · ‖y −Ha‖2

)

(2πσ2)
N

. (13)

III. PROPOSED DL-LSD ALGORITHM

A. Review of The LSD Algorithm

Calculation of the LLR value for each bit in (11) needs to

consider the whole possible lattice points in X , which has the

size of 2N of the skewed lattice points. Since for each bit xk

we iterate over all lattice points in X and the calculation inside

the exp function takes O(N), and each transmit block has N
bits in total; then, the computational complexity of the LLR

values of one transmit block is at the order of O(2NN2). For

example, when the transmission block has N = 25 symbols;

then the set X has 225 N -dimensional points. Accordingly,

calculating the (11) for all bits within the transmit block

requires 25× 225 ≈ 2× 1010 operations.

One can see from (13) that the conditional probability p(y |
x) has an exponential relation with the distance of the skew

lattice points to y, i.e., ‖y −Ha‖2. That said, to reduce the

complexity of the calculations of the LLR values in (11), we

can consider a pre-defined number of points close to y rather

all possible points in X . Finding the closest number of pre-

defined points to y can be obtained by modifying the SD

to what is called the LSD [15]. The LSD finds the first NL

closest lattice points in the skew lattice Ha to the vector y

corresponding to the received FTN signaling, and then, forms

the candidate list L.

To form the candidate list L, the SD is modified as follows.

When a lattice point is found inside the hypersphere, the initial

radius of the hypersphere is not reduced to the distance of

that lattice point; rather, we add this lattice point to our list

L. However, if the size of L became NL +1, the lattice point

with the largest distance to the vector y in L is removed and

the radius is updated to the largest distance to the vector y

among all the remaining NL lattice points in L. At the end and

instead of using all the lattice points in X , the LSD algorithm

finds the NL closest points to the vector y that are to be used

in the calculations of the approximate LLR values as follows:

L̃D (xk | y) = (14)

L̃A (xk) + ln

∑

x∈Lk,+1 p(y | x) · exp
∑

j∈Jk,x
L̃A (xj)

∑

x∈Lk,−1
p(y | x) · exp

∑

j∈Jk,x
L̃A (xj)

,

where Lk,+1 = {x ∈ L | xk = +1}, Lk,−1 = {x ∈ L | xk =
−1}. Also, L̃A is obtained similar to LA but by considering

lattice points inside L instead of the whole lattice X .

As can be seen from (14), the computational complexity to

approximate the LLR value of each transmit block of symbols

reduces to O(NLN
2) because we consider the NL elements

in L instead of whole 2N lattice points. For example, if we

consider NL = 32 and N = 25, the calculation of (14) for all

bits within the transmit block requires 25 · 252 ≈ 1.5 × 103

operations which is way less than 2×1010 required to calculate

the exact LLRs.

On one hand, selecting the initial radius of the LSD to be

of large value will lead to a comparable complexity to the

exhaustive search due to the large number of lattice points

inside the hypersphere. On the other hand, selecting the initial

radius to be of small value may not guarantee to have NL

lattice points, and hence, degrade the approximation quality of

the LLR values in (14). Hence, it is clear from the previous

discussion that the selection of the initial radius of the LSD

to have NL lattice points is crucial to reduce its tree search

complexity while maintaining an acceptable approximation of

the LLR values. That said, we propose a DL-LSD algorithm

to find the proper initial radius that guarantees to have NL

lattice points.

B. The Training Phase of the Proposed DL-LSD Algorithm

The intuition behind our proposed DL-LSD algorithm is

estimating the initial radius to guarantee a pre-defined number

NL of lattice points inside the hypersphere. Similar idea for

estimating the initial radius that guarantees at least one point

inside the hypersphere has been proposed in [16]. This radius

estimation problem is a non-linear regression problem, and

neural networks (NNs) have shown success in solving such

problems [17]. That said, we propose to use NNs to predict the

initial radius that guarantees to include a pre-defined number

NL of lattice points to the received FTN signaling vector y.The

training data are obtained from the implementation of the LSD.

Then, we feed the NN with the received vector y as an input,

and we consider the distance of the furthest point in L from

y as the desired radius for training the output of the NN.

Therefore, the set of input-output pairs {y(i), R(i)} is used to

train our NN, where R(i) is the largest radius in L
(i), and

i = 1, ..., S, where S is the size of training data set. The NN,

f , predicts the initial radius R̂ at its output layer as:

R̂(i) = f(y(i), θ), (15)



Fig. 3: The histogram of the obtained radii of the training phase for
τ = 0.6, βh = 0.35, βv = 0.12, and Eb/N0 = 8 dB.

where θ is the set of all parameters of NN, i.e, weights and

biases values. Please note that the input to the NN y(i) captures

the effect of the ISI in H based on 9. Since we train the NN

for each value of τ , for which the ISI matrix H will be the

same for all training data, we decided to not feed the NN with

H directly.

The first and last layers are the input and output layers,

respectively; while the three middle layers are the hidden

layers. The first two hidden layers are recurrent neural network

(RNN) layers with 128 neurons and a simple fully connected

layer with 64 neurons is used as the third hidden layer. Please

note that the number of hidden layers and the number of

neurons in each layer has been chosen experimentally. We

use the activation function Relu for all hidden layers and it is

defined as Relu(u) = max(0, u). We use the mean square error

(MSE) to evaluate the prediction error of the initial radius, and

it is defined as:

L(θ) =
1

|S|

S
∑

i=1

(

R(i) − f
(

y(i), θ
))2

, (16)

where the desired radius R(i) is output when y(i) is used as

an input. An approximation of (16) in each iteration t over

one training epoch can obtain as follow:

L̃t(θ) =
1

|St|

∑

i∈St

(

R(i) − f
(

y(i), θ
))2

, (17)

where we divide our data set S to B mini-batches, each mini-

batch St has a size of |St| = |S|/B. The complexity of the

gradient computation is remarkably reduced when we increase

the number of mini-batches B, while the variance of updating

the NN parameter, i.e., θ, still decreases. Finally, Adam [18]

is used as an optimization method for updating θ.

C. The Testing Phase of the Proposed DL-LSD Algorithm

In the testing phase, the received FTN signaling y is fed to

the trained NN, and the NN gives the estimation of initial

radius R̂ that approximately guarantees to have NL lattice

points inside the hypersphere centered at y. Then the LSD

algorithm is executed with an initial radius equal to the

The Proposed DL-LSD Algorithm

Input: H , y, δd, f(. , θ)
Output: Calculated LLR values

d← f(y, θ) ⊲ Estimating radius with NN

while True do

L← LSD(H , y, d) ⊲ LSD algorithm returns a list

if |L| < NL then

d = d+ δd ⊲ Increasing radius

else

L = L(1 : NL) ⊲ Picking first NL closet point to y

break ⊲ breaking the while loop

end if

end while

LLR(L) ⊲ Calculation of LLR based on (14)

obtained initial radius from the NN, i.e., d = R̂. However,

there is a possibility that the d is large enough to include more

than NL points at the testing phase. In this case, we keep only

the NL points with the smallest radii from y and discard the

extra points with the largest radii. In case d is not large enough

to have at least NL points at the testing phase, we propose to

increase the radius d by a value δd, and then, execute the

LSD algorithm with new radius d + δd. The selection of δd
can be explained with the help of Fig. 3 as follows. In Fig.

3, we sketch the empirical probability density function (PDF)

of all the obtained radii from the training phase at τ = 0.6,

βh = 0.35, βv = 0.12, and Eb/No = 8. We observe that the

empirical PDF can be approximated as a Gaussian distribution

with a standard deviation δd. That said, in case the initial radius

d has less than NL, we increase the radius by δd. The proposed

DL-LSD algorithm is summarized at the top of this column.

Finally, the approximate LLR values are calculated according

to (14), and then passed to the channel decoder as soft inputs

to estimate the transmit data symbols â.

IV. SIMULATION RESULTS

In this section, we investigate the performance of the pro-

posed DL-LSD to detect coded BPSK FTN signaling. We con-

sider a standard convolutional code (7, [171 133]) to encode

the information bits at the transmitter and a Viterbi decoder to

decode the approximate soft outputs of the proposed DL-LSD

at the receiver. The roll-off factors βh and βv are set to 0.35

and 0.12, respectively. We consider N = 25 data symbols per

block transmission and an acceleration factor of τ = 0.6 and

0.74. Please note that the choice of these values of τ meets

the condition in (5).

The training of the proposed DL-LSD can be summarized

as follows. For Eb/N0 = 4 and 6 dB, we use 800 blocks of

random data symbols; while for Eb/N0 = 8 and 10 dB, we

use 8000 blocks. For each of the training blocks, the number

of random data symbols per block is set to N = 25. Please

note that the low number of blocks used to train the NN

at Eb/N0 = 4 and 6 dB is due to the huge computational

complexity required to obtain the training data symbols from

the original-LSD that selects the initial radius based on the

noise variance [19]. We experimentally set the learning rate
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Fig. 4: BER as a function of Eb/N0 at τ = 0.6 for different values
of NL.

of Adam optimizer to 0.0001, and the mini-batch size St is

set to 20.

As discussed earlier, the aim of the proposed DL-LSD algo-

rithm is to select a number of lattice points NL to approximate

the calculations of the LLR value of each bit in (14) without

deteriorating the error rate performance. Comparisons of the

performance of the sphere decoding with other low complexity

FTN signaling detection techniques can be found in [4], [20].

To strike a balance between the computational complexity and

the BER performance, we plot in Fig. 4 the BER performance

for different values of NL at τ = 0.6. As can be seen, the

value of NL = 32 shows negligible BER loss when compared

to NL = 128, while significantly reduces the complexity of

calculating (14). Hence, we adopt the value of NL to be 32 in

the rest of the simulation results.

Fig. 5 depicts the average number of lattice points inside the

hypersphere of both the original-LSD and proposed DL-LSD

versus Eb/N0 for τ = 0.6. Please note that the average number

of lattice points is calculated based on averaging the results

of 10 transmit blocks. As can be seen, the average number of

lattice points obtained by the proposed DL-LSD algorithm is

close to the target value of NL = 32, and more importantly,

is insensitive to the noise power. This is in contrast to the

original-LSD where the initial radius is set based on the noise

variance [19], and hence, can have a large number of lattice

points inside hypersphere at low Eb/N0. Since the complexity

of the tree search exponentially increases with increasing the

number of lattice points inside the hypersphere, the proposed

DL-LSD is expected to have a reduced complexity when

compared to the original-LSD.

To quantify the reduction of the computational complex-

ity of the proposed DL-LSD algorithm with respect to the

original-LSD, in Fig. 6 we plot the ratio of the number of

floating point operations (flops) of the proposed DL-LSD to

the number of flops in original-LSD as a function of Eb/N0

for τ = 0.6. A flop serves as a basic unit of computation,

and it denotes one addition, subtraction, multiplication, or

division of floating point numbers. To have a fair complexity

comparison, both DL-LSD and the original-LSD use the same

implementation of the LSD algorithm but they are different

4 6 8 10
0

1

2

3

4

5

6

Fig. 5: Comparison of the average number of lattice points inside the
hypersphere of the proposed DL-LSD algorithm and the original-LSD
at τ = 0.6.
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Fig. 6: Comparison of the average number of flops of the proposed
DL-LSD algorithm and the original-LSD at τ = 0.6.

only in the selection of the initial radius (the proposed DL-

LSD algorithm estimates the initial radius from the trained

NN, while the original-LSD estimates the initial radius based

on the noise variance as in [19]). As one can see, the proposed

DL-LSD algorithm has more than three orders of magnitude

lower number of flops when compared to the original-LSD

algorithm for low values of Eb/N0. For high values of Eb/N0,

the proposed algorithm achieves an order of magnitude lower

number of flops.

In Fig. 7, we depict the BER of the uncoded and coded

FTN signaling as a function of Eb/N0 for different values of

τ . As one can see, for the uncoded transmission at τ = 0.74,

the BER approaches its counterpart of Nyquist signaling which

represents 35% in the SE at no increase in Eb/No. Decreasing

the value of τ will results in an improvement in the SE but

at the cost of increasing Eb/No. For the coded transmission,

the proposed DL-LSD showed approximately savings of 1.5

dB in Eb/No when compared to the uncoded results at both

τ = 0.74 and 0.6 at BER of 10−4.
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Fig. 7: Coded and uncoded BER performance for different values of
τ .

V. CONCLUSION

FTN signaling can improve the SE without increasing the

transmission bandwidth, and hence, it is a promising tech-

nology for future communication systems. In this paper, we

presented an equivalent transmission model for FTN signaling

that uses a set of orthonormal basis functions to eliminate

the need to design a noise whitening filter at the receiver.

We then proposed a DL-LSD algorithm to learn and update

an approximate initial radius to include a certain number of

points NL inside the hypersphere. In case the initial radius

has less than NL points, we increase the approximate initial

radius by a value that depends on the standard deviation of

the distribution of the output radii from the training phase.

Simulation results showed that the average number of flops

of the proposed DL-LSD algorithm is three order and one

order of magnitude lower than its counterpart of the original

LSD, with a selection of the initial radius based on the noise

variance, at low and high Eb/N0 values, respectively.

APPENDIX

PROOF OF LEMMA 1

The proof appears in [14] and it is included here for

completeness of the presentation. We define the discrete-time

Fourier transform Hs(fd) =
∑

n hne
−j2πfdn, where {hn} is

the sampled sequence of h(t) every τT . From the properties of

the Fourier transform we know that Hs(f) =
1
τT

∑

n H(f −
n
τT

), where H(f) is the continuous-time Fourier transform of

h(t), hence:

H(f) = τTHs(f)

= τT
∑

n

h(nτT )e−j2πfnτT , |f | ≤
1

τT
−W. (18)

At the same time, from the definition of inverse continues-

time Fourier transform we have h(t) ,
∫

H(f)ej2πftdf .

Considering the fact that V (f) is constant over the support of

H(f), i.e., |f | < W . Then, we can multiply V (f) inside the

integral and divide by the constant C0 outside of the integral

to have:

h(t) =
1

C0

∫

H(f)V (f)ej2πftdf. (19)

Since V (f) = 0 for |f | ≥ 1
τT
−W , substituting (18) into (19)

results in:

h(t) =
1

C0

∫

[

τT
∑

n

h(nτT )e−j2πfnτT

]

V (f)ej2πftdf

=
∑

n

[

τTh(nτT )

C0

]
∫

V (f)ej2πf(t−nτT )df

=
∑

n

hnv(t− nτT ), (20)

where hn = τT
C0

h(nτT ) which concludes the proof. �
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