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Abstract—Task scheduling is a critical problem when one user
offloads multiple different tasks to the edge server. When a
user has multiple tasks to offload and only one task can be
transmitted to server at a time, while server processes tasks
according to the transmission order, the problem is NP-hard.
However, it is difficult for traditional optimization methods to
quickly obtain the optimal solution, while approaches based on
reinforcement learning face with the challenge of excessively large
action space and slow convergence. In this paper, we propose a
Digital Twin (DT)-assisted RL-based task scheduling method in
order to improve the performance and convergence of the RL.
We use DT to simulate the results of different decisions made by
the agent, so that one agent can try multiple actions at a time,
or, similarly, multiple agents can interact with environment in
parallel in DT. In this way, the exploration efficiency of RL can be
significantly improved via DT, and thus RL can converges faster
and local optimality is less likely to happen. Particularly, two
algorithms are designed to made task scheduling decisions, i.e.,
DT-assisted asynchronous Q-learning (DTAQL) and DT-assisted
exploring Q-learning (DTEQL). Simulation results show that
both algorithms significantly improve the convergence speed of
Q-learning by increasing the exploration efficiency.

Index Terms—task scheduling, digital twin, reinforcement
learning, exploration efficiency

I. INTRODUCTION

With the development of information technologies such as
Internet technology, artificial intelligence (Al), and computer
vision, users are increasingly demanding services such as
image recognition or VR/AR that require strong computing
capability. Since such services usually have a large task
size, offloading all these tasks to the cloud will result in an
overburdened communication. Therefore, offloading tasks to
the server in edge is emerged as an promising solution to
this issue. On the other hand, due to the deployment on edge
nodes, the computing capability of edge servers is limited.
As a result, edge servers usually processes only a few (very
likely one) tasks at the same time to provide ensuring service
quality. Meanwhile, user has multiple tasks with different
delay requirements that need to be offloaded, and only one
task can be transmitted at a time, the order of task offloading
will directly affect the quality of service. In [1] scheduling
tasks is proved a flow shop scheduling problem, and in [2] this
kind of problem is proved as NP-Hard. Thus, it is difficult to
optimize this problem with high accuracy and speed by using
tradition optimization method.

To get optimal or near-optimal solutions quickly, RL-based
on task sorting algorithms have attracted increasing attention.
Monte carlo tree search is applied in the specific context of
task scheduling [3]. However, there is a very large action
space in task scheduling problem, e.g., making it difficult
for RL to achieve excellent performance. This is because
usual RL agent uses exploration−exploitation to converge.
When agent use exploration, it chooses an random action
through a specific distribution to obtain the performance of
different permutations, and when agent use exploitation, it
samples the best performance action repeatedly to make the
algorithm converge. Obviously, exploration and exploitation
are contradictory, the higher exploration probability, the slower
it is to converge, while low exploration probability causes
agent has no knowledge of enough actions, leading to a
poor converge performance. Therefore, we need a better
exploration and exploitation that has efficient exploration
and high convergence speed.

DT is the virtual realization of entities in the real world
through digital form. Unlike traditional simulation models,
digital twins are the dynamic panoramic mapping of physical
entities. Through data interaction with the entity, it constantly
updates its own information to ensure the real-time, accurate
and comprehensive virtual mapping, so as to realize the clone
with high approximation on the virtual platform [4]. Further-
more, the virtual model can integrate various data from the
physical world, and use expert knowledge, AI and other means
to conduct comprehensive analysis, so as to better predict
future states. Therefore, the virtual body in the digital twin
is not only a simple copy of the information of the physical
entity, but a complete clone of the state, characteristics and
development trend of the physical entity. When a clone is
established, various complex actions can be quickly performed
on the virtual platform, and obtain the state of the system after
taking these actions, so as to provide support for decision-
making [5]. Compared with common methods of operating
in the real world, digital twins can significantly improve
efficiency and reduce costs.

Since DT can reproduce all the properties of real physical
space in digital space, it enables one agent to try different
actions at a time in a digital space, and also enables multiple
agents to interact with the same environment in parallel come
true. Therefore, to improve RL exploration efficiency, we
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introduce DT to get a higher performance RL with lower
time. In this paper, we use DT to enable the agent to learn
performance of multiple actions at a time, thus increasing
the exploiting efficiency of RL-based task scheduling. The
proposed methods show better performance and faster con-
vergence speed than traditional Q-learning based RL method.
To our best knowledge, this is the first paper using DT to
enhance RL performance, which not only gives a way to
further optimize RL-based decision methods, but also shows
a potential research direction for DT.

II. SYSTEM MODEL

We consider a single-user edge computing communication
system [1], where the server is deployed near the user to
provide service. At the beginning of each frame, the user
generates N independent tasks and the task i is denoted by
ti, i ∈ 1, 2, ...N . Due to the limited computing power and
energy of user, all tasks need to be transmitted to the edge
server for execution. In this paper, we assume that the server
uses a single-core CPU with constant CPU frequency, which
can only process one task at a time. After the server completes
a task, it immediately transmits the result back to the user.

A. Task and Communication Model

We denote the set of tasks of each communication frame
by Γ = {t1, t2, . . . , tN}. Each task is described by a ternary
vector ti = [di, εi, ci], where di denotes the amount of
the task data, εi is the task deadline, and ci represents the
task complexity which means the amount of CPU operations
required to process 1 bit of data. In particular, εi represents the
maximum delay can be tolerated from task generation to result
reception, which reflects the urgency of the task. The user
expects to receive all the results within the deadline, otherwise
the timeout tasks will be regarded as failure.

In order to avoid useless waiting time, the server executes
the tasks following the order of arrival. Assuming user can
only transmit the data for one task at each time. As there is
only one user in this edge computing system, we consider that
the channel state, transmission power and distance are known
at the service, so that the transmission rates of different tasks
are the same, which is denoted by R.

In the case of busy CPU, the task arriving at the sever will
wait in the memory queue. The memory of the server only
stores the data of tasks in the current communication frame.
Since the amount of tasks generated by a single user in a
frame is limited, we consider the memory of the server is
large enough so that there will be no data overflow. Therefore,
the order of task execution is the same as the order of data
transmission. The computing frequency of CPU is denoted by
fser . In addition, since the size of result data is much smaller
than the input data, we ignore the result transmission delay. For
the user, the most important concern is the task completion rate
and total completion delay, which depends on the queue order.
We denote the queue of N tasks as σ = [σ1, σ2, · · ·σN ], where
σi is the task of order i, σi ∈ {1, · · ·N}. Consequently, our
optimization goal is to ensure that all tasks can be completed

within the deadline, and to minimize the total completion
delay.

B. Problem Formulation

The completion time of task tj is denoted by T jcomp (σ),
which includes the delay of transmission, execution, and
queuing. The execution of a task only begins when all of its
data has been received by the server and there are no other
tasks ahead of the queue. So only when tj is at the head, it
will be transmitted and executed without any wait. Other tasks
must wait before transmission. We denote the whole data input
time of the j-th task by T jready (σ), which is given by

T jready (σ) =

j∑
i=1

dσi
R
, j = 1, · · · , N. (1)

Obviously, T jcomp (σ) includes T jready (σ) and the delay in the
server which depends on T jready (σ) and the completion time
of the task ahead. Thus, it can be determined by

T jcomp(σ) =


T jready (σ) + dσjcσjf

−1
ser , j = 1

max
{
T jready (σ), T j−1comp (σ)

}
+dσjcσjf

−1
ser , j > 1

(2)

where dσj and cσj represent the data size and complexity
of tσj respectively, and when j = N , T jcomp (σ) is the total
completion time of the task sequence.

In order to simultaneously optimize the task success rate
and total completion time within a frame, we formulate the
queuing problem as

min
σ

N∑
i=1

T icomp + ζI(T icomp > εi), (3)

where I(∗) is indicator function, when ∗ is true I(∗) = 1,
otherwise I(∗) = 0, ζ is importance factor.

III. DT-ASSISTED Q-LEARNING METHOD

A. Q-learning

Reinforcement learning has become a powerful means to
solve the problem of resource management and task schedul-
ing in wireless communication networks [6]–[8], where Q-
learning [9] is a value-based algorithm which has good con-
vergence. The goal of reinforcement learning is to get the
optimal policy which means helping the agent maximize the
reward value. In most cases, the agent needs to take a series
of actions to complete a task and the reward are delayed, so
the expected total reward Q is seen as the evaluation function
of the action, which is given by Q =

∑∞
t=1 γ

t−1rt (st, at),
where γ is the discount factor, which represents the influence
of future states on the current policy, st and at are the state and
action at time t, respectively, rt (st, at) is the present reward
for taking at in st. Q-learning stores Q values by building a Q-
Table whose coordinates are states and actions. With the table,
the agent only needs to select the action with largest Q value



to execute according to the state of environment. However,
it is often difficult to obtain the accurate Q-Table due to the
unknowns of the environment.

For large state spaces, Q-learning uses Temporal-Difference
method to approximate the true Q value. Specifically, when the
agent observes state st at time t, the action is selected by the
ε-greedy strategy, where in the greedy decision, the optimal
action is given by

aoptt = arg max
ai∈At

Q (st, ai) , (4)

where aoptt and At are the optimal action and the set of actions
at time t, respectively. Execute the selected action and enter the
next state, then update the Q value according to the feedback
of the environment, which is formulated as

Q (st, at)← Q (st, at) + α
[
rt+1 (st, at) + γmax

a
Q (st+1, a)

]
,

(5)

where α is the learning rate, which is used to balance the ef-
ficiency and stability of learning. Based on the above method,
iterate the Q value until get a reliable Q-Table.

A key point of Q-learning is that the agent adopts the
ε-greedy strategy to choose actions, which can balance
exploitation and exploration well. In details, ε-greedy
means that when the agent makes a decision, there is a small
probability ε(ε < 1) to randomly select an action, and choose
the largest-value action with the probability of remaining 1−ε.
Assume that the initial state is s1, the set of available actions
is A1 and the known optimal action is aopt1 . After the agent
takes an action, it receives a reward r1 from environment.
In the decision-making process, the probability of each non-
optimal action being selected is ε

|A1| , where |A1| represents
the number of actions. The probability of choosing aopt1 is
ε
|A1| + 1 − ε. Therefore, by using the ε-greedy strategy, the
agent can make a good trade-off between exploitation and
exploration.

B. DT-Assisted Method
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Fig. 1. DT-assisted exploring Q-learning algorithm flowchart.

Algorithm 1 Digital Twin-Assisted Asynchronous Q-learning
Algorithm

1: Initialize all elements in Q-Table as 0, learning rate lr,
and update date cycle δ

2: for i = 1 to epoch do
3: ε = εmin + εe−iβ

4: With probability ε select a random action ar, otherwise
select ar = arg maxaQ(st, a)

5: Take action ar in real environment and get reward rr
and next state st+1,r

6: Qr(st, ar) = Q(st, ar) + lr(r+ γmaxaQr(st+1, a)−
Qr(st, ar))

7: for j = 1 to φ do
8: j-th agent select a random action aj with probability

ε, otherwise select a = arg maxaQj(st, a)
9: Qj(st, aj) = Qj(st, aj) + lr(r +

γmaxaQj(st+1, a)−Qj(st, aj))
10: end for
11: if i%δ == 0 then
12: Q =

Q+
∑φ
j=0Qj

1+φ
13: Qr = Q
14: for j = 1 to φ do
15: Qj = Q
16: end for
17: end if
18: end for

Algorithm 2 Digital Twin-Assisted Exploring Q-learning Al-
gorithm

1: Initialize Q(s, a) as 0 and learning rate lr
2: for i = 1 to epoch do
3: ε = εmin + εe−iβ

4: With probability ε select a random action ar
5: otherwise select ar = arg maxaQ(st, a)
6: Take action ar in real environment and get reward rr

and next state st+1,r

7: Randomly select φ unique actions a1, a1, · · · , aφ
8: Take these action respectively in DT to get reward

r1, r2, · · · , rφ and next state st+1,1, st+1,2, · · · , st+1,φ

9:
10: /* Update Q-Table */
11: Q(st, ar) = Q(st, ar) + lr(r + γmaxaQ(st+1, a) −

Q(st, ar))
12: for j = 1 to φ do
13: Q(st, aj) = Q(st, aj) + lr(r+ γmaxaQ(st+1, a)−

Q(st, aj))
14: end for
15: end for

Traditional Q-learning can only interact with the real phys-
ical environment and can only explore one action at a time,
so the exploration efficiency is low. In addition, since the real
physical environment can only accept decisions made by one
agent, the agent can only converge in one direction, and it



is easy to fall into a local optimum. Inspired by [10] we
first tried to place multiple agents in DT, which means DT-
assisted asynchronous Q-learning (DTAQL). Assuming that
the simulation capability of DT is φ, which means DT can
complete the simulation of φ times interaction between the
agent and the environment within a tolerable time. Therefore,
we assume there are φ agents in DT, and each agent maintains
a Q-Table, and independently selects actions in DT to interact
with the environment according to the ε-greedy algorithm.
Then, each agent updates its Q-Table according to the actions
it takes and the rewards the get. When all agents have updated
the Q-Table δ times, they share their knowledge and update the
Q-Table. Since all agents are independent of each other, they
may take different actions, which improves the efficiency of
exploration. Besides, through periodically sharing knowledge,
the agents in the real physical environment can obtain rewards
of different scheduling order faster, thereby improving the
convergence speed. Because knowledge sharing is periodic,
each agent may take completely different actions in one cycle
and update its own Q-Table independently. This means that in
one cycle, the convergence direction of different agents may be
different, which is beneficial for the agents in the real physical
environment to avoid getting stuck in local optima and obtain
better convergence performance.

However, asynchronous reinforcement learning needs to
maintain multiple Q-Tables, which is memory consuming. Due
to periodically sharing knowledge, agents are not completely
independent. This leads to the fact that although the conver-
gence directions of the agents in one cycle may be different,
but on a large scale all agents still converge in the same
direction. Thus, the efficiency of exploration is limited, and
the convergence speed and performance is degraded.

Therefore, we proposed another DT-assisted exploring Q-
learning (DTEQL) method. In this method, only one agent is
needed. First, the agent selects an action ar to act on the real
environment according to the ε-greedy algorithm, and obtains
the rr and st+1,r of the real environment feedback. At the
same time, randomly select different φ actions a1, a2, · · · , aφ,
and apply these φ actions to the virtual environment of
DT respectively to obtain reward r1, r2, · · · , rφ and next
state st+1,1, st+1,2, · · · , st+1,φ. Then, according to Equation
5, updates the Q value of these actions. Compared with
DT-assisted asynchronous Q-learning, this method is more
random in action selection thus improving the exploration
efficiency. Moreover, because the agent always interacts with
the real environment according to the ε-greedy algorithm, the
probability of selecting the optimal action in the Q-Table is
increased, so that the agent can converge to the optimal value
faster.

IV. SIMULATION RESULT

In this section, we provide the simulation result to show
the efficiency for DT-assisted reinforcement learning method.
In simulation, task size d, task complexity c, and deadline ε
are all assumed to distribute uniformly, d ∼ Unif [0, 2Mb],
c ∼ Unif [0, 1000] CPU cycles and ε ∼ Unif [1, 5]s. The

CPU frequency of edge server is 10GHz. We randomly
generated 1, 000 tasks to evaluate the convergence speed and
performance for different algorithms. The learning rate lr is
0.1. We use the following algorithm for comparison.
• QL: The traditional Q-learning method using ε-greedy to

explore the environment. There is only one agent in the real
physical space, and the agent can only choose one action to
interact with the environment at a time. Due to the huge state
space, we set the minimum exploration rate εmin as 0.1 and
the exploration decay factor β as 5, 000.
• DTAQL: DT-assisted asynchronous Q-learning method.

Besides real physical space, φ agent is placed in the digital
space to interact with the virtual environment and periodically
share knowledge, and more details are presented in Algorithm
1. But when testing performance, we only test the performance
of the agent in the real environment. As for δ, all agent share
their knowledge every 512 iterations.
• DTEQL: DT randomly selects p different actions and

simulates the outcomes of these actions, thereby increasing
the exploration probability, and more details are presented in
Algorithm 2. Similar to DTAQL, we only test the performance
of the agent in the real environment.
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Fig. 2. Convergence performance of different algorithm with N = 8. Since
QL need over 100,000 iterations to converge, while other algorithms need far
much fewer iterations, so we show it in a separate figure specially.

TABLE I
PERFORMANCE OF THE DIFFERENT ALGORITHM

DTEQL φ =500 DTEQL φ =200 DTEQL φ =100 DTEQL φ =50 DTAQL φ =500 QL

Normalized Reward 1.0024 1.0024 0.9979 0.9406 0.7758 0.4235

Deadline Miss Ratio 0.0195 0.0195 0.0195 0.0273 0.0429 0.039

Average Delay 0.6435 0.6435 0.6453 0.6677 0.7321 0.8697

Convergence Time 5597 12752 25549 >25600 >25600 �25600

First, we evaluate the performance of DTAQL when N = 8,
under different number of agents φ in the DT. Obvious, as is
shown in Fig 2, the larger φ is, the better the performance
and fast convergence speed can be achieved. This is because
different agents will select actions in parallel when exploring
the environment [10]. As the number of agents φ in DT
increases, the possibility of agents exploring more actions



TABLE II
TIME TO CONVERGE FOR THE DIFFERENT ALGORITHMS

DTEQL φ =500 DTEQL φ =200 DTEQL φ =100 DTEQL φ =50 DTAQL φ =500 QL

N = 6 102 295 510 1047 1284 >25600

N = 7 755 2497 3873 8795 10239 �25600

N = 8 5597 12752 25549 >25600 >25600 �25600

will also increase, so that through periodic knowledge sharing
improves the decision-making ability of the agent in the real
physical environment. However, due to the periodic sharing of
knowledge between agents, each agent actually has a similar
exploration direction on a large scale, so the increase of
agents does not significantly improve performance. Moreover,
because knowledge sharing is periodic, the performance of
agents in real physical environments shows a step-up trend.

Then, we test the performance of DTEQL. Similar to
DTAQL, the convergence speed increases as φ increases. But
when φ is with the high value region, as φ increases, the rate
at which the convergence speed improves gradually decreases.
As is shown in Fig 2, DTEQL converges faster for DTAQL
even when phi is small than DTAQL with φ = 500. The
reason is that DTEQL randomly select φ different actions,
thereby improving the exploration efficiency, and since the
agent in the real physical environment still likes the ordinary
Q-learning method, using the ε-greedy to select optimal ac-
tion, which increases the sampling probability of the optimal
action and improves the convergence speed. Besides, because
DTEQL does not need to store multiple Q tables, its storage
consumption is also less than DTAQL.

In Table I, we show specific data on reward, average task
complete delay, deadline miss ratio, and number of times re-
quired to converge for different algorithms, if no improvement
in algorithm performance can be observed during training,
we use � 25600 to denote it. Limited by training time, we
only trained 25, 600 times for each algorithm, which is also a
very long time. For DTEQL, when φ is greater than 200, the
algorithm can always converge within 25, 600 training times,
and the performance after convergence is exactly the same. But
as p increases, the convergence speed also increases. When φ
is 100, we can see that the reward has decreased, but deadline
miss ratio keeps constant.This shows that although the task
processing delay increases when DTEQL fails to converge
completely, the algorithm can still ensure that all tasks are
completed within the deadline. Although the performance of
DTAQL is obviously better than that of the ordinary Q-learning
method, it is much weaker than DTEQL in this problem.

Table II shows convergence time for different algorithm
under different N . As the task number N decreases, the action
space of the scheduling problem decreases, and the algorithm
requires smaller φ to converge. This means we can adaptively
change φ of DT, so as to reduce the construction cost of
DT, since stronger DT means more accurate data and more
advanced building technology [11], which inevitably bring
higher price.

V. CONCLUSION

In this paper, we have investigated the task scheduling
for edge offloading with the assistance of DT. By using
DT to enrich the action space, we have proposed two DT-
assisted RL algorithms to let the agent try many actions at
the same time or multiple agents independently interact with
the environment and exchange their knowledge periodically.
Simulation results have shown DT can significantly assist
improving the exploration efficiency, thereby the convergence
speed of Q-learning can be increased and its convergence
performance can be improved. Besides, users can experience a
higher quality of service with lower latency by our proposed
scheme. For future research, we will study the performance
of DT-assisted task scheduling in more complex network such
as space-air-ground integrated networks, whose action space
is continuation.
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