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Abstract—In this paper, we apply an multi-agent reinforcement
learning (MARL) framework allowing the base station (BS)
and the user equipments (UEs) to jointly learn a channel
access policy and its signaling in a wireless multiple access
scenario. In this framework, the BS and UEs are reinforcement
learning (RL) agents that need to cooperate in order to deliver
data. The comparison with a contention-free and a contention-
based baselines shows that our framework achieves a superior
performance in terms of goodput even in high traffic situations
while maintaining a low collision rate. The scalability of the
proposed method is studied, since it is a major problem in MARL
and this paper provides the first results in order to address it.

Index Terms—Multi-Agent Reinforcement Learning, Protocol
Emergence, Wireless Communications.

I. INTRODUCTION

The goal of this paper is to explore a framework for jointly
learning a channel access policy and its signaling policy for
medium access control (MAC) in multiple-access scenarios.
This study aims at proposing a general framework capable
of producing application-tailored protocols which may lead to
performance gains over more general purpose protocols.

It is expected that Artificial intelligence (AI) and machine
learning (ML) will play a crucial role in 6G [1] in making the
network more adaptable and self-upgradable, helping meeting
the requirements while also making the network management
and optimization simpler. One promising area in ML for
achieving a more adaptable network system is reinforcement
learning (RL). In particular, multi-agent reinforcement learn-
ing (MARL) has been used to emerge communication that
allows a better cooperative behavior [2], [3]. The framework
used in this paper leverages MARL to allow the network nodes
to learn the channel-access policy and the communication
needed to best collaborate with one another, thus also learning
the signaling.

Related Work: RL has been used to develop channel
access policies for the MAC in [4] and [5]. It has also been
used to select which MAC protocol to use [6] or which blocks
to use [7]. Differently from such works we propose to learn a
channel access policy and its signaling. The idea of learning a
given protocol and its signaling has already been addressed in
a previous work [8], while in [9] we proposed the framework
for emerging a MAC protocol in a multiple access scenario.

Contribution: This paper extends the previous one [9] in
two ways:

1) Traffic model: By using a Poisson process, instead of
limiting the total number of service data units (SDUs),
making the new model more realistic. The Poisson
process is used, for example, to model message arrivals
in a packet data networks or the arrival of new telephone
calls.

2) Scalability study: By evaluating the scalability both in
terms of arrival rate as well as user equipments (UEs).

Since we propose to fully emerge a protocol for the base
station (BS) and UEs, scalability may be an issue because
the BS needs to communicate with all UEs.

This work is structured as follows. Section II describes
the system model used and in Section III, we present a new
framework allowing the emergence of MAC protocols with
MARL. Finally, Section IV illustrates the performance of
our algorithm with numerical results, where we compare the
proposed solution with a baseline. The main conclusions are
drawn in Section V.

II. SYSTEM MODEL

Consider a single cell with a BS serving 𝐿 UEs operating
according to a time division multiple access (TDMA) scheme,
where each UE needs to deliver data to the BS. Each UE
has a transmission buffer of capacity 𝐵 MAC SDUs initially
empty. The SDU arrival is modeled as a Poisson process with
probability of arrival 𝑝a. So, a new SDU is added to the buffer
with probability 𝑝a, until a maximum number 𝑇 of steps is
achieved. The average number of SDUs arriving at each UE’s
buffer in any given episode of duration 𝑇 is then:

𝜆 = 𝑝a𝑇 (1)

The network nodes can exchange information, using mes-
sages through the control channels. In the remainder of this
paper, we refer to the UE MAC agent and the BS MAC agent
as UE and BS , respectively.

The channel for the uplink data transmission is modeled
as a packet erasure channel, where a transport block (TB) is
incorrectly received with a probability referred to as transport
block error rate (TBLER). The UEs use the same frequency
resources on the uplink shared channel (UL-SCH), which leads
to possible collisions. The downlink control messages (DCMs)
and uplink control messages (UCMs) are transmitted over
the downlink (DL) and uplink (UL) control channels, which
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are assumed to be dedicated and error free, so without any
contention or collision.

We assume that the sets of possible DL and UL control
messages have cardinality 𝐷 and 𝑈, respectively. For example,
the DCMs in an DL control vocabulary of size 𝐷 = 4 would
have a bitlength ΥDL of log2 𝐷 = 2.

At each time step 𝑡, the BS can send one control message
to each UE and each UE can send one control message to the
BS while being able to send data protocol data units (PDUs)
through the UL-SCH. Furthermore, the UEs can also delete a
SDU from the buffer at each time step.

We define the cellwide goodput 𝐺 (in SDUs/TTIs) as the
number of MAC SDUs received by the BS per unit of time.
SDUs received by the BS several times are only counted once:

𝐺 =
𝑁RX
𝑇

(2)

where 𝑁RX represents the number of unique SDUs received.
Since the BS can only receive at most one SDU per time step
𝑁RX ≤ 1, the maximum cellwide goodput on average can be
calculated as:

𝐺max = min (𝑝a𝐿, 1) (3)

The collision rate Γ is the number of steps in which a collision
happened divided by the total number of time steps:

Γ =
𝑁c
𝑇

. (4)

where 𝑁c represents the total number of time steps in which
at least two SDUs collided.

III. EMERGING A MAC PROTOCOL WITH MARL

A. MARL Formulation

We formulate the problem defined above as a MARL
cooperative task, where the MAC layers of the network nodes
(UEs and BS) are RL agents that need to learn how to
communicate with each other to solve an uplink transmission
task. In addition, the UE agents need to learn when to send
data through the UL-SCH and when to delete an SDU, in other
words, to learn how to correctly manage the buffer. In order
to decide how to act, an agent needs to consider the messages
received from the other agents. In addition, the UEs also take
into account their buffer status when taking actions, while the
BS takes into account the state of the UL-SCH, i.e idle, busy
or collision-free reception.

We model this problem as a decentralized partially observ-
able Markov decision process (Dec-POMDP) [10], augmented
with communication. A Dec-POMDP for 𝑛 agents is defined
by the global state space S, an action space A1, . . . ,A𝑛,
and an observation space O1, . . . ,O𝑛 for each agent. In Dec-
POMDP, an agent observation does not fully describe the envi-
ronment state. All agents share the same reward and the action
space of each agent is subdivided into one environment action
space and a communication action space. The communication
action represents the message sent by an agent and it does not
affect the environment directly, but it may be passed to other
agents. In this work, the agent state 𝑥𝑖 may comprise not only

the agent’s current observation, but also previous observations,
actions and received messages.

We use the following notations:
• 𝑜u

𝑡 : Observation received by the 𝑢th UE at time step 𝑡.
• 𝑜b

𝑡 : Observation received by the BS at time step 𝑡.
• 𝑛u

𝑡 : The UCM sent from the 𝑢th UE at time step 𝑡.
• 𝑚u

𝑡 : The DCM sent to the 𝑢th UE at time step 𝑡.
• 𝑎u

𝑡 : Environment action of the 𝑢th UE at time step 𝑡.
• 𝑥u

𝑡 : Agent state of the 𝑢th UE at time step 𝑡.
• 𝑥b

𝑡 : Agent state of the BS at time step 𝑡.
Observations: The observation 𝑜u

𝑡 ∈ {0, . . . , 𝐵} is a
integer representing the number of SDUs in the buffer of the
UE 𝑢 at that time 𝑡. Similarly, the observation 𝑜b

𝑡 received by
the BS is a discrete variable with 𝐿 + 2 possible states:

𝑜b
𝑡 =


0, if the UL-SCH is idle

u, if the UL-SCH is detected busy with a
single PDU from UE u, correctly decoded

𝐿 + 1, non-decodable energy in the UL-SCH

(5)

where u ∈ {0, . . . , 𝐿}.
Actions: The environment action 𝑎u

𝑡 ∈ {0, 1, 2} is inter-
preted as follows:

𝑎u
𝑡 =


0: do nothing

1: transmit the oldest SDU in the buffer

2: delete the oldest SDU in the buffer

(6)

We highlight that the DCM and UCM messages, 𝑚 and 𝑛, are
communication actions that the agents select while also being
information available to the other agent’s state as received
message.

The agent state at time step 𝑡 is a tuple comprising the most
recent 𝑘 observations, actions and received messages:
• UE u: 𝑥u

𝑡 = (𝑜u
𝑡 , . . . , 𝑜

u
𝑡−𝑘 , 𝑎

u
𝑡 , . . . , 𝑎

u
𝑡−𝑘 , 𝑛

u
𝑡 , . . . , 𝑛

u
𝑡−𝑘 ,

𝑚u
𝑡 , . . . , 𝑚

u
𝑡−𝑘 )

• BS: 𝑥b
𝑡 = (𝑜b

𝑡 , . . . , 𝑜
b
𝑡−𝑘 , n𝑡 , . . . , n𝑡−𝑘 ,m𝑡 , . . . ,m𝑡−𝑘 ), with

n and m containing the messages from all the UEs.
We assume the episode ends when a maximum number of

steps 𝑇 is reached. The reward given at each time step is:

𝑟𝑡 =


+𝜌, if a new SDU was received by the BS

−𝜌, if an UE deleted a SDU that has
not been received by the BS

0, else,

(7)

where 𝜌 is a positive integer. This choice of reward is possible
by leveraging the centralized training and decentralized exe-
cution (CTDE). During the centralized training, a centralized
reward system can be used to observe the buffers of the
BS and UEs in order to assign the reward. For wireless
systems, centralized training can be achieved in a simulation
environment as well as a testbed, i.e. a server farm.

B. Training Algorithm
The proposed RL solution is based on the multi-agent deep

deterministic policy gradient (MADDPG) algorithm [11]. This



algorithm is well suited to partially observable environments
when strong coordination is needed, due to its centralized critic
architecture.

In MADDPG, each agent has an actor network that depends
only on its own agent’s state in order to learn a decentralized
policy 𝜇𝑖 with parameters 𝜃𝑖 . Each agent also has a centralized
critic network that receives the agent states and actions of all
agents in order to learn a joint action value function 𝑄𝑖(𝑥, 𝑎)
with parameters 𝜑𝑖 , where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) is a vector
containing all the agents’ states and 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑛)
contains the actions taken by all of the agents. The critic
networks are only used during the centralized training.

The critic network parameters 𝜑 are updated by minimizing
the loss given by the temporal-difference error

𝐿𝑖 B E𝑥,𝑎,𝑟 ,𝑥′∼D
[ (
𝑦𝑖 −𝑄𝑖(𝑥, 𝑎1, . . . , 𝑎𝑛; 𝜑𝑖)

)2] (8)

where D denotes the experience replay buffer in which the
transition tuples (𝑥, 𝑎, 𝑟, 𝑥 ′) are stored, 𝑄 ′ and 𝜇′ represent the
target critic network and the value of the target actor network,
with parameters 𝜃 ′ and 𝜑′, respectively, and 𝑦𝑖 is the temporal-
difference target, given by

𝑦𝑖 B 𝑟 + 𝛾𝑄 ′𝑖(𝑥
′, 𝑎′1, . . . , 𝑎

′
𝑛; 𝜑′𝑖)

��
𝑎′
𝑘
=𝜇′

𝑘
(𝑥𝑘 ) (9)

where 𝛾 is the discount factor. The actor network parameters
𝜃 are updated using the sampled policy gradient

∇𝜃𝑖 𝐽 = E𝑥,𝑎∼D
[
∇𝑎𝑖𝑄𝑖(𝑥, 𝑎)∇𝜃𝑖 𝜇𝑖(𝑥𝑖) | 𝑎𝑖 = 𝜇𝑖(𝑥𝑖)

]
. (10)

The target networks parameters are updated as

𝜑′𝑖 ← 𝜏𝜑𝑖 + (1 − 𝜏)𝜑′𝑖 (11)

𝜃 ′𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃 ′𝑖 (12)

where 𝜏 ∈ [0, 1] is the soft-update parameter.
Architecure: The actor and critic networks have the same

architecture; a fully connected multilayer perceptron (MLP)
with two hidden layers, of 64 neurons each. The activation
function of all hidden layers is the rectified linear unit (ReLU).
In order to improve training of our MADDPG solution, we
make use of parameter sharing [2] for similar network nodes,
in this case the UEs. Since UE index is not included in the
agent’s state, any policy that uses the agent’s identity is not
capable of effectively solving the task due to the parameter
sharing, because it would lead to collisions.

Similarly to the original work [11], we use the Gumbel-
softmax [12] trick to soft-approximate the discrete actions
to continuous ones. The Gumbel-softmax reparameterization
also works to balance exploration and exploitation. The
exploration-exploitation trade-off is controlled by the temper-
ature factor 𝜁 .

After training finishes, we have successfully trained a
population of 𝑁rep protocols. We then select the protocol
that performed the best at any point during training across
all different protocols, i.e the historically best protocol. This
selection step can be seen as a "survival of the fittest" approach
because only one protocol of the population of 𝑁rep is chosen
going forward.

TABLE I
SIMULATION PARAMETERS

Parameter Symbol Value

Number of UEs 𝐿 [2, 3, 4, 5]
Size of transmission buffer 𝐵 20
Avg. number of SDUs per UE 𝜆 [2, 4, 6, 8, 10, 12]
SDU arrival probability 𝑝a

[0.083, 0.16, 0.25,
0.33, 0.41, 0.5]

Transport block error rate TBLER 10−1

DCM vocabulary size 𝐷 3
UCM vocabulary size 𝑈 2
Duration of episode (TTIs) 𝑇 24
Reward function parameter 𝜌 3
Number of training episodes 𝑁train 100k
Number of evaluation episodes 𝑁eval 500
Number of test episodes 𝑁test 5000
Number of randomized repetitions 𝑁rep 8

TABLE II
TRAINING ALGORITHM PARAMETERS

Parameter Symbol Value

Memory length 𝑘 3
Replay buffer size 105

Batch size 1024
Number of neurons per hidden layer {64, 64}
Interval between updating policies 96
Optimizer algorithm Adam
Learning rate 𝛼 10−3

Discount factor 𝛾 0.9
Policy regularizing factor 10−3

Gumbel-softmax temperature factor 𝜁 1
Target networks soft-update factor 𝜏 10−3

IV. RESULTS

A. Simulation Procedure and Parameters

The transmission buffer of each user starts empty and the
SDU arrival probability is 𝑝a for each UE. The system is
trained for a fixed number of episodes 𝑁train. During training,
we evaluate the policy on a fixed set of 𝑁eval evaluation
episodes with disabled exploration and disabled learning in
order to assess the current performance of the communica-
tion protocol. The protocol that performed the best on the
evaluation episodes during the whole training procedure is
selected and its performance is assessed in 𝑁test episodes
with exploration and learning disabled. This whole procedure
represents a single training repetition. We evaluate a total
of 𝑁rep repetitions, each with a different random seed. A
summary of the main simulation parameters is provided in
Table I, while the parameters of the MADDPG and deep
deterministic policy gradient (DDPG) algorithms are listed in
Table II.

B. Baseline Solutions

We compare the proposed solution with a contention-free
(i.e. BS-controlled, scheduled) and a contention-based (i.e.
grant-free) baseline.

In the contention-free protocol, the UE sends a scheduling
request (SR) if its transmission buffer is not empty and it only
transmits if it has received a scheduling grant (SG). Similarly,
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Fig. 1. Goodput comparison during the training procedure. Number of UEs: 𝐿 = 2 ; TBLER = 10−1.

it only deletes a TB from the transmission buffer after the
reception of an acknowledgement (ACK). At each time step,
the BS receives zero or more SRs. It then chooses one of the
requesters at random to transmit in the next time-step, sending
a SG to the selected UE. However, if the UE had made a
successful data transmission simultaneously with an SR, the
BS will send an ACK to this UE and its SR is ignored.

In the contention-based protocol, each UE transmits with
probability 𝑝𝑡 if its transmission buffer is not empty. Similarly
to the contention-free baseline, the UE only deletes a TB after
the reception of an ACK. At each time step, the BS sends
an ACK to a UE if it received a TB from the UE. For each
experiment, the transmission probability chosen is the one that
performs better in terms of goodput.

C. Results
1) Learning Performance: We first analyze the perfor-

mance over the training procedure, comparing the proposed
solution with the baselines in Fig. 1. The solid lines in Figs. 1a
and 1b show the average performance in the evaluation
episodes during the training and the shaded areas represent the
95% confidence interval (CI). After assessing the performance
on the last 𝑁eval evaluation episodes, we select the best
performing repetitions for each solution in terms of average
goodput to compare using boxplots of the test episodes.

The main conclusions we can draw from Fig. 1 are:
• In the lower arrival rate showed in Fig. 1a, the proposed

solution seems to learn a protocol that performs like a
contention-based one. This conclusion is supported by
the similar box plots on the test episodes.

• In higher arrival rates showed in Fig. 1b, the proposed
solution drastically outperforms both baselines, which
indicates it learns a completely different protocol.

• The contention-free baseline shows a better performance
on low arrival rates, but when the arrival probability
increases the contention-free baseline outperforms it.

2) Scalability: In this set of results, we analyze the scaling
capabilities of the proposed solution across two dimensions,

the number of UEs and the SDU arrival rate. The performance
is evaluated on 𝑁test test episodes by comparing the average
goodput and collision rate achieved when changing across one
dimension while the other is fixed. For the MADDPG solution,
we also show the 95% CI across randomized repetitions. The
upper bound shows the maximum average goodput when all
the SDUs are received.

The proposed framework is capable of producing protocols
that outperform both baselines in terms of goodput when the
arrival rate increases while maintaining a low collision rate, as
shown in Fig. 2. Also, the CI increases when the arrival rate
increasing, indicating that in more difficult conditions there’s
a bigger variability in the emerged protocol.

Scalability to growing numbers of UEs is proving challeng-
ing, as shown in Fig. 3. The proposed framework consistently
outperforms both solutions for up to four UEs and has similar
performance to the contention-free solution on average for
five UEs, but it is unable to scale as well as it does when
scaling with traffic. Although the proposed solution achieves
a lower collision rate than the contention-based solution, it
seems unable to effectively deal with more UEs while avoiding
collisions, which can explain why the cellwide goodput drops
when increasing the number of UEs.

V. CONCLUSIONS AND PERSPECTIVES

We have applied a framework to emerge a MAC protocol
and have demonstrated through simulations that cooperative
MARL augmented with communication provides an original
approach to emerge a protocol by jointly learning the channel
access policy and its signaling. The results indicate the ca-
pabilities of the MARL framework to produce protocols that
outperform the baselines. In addition, the results illustrate the
capabilities of the framework to adapt to different arrival rates
and to different number of UEs.

In our future works we will propose extensions to deal
with even more UEs. We will also propose comparisons of
different MARL algorithms, and we will evaluate accurately
the impact of the vocabulary sizes used in the control channels.
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Fig. 2. Scaling the arrival rate while mantaining the number of UEs fixed: 𝐿 = 2 UEs.
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Additionally, interpretability will be investigated to better
understand the key for improvements used by our RL based
algorithms.
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