
16 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Structured Sparse Ternary Compression for Convolutional Layers in Federated Learning / Mora, A;
Foschini, L; Bellavista, P. - ELETTRONICO. - 2022:(2022), pp. 1-5. (Intervento presentato al convegno 95th
IEEE Vehicular Technology Conference - Spring, VTC 2022 - tenutosi a Helsinki, Finland nel 19-22 June
2022) [10.1109/VTC2022-Spring54318.2022.9860833].

Published Version:

Structured Sparse Ternary Compression for Convolutional Layers in Federated Learning

Published:
DOI: http://doi.org/10.1109/VTC2022-Spring54318.2022.9860833

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/899393 since: 2022-11-03

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/VTC2022-Spring54318.2022.9860833
https://hdl.handle.net/11585/899393

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/)

When citing, please refer to the published version.

This is the final peer-reviewed accepted manuscript of:

A. Mora, L. Foschini and P. Bellavista, "Structured Sparse Ternary Compression for

Convolutional Layers in Federated Learning," 2022 IEEE 95th Vehicular Technology

Conference: (VTC2022-Spring), Helsinki, Finland, 2022, pp. 1-5

The final published version is available online at

https://dx.doi.org/10.1109/VTC2022-Spring54318.2022.9860833

Rights / License:

The terms and conditions for the reuse of this version of the manuscript are specified in the

publishing policy. For all terms of use and more information see the publisher's website.

https://cris.unibo.it/
https://dx.doi.org/10.1109/VTC2022-Spring54318.2022.9860833

Structured Sparse Ternary Compression for

Convolutional Layers in Federated Learning

Alessio Mora

University of Bologna

Bologna, Italy

alessio.mora@unibo.it

Luca Foschini

University of Bologna

Bologna, Italy

luca.foschini@unibo.it

Paolo Bellavista

University of Bologna

Bologna, Italy

paolo.bellavista@unibo.it

Abstract—In Cross-device Federated Learning, communica-
tion efficiency is of paramount importance. Sparse Ternary
Compression (STC) is one of the most effective techniques
for considerably reducing the per-round communication cost
of Federated Learning (FL) without significantly degrading the
accuracy of the global model, by using ternary quantization in
series to topk sparsification. In this paper, we propose an original
variant of STC that is specifically designed and implemented
for convolutional layers. Our variant is originally based on the
experimental evidence that a pattern exists in the distribution
of client updates, namely, the difference between the received
global model and the locally trained model. In particular, we
have experimentally found that the largest (in absolute value)
updates for convolutional layers tend to form clusters in a
kernel-wise fashion. Therefore, our primary novel idea is to
a-priori restrict the elements of STC updates to lay on such
a structured pattern, thus allowing us to further reduce the
STC communication cost. We have designed, implemented, and
evaluated our novel technique, called Structured Sparse Ternary
Compression (SSTC). Reported experimental results show that
SSTC shrinks compressed updates by a factor of x3 with respect
to traditional STC and with a reduction up to x104 with respect
to uncompressed FedAvg, at the expense of negligible degradation
of the global model accuracy.

Index Terms—Federated Learning, Compression

I. INTRODUCTION

Federated Learning (FL) has emerged as a solution to de-

couple the ability to train Deep Learning (DL) models from the

necessity to directly access the raw data, by exploiting periodic

broadcast of model weights and local computation of weight

updates. Only ephemeral, locally processed information needs

to be disclosed by the entities or users that participate to the

collaborative learning process, and this favours the enforcing

of privacy guarantees to a certain extent [1].

Although FL is primarily motivated by the urge of pri-

vacy while distilling collective knowledge, having on-device

ML/DL models can meet low-latency inference requirements

as well as be a greener technology with respect to cloud-based

model training [2]. Furthermore, the design of FL can be useful

both in Cross-silo federations, i.e. the learners involved are

entities such as healthcare institutions [3], banks, companies,

or in Cross-device federations, i.e. edge devices such as

smartphones [4] or IoT equipment. Real-world examples of the

latter setting are, for instance, smart apps that learn user habits

without exporting sensitive raw data to companies’ servers

(e.g., [5]).

The Cross-device scenario exhibits peculiar characteristics.

In fact, the federation includes a large number of participants

that hold not Independently and Identically Distributed (non-

IID) data, i.e., training examples on a specific device cannot

be assumed to be representative of the global distribution.

In addition, data are unbalanced and massively distributed

(e.g., learners may hold very different amounts of training

examples). A further significant concern about the feasibility

of large scale Cross-device FL is the massive communication

overhead implied by periodic broadcast of uncompressed

model weights and iterative harvesting of locally-computed

model updates. This, on the one hand, can hamper the partic-

ipation of edge devices with limited bandwidth, and, on the

other hand, may overwhelm the internet infrastructure with

FL-related payloads [1].

Several communication-efficient strategies have been pro-

posed to reduce the amount of information exchanged. One of

the most effective is Sparse Ternary Compression (STC) [6],

that can extremely shrink the payload size of model parameters

and updates without significantly degrading the global model

accuracy. In this paper, we propose a novel variant of STC,

namely Structured Sparse Ternary Compression (SSTC), that

is specifically designed and optimized for updates of convo-

lutional layers in neural networks.

In this paper we make the following contributions:

• We demonstrate that the largest (in absolute value) weight

updates in convolutional layers tend to form clusters

along the kernel dimension (i.e., the majority of the

largest updates comes from a subset of kernels).

• Based on such an empirical evidence, we propose to

restrict the range of indexes in which an update element

can lay to obtain a more aggressive compression.

• For the sake of result reproducibilty and to foster related

lines of work, we provide a reference to our repository

that contains the simulation code we used for experimen-

tal results (https://github.com/alessiomora/SSTC).

II. RELATED WORK

Some communication-efficient strategies have been recently

designed to reduce the per-round cost of Cross-device FL.

Sparsification, quantization and encoding, proposed in dif-

ferent flavors [6]–[10], represent the main line of work to

https://github.com/alessiomora/SSTC

significantly lower the bandwidth requirements of the decen-

tralised learning process. Also federated pruning [11] and

federated dropout [12] result in reduced communication cost

for learners, but alone cannot achieve extreme compression as

sparsification- and quantization-based compression.

In [6], the authors propose STC, see Sec. III-A for detail,

and demonstrate that their ternary compression can reach

target global model accuracy with extremely lower com-

munication budget with respect to uncompressed Federated

Averaging [13], also when clients hold heterogeneous data

distribution.

To the best of our knowledge, FedSCR [14] is the only

work that analyses and exploits patterns in the distribution of

convolutional updates for enhancing compression. They focus

on convolutional architecture, as we do in our SSTC. However,

the main similarity between our work and FedSCR stands

in the attempt of exploiting update patterns for compression

scope, while ours and their proposed techniques are deeply

different from several other perspectives: in our proposal we

try to embed such empirical observations in STC for a more

efficient encoding and we act at the kernel level, while in

FedSCR they consider channels and filters for their structure-

wise identification of more significant update components;

furthermore, in FedSCR, learners accumulate updates deemed

insignificant, eventually synchronizing them with the server;

conversely, SSTC does not assume that the same client will

participate more than once in the FL process.

III. FEDERATED LEARNING

In this paper, we consider Federated Averaging (FedAvg) as

the baseline for Federated Learning [13]. In FedAvg, collabo-

rative learning proceeds in synchronous rounds by leveraging

a client-server paradigm. At the beginning of each round, the

server (or aggregator) broadcasts the current parameters of

the global model to a fraction of available clients (i.e., the

participants). Each learner locally trains the received model

parameters on its private data, and sends back an update to the

server (e.g. the difference between the received and the locally

tuned model parameters). The server collects the updates from

the federation, and uses a given strategy (weighted average,

according to the amount of local examples held by clients, in

the case of FedAvg) to aggregate the gathered contributions.

The aggregated updates are then applied to the global model.

At this point, a new round of FL can start by distributing the

novel version of the global model [13]. Our proposed SSTC

compression technique applies to client updates, implemented

as the difference between the last received parameters of the

global model and the locally calculated model parameters.

A. Sparse Ternary Compression

STC [6] is a lossy compression scheme able to extremely re-

duce the per-round communication cost of FL iterations. STC

uses, in series, topp sparsification and ternary quantization.

Firstly, all but the p larger absolute values1 in the input tensor

1p can be expressed as a percentage of the number of elements in the input
tensor. topx% sparsification retains the x% larger values.

(either model weights or weight updates) are zeroed out. Then,

the survived fraction of elements is binary quantized to {µ,

−µ}, with positive values substituted with µ, negative values

with −µ, and µ being the mean, in absolute value, of the

non-zero elements. Therefore, the algorithm outputs a ternary

tensor with values {−µ, 0, µ}.
The ternarization process of STC reduces the entropy of the

tensor to be communicated, and favors an efficient encoding.

Only the mean value, µ, and the indexes of non-zero elements

has to be transmitted, instead of all the values in the original

tensor. The decoder assumes that elements corresponding to

non-communicated indexes are filled with 0 value.

It is worth noting that indexes can be losslessly compressed

by transmitting the distances between consecutive indexes

instead of their absolute positions in the tensor. Then distances

can be optimally encoded with Golomb code [6], by reducing

the bits necessary to represent them2. Let us highlight that

this can be applied as well in our SSTC proposal; however,

we do not consider the possibility of using Golomb encoding

for indexes either in STC and SSTC in the comparison that

follows in order to better point out the advantages deriving

from the only exploitation of the SSTC approach.

Algorithm 1: SSTC algorithm.

l ∈ [1, L] with L the number of convolutional layers

in the neural network, sparsity p, fraction of kernels k.

Input : list ∆W of per-layer update tensors ∆Wl ∈
R

K×K×Cl×Fl , p, k

Output: list ∆W sstc of per-layer SSTC update tensors

∆W sstc
l ∈ {−µ, 0, µ}K×K×Cl×Fl

1 ∆W ← Reshaping ∆Wl to 2-d tensors

2 T ← Concatting reshaped ∆Wl to one 2-d tensor

3 T topk kernels, indexes← Selecting topk kernels on T

4 T topk kernels ← Flattening T topk kernels

5 T stc ← STC on T topk kernels with sparsity p

6 T sstc ← Scattering T stc column to the original shape

of T by means of kernel indexes

7 ∆W sstc ← Slicing and reshaping T sstc

8 return ∆W sstc

IV. OUR SSTC ORIGINAL PROPOSAL

As also demonstrated in [14], for convolutional layers, the

distribution of client updates is not uniformly distributed. A

specific pattern has been demonstrated to emerge: the largest

(in absolute value) updates form clusters on a subset of kernels.

Fig. 1 shows the output of top0.1% sparsification on updates

(in absolute value) for a convolutional layer at three different

rounds of the federated training.

On the other hand, in traditional STC the communication

payload is almost entirely due to indexes. In our original SSTC

we propose to exploit the presence of kernel-wise pattern in the

distribution of large updates for convolutional layers to reduce

2In [6] the authors assume a random sparsity pattern, and that the distances
among consecutive indexes can be approximated by a geometric distribution.

Fig. 1: Distribution of convolutional weight updates (in absolute value) after top0.1% sparsification at three different rounds on

three randomly sampled clients. Each column in the heat maps represents a kernel update. The reported results are obtained

using the neural architecture and settings described in Sec. V, and refer to the first layer of the network.

Fig. 2: The figure reports a comparison among STC-compressed and SSTC-compressed updates at three different rounds

(round 1, 500 and 1000). Each column of three heat maps refers to a round. From top to bottom, the heat maps represent the

uncompressed updates, the updates after STC application and the updates after SSTC application for that round on a random

client. The reported results are obtained using the neural architecture and settings described in Sec. V, and refer to the second

layer of the network, with STC sparsity equal to 1% and kernel fraction for SSTC equal to 12.5%. Each column in the heat

maps visualizes kernel update.

the communication cost of STC. In a practical perspective, the

principle is that knowing a priori that the largest elements of

the updates will lay on a restricted subset of the convolutional

kernels makes possible a more efficient encoding of indexes.

SSTC supposes to find the majority of the largest updates on

a subset of the kernels in the convolutional layers, and restricts

the search space for the topp elements by considering only a

fixed number of kernels among all the convolutional layers

(i.e., the topk kernels, identified according to the average of

the absolute values of the elements in kernels updates – the

columns in the heat maps in Fig. 1 and Fig. 2).

Algorithm 1 formalizes our compression method. For the

sake of clarity, Alg. 1 considers a neural network composed

by only convolutional layers with the same kernel size. This

simplification does not preclude the application of SSTC to

neural networks that also have, e.g., fully connected layers, as

it is shown also in the reported experimental results.

Lastly, we note that SSTC exactly matches STC when there

is no pre-selection of kernels, i.e., when the fraction of kernels

to search for larger elements is equal to 1.

Fig. 2 compares the effect of STC and SSTC on the same

convolutional weight updates. Different aspects emerge: (i)

The distribution of the non-zero elements of STC exhibits a

column-wise pattern; (ii) The SSTC approximation of STC is

quite accurate even though we are considering, in the depicted

results, only the 12.5% of the columns. This is due to the fact

that STC’s topp sparsification zeroes out entire columns while

SSTC does not consider such columns in the first place. (iii)

SSTC tends to have more dense kernel updates with respect to

STC since it considers a reduced subset of them; (iv) SSTC

inevitably ignores and zeroes out large absolute values that

lay on kernels with average lower than the topk while it may

include elements that would have been excluded by STC.

A. Lossless Encoding

To transmit the produced structured sparse ternary tensor,

the indexes of the topk kernels and a ternary map of the values’

sign in each kernel are communicated. The ternary maps have

the size of the kernel. The values in the maps are {−1, 0, 1},
i.e, 0 for sparsified elements, −1 or 1 to signify the sign of

the non-zero elements. The zeros within retained kernels are

communicated since we expect the non-zero values to be dense

in the selected kernels. Intuitively, the gain stands in indexing

groups of consecutive values, instead of indexing values one

by one.

Let us note that the above SSTC encoding results to be

convenient if compared with STC when it holds that:

bp ∗ p

bk ∗ k + 2 ∗K ∗K ∗ k
> 1 (1)

Where the nominator and denominator in Eq. 1 respectively

refer to the communication cost due to indexes in STC and

SSTC, and bk = 1+ ⌊log2(C ∗ F)⌋ is the bitsize to represent

each of the kernels in SSTC with F being the number of filters

and C the number of channels, bp = 1+⌊log2(K ∗K ∗C ∗F)⌋
is the bitsize to represent each of the non-zero elements in STC

with K ×K being the size of convolutional kernels, k is the

number of the communicated kernels in SSTC and p is the

number of non-zero values in STC. Eq. 1 can be rewritten as:

k < p ∗
bp

2 ∗K ∗K + bk
(2)

It is worth noting that Eq. 1 and Eq. 2 refer to the application

of STC and SSTC on convolutional weights only. Hence,

if we consider a neural network with only convolutional

layers, p = sparsity ∗ W with W being the total amount

of weights. Conversely, if we consider a neural network with,

for example, both convolutional and fully connected layers, p

will most probably vary round by round, since sparsification

is applied considering the whole model parameters, and non-

zeroed elements can be distributed among all the layers.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We consider FedAvg as the baseline and we compare SSTC

vs. STC in terms of top-1 accuracy of the global model and

of compression ratio. We use the same hyperparameter tuning

for every strategy: the local epochs of each client are fixed

to 5; Stochastic Gradient Descent (SGD) is used as local

optimizer with 0.1 learning rate; the client batch size is fixed

to 16. The simulations are run for 1000 rounds with 50 clients

(out of 3,400 total learners) randomly selected per round.

The sparsity is equal to 0.01 (i.e. 1%) both for STC and

SSTC. We implement the simulation using TensorFlow (TF)

and TensorFlow Federated (TFF).

For the experiments, we use the LEAF version of the

Federated EMNIST dataset (FEMNIST) available in TFF for

62-class image classification. Each learner holds her/his own

handwritten characters to reproduce data heterogeneity, and the

labels are unbalanced in number and not uniformly distributed

among clients. FEMNIST has a total of 671,585 examples

for training, distributed among 3,400 participants, and 77,483

examples for testing. For the FEMNIST classification task,

we use a Convolutional Neural Network (CNN) composed by

two 5x5 convolution layers, 32 and 64 filters respectively, each

followed by a max pooling layer, a fully connected dense layer

with 512 units, and a final softmax output layer.

B. Measured Performance Results and Related Discussion

The first two convolutional layers of the neural network

that we considered for the experiments have 52,000 weights

in total, excluding biases that are not subject to compression

(the first layer has 32 filters with 5x5 kernels size, the

second layer has 32 channels with 64 filters with 5x5 kernel

size). The neural network also has two fully connected layers

for classification. As we explained in Alg. 1, the algorithm

performs a pre-selection of the kernels with larger element

mean, in absolute value, and then consider only such a subset

of convolutional weights when sparsification is applied to the

whole neural network weights (parameters belonging to both

convolutional and fully connected layers).

To compare the compression gain introduced by SSTC with

respect to STC, as we noted in Sec. IV-A, we monitored

how many non-zeroed elements belonging to the convolutional

layers are communicated round by round in STC (Fig. 3b).

In this way, we have a range of values for the term p in

Eq. 1; in the experiments, p ranges among 2,000 and 3,000

(approximately). K is fixed to 5, since kernels have size of

5x5. In STC, to represent the maximum index (i.e., 51,999) 16

bits are needed (i.e., bp = 16), also considering the worst case

when encoding using distances. In SSTC the maximum index

for kernel depends on the tuning of k. For example, if we

select only the 12,5% of the kernels, we have k = 260 for the

considered neural network, and 11 bits needed to represent

them (i.e., bk = 11). So, applying Eq. 1, the gain of SSTC

with respect to STC considering the convolutional part of the

considered neural network ranges, approximately, between 2x

and 3x.

The gain introduced by SSTC is more evident if compared

with uncompressed FedAvg, as reported in Table I.

Fig. 3c depicts the maximum accuracy reached by different

options for k tuning. The global model accuracy of SSTC

converges to the one of STC when k approaches the 40%

of the kernels. However, the proposed encoding is efficient

for very dense (i.e., containing few zero values) sign maps,

hence with low k value. In fact, in the considered deploy-

ment environment, when the fraction of topk kernels is over

(approximately) the 30% the encoding proposed in Sec. IV-A

(a) (b) (c)

Fig. 3: (a) Top-1 accuracy of global model on test set for STC and SSTC, with sparsity equal to 0.01 and the fraction of kernel

equal to 0.125. (b) Number of elements in STC updates that belong to the convolutional layers during experiments in (a). (c)

Accuracy reached with different tuning of k, expressed as a fraction, in SSTC. The line represents the maximum accuracy

of STC. The top x-axis reports the compression factor, averaged within 1000 rounds, of SSTC with respect to STC, i.e. the

average gain introduced by the encoding proposed in Sec. IV-A with respect to communicate indexes one by one.

becomes less efficient than directly sending indexes one by

one (Fig. 3c reports, in the top x-axis, the compression factor

of SSTC with respect to STC).

TABLE I: Compression factors of STC and SSTC for updates

coming from the conv layers with respect to uncompressed

(32-bit float) FedAvg. Sparsity = 1%, and k = 12.5% for SSTC.

compression (≈) max acc.

FedAvg + STC 41x 84.33%
FedAvg + SSTC (ours) 104x 83.94%

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented an original compression tech-

nique that builds on top of STC, and leverages a specific

pattern in the distribution of convolutional weight updates to

shrink the STC encoding.

While this work may be seen as a specialization of STC,

SSTC can be more generally thought as an attempt to exploit

– and benefit from – evident patterns in FL updates, a research

line that is still largely unexplored in the existing literature and

that calls for additional future work by the Federated Learning

community. Assumptions on the distribution of client updates

can enhance compression techniques, as well as strategies that

analyse updates (e.g., identifying malicious updates leveraging

autoencoders).

The SSTC technique originally presented here only consid-

ers convolutional weight updates; our current research work

includes the analysis of the distribution of fully connected or

recurrent weight updates in search of meaningful patterns. In

addition, we plan to extend the experimental results on deeper

CNNs and more complex datasets.

REFERENCES

[1] Paolo Bellavista, Luca Foschini, and Alessio Mora. Decentralised
learning in federated deployment environments: A system-level survey.
ACM Computing Surveys (CSUR), 54(1):1–38, 2021.

[2] Xinchi Qiu, Titouan Parcollet, Daniel Beutel, Taner Topal, Akhil Mathur,
and Nicholas Lane. Can federated learning save the planet? In NeurIPS-

Tackling Climate Change with Machine Learning, 2020.
[3] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian,

and Fei Wang. Federated learning for healthcare informatics. Journal

of Healthcare Informatics Research, 5(1):1–19, 2021.
[4] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba,

Alex Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konecny, Stefano
Mazzocchi, H Brendan McMahan, et al. Towards federated learning at
scale: System design. arXiv preprint arXiv:1902.01046, 2019.

[5] Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Françoise
Beaufays. Federated learning for emoji prediction in a mobile keyboard.
arXiv preprint arXiv:1906.04329, 2019.

[6] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech
Samek. Robust and communication-efficient federated learning from
non-iid data. IEEE transactions on neural networks and learning

systems, 2019.
[7] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradi-

ent compression: Reducing the communication bandwidth for distributed
training. In International Conference on Learning Representations,
2018.

[8] Felix Sattler, Simon Wiedemann, Klaus-Robert Müller, and Wojciech
Samek. Sparse binary compression: Towards distributed deep learning
with minimal communication. In 2019 International Joint Conference

on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.
[9] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint

arXiv:1610.05492, 2016.
[10] Jinjin Xu, Wenli Du, Yaochu Jin, Wangli He, and Ran Cheng. Ternary

compression for communication-efficient federated learning. IEEE

Transactions on Neural Networks and Learning Systems, 2020.
[11] Wenyuan Xu, Weiwei Fang, Yi Ding, Meixia Zou, and Naixue Xiong.

Accelerating federated learning for iot in big data analytics with pruning,
quantization and selective updating. IEEE Access, 9:38457–38466, 2021.

[12] Paolo Bellavista, Luca Foschini, and Alessio Mora. Communication-
efficient heterogeneous federated dropout in cross-device settings. In
2021 IEEE Global Communications Conference (GLOBECOM), pages
1–6. IEEE, 2021.

[13] H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
et al. Communication-efficient learning of deep networks from decen-
tralized data. arXiv preprint arXiv:1602.05629, 2016.

[14] Xueyu Wu, Xin Yao, and Cho-Li Wang. Fedscr: Structure-based
communication reduction for federated learning. IEEE Transactions on

Parallel and Distributed Systems, 32(7):1565–1577, 2020.

