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Abstract—Navigating in environments where the GPS signal is
unavailable, weak, purposefully blocked, or spoofed has become
crucial for a wide range of applications. A prime example is
autonomous navigation for drones in indoor environments: to
fly fully or partially autonomously, drones demand accurate and
frequent updates of their locations. This paper proposes a Robust
Acoustic Indoor Localization (RAIL) scheme for drones designed
explicitly for GPS-denied environments. Instead of depending
on GPS, RAIL leverages ultrasonic acoustic signals to achieve
precise localization using a novel hybrid Frequency Hopping Code
Division Multiple Access (FH-CDMA) technique. Contrary to
previous approaches, RAIL is able to both overcome the multi-
path fading effect and provide precise signal separation in the
receiver. Comprehensive simulations and experiments using a
prototype implementation demonstrate that RAIL provides high-
accuracy three-dimensional localization with an average error of
less than 1.5 cm.

Index Terms—indoor localization, drones, ultrasound
transceiver, signal separation, indoor navigation

I. INTRODUCTION

Over the past few years, the global drone industry has expanded
exponentially and the number of use cases in which drones play
a significant part, both in indoor and outdoor environments,
has flourished. Indeed, there is a wide range of indoor drone
deployment nowadays, ranging from recreational use to life-
saving matters. There are a plethora of representative examples
for drones that range from reconnaissance inside hazardous and
shielded facilities (e.g., nuclear power plants), assisting first
responders in navigating inside buildings and confined spaces,
to inventory maintenance and security surveillance inside large
warehouses among others [1], [2].

In most of the aforementioned examples, drones must have
full or partial autonomous flying capabilities to perform their
tasks successfully. To achieve any degree of flight autonomy
between the current position and the target destination, the
drone’s navigation system needs to have access to accurate
and frequent localization information. In outdoor environments,
there is usually access to GPS signals for self-localization; how-
ever, GPS-assisted navigation is not reliable or even available
in indoor spaces. Moreover, there are many GPS-denied areas
where the GPS signal is blocked or purposefully spoofed.

In absence of reliable GPS signals, vision-based methods
are widely used for localization and navigation of drones [3].
However, the accuracy of current vision-based approaches is
usually limited due to the drone’s vibration during flight. In ad-
dition, the location accuracy can degrade even further in vision-
impaired environments. Moreover, vision-based methods have

high computational complexity and deployment cost rendering
them impractical for small indoor drones that require frequent
location updates and low energy sensors to operate. In addition
to vision-based approaches, ranging-based methods are com-
monly deployed for indoor localization. Chief among the latter
approaches are ones that employ Radio Frequency (RF) [4] or
acoustic [2] signals. Unfortunately, the performance of these
methods is significantly degraded in indoor environments due
to multi-path fading [2].

To address accuracy degradation due to multi-path fading, we
propose RAIL (Robust Acoustic Indoor Localization), a three-
dimensional positioning scheme for autonomous drones in
GPS-denied environments. RAIL uses ultrasonic acoustic-based
signals for localization. Acoustic signal localization approaches
have some advantages over RF-based ones. Most importantly,
the significantly slower propagation speed of the acoustic
signals allows for higher accuracy with considerably cheaper
equipment. In addition, RF signals can penetrate through
room boundaries causing interference errors to the localization
measurement. Moreover, there are some places where the RF
signals’ deployment is banned due to security issues. All being
said, RAIL uses high-frequency acoustic signals, known as
ultrasounds, to prevent any interference with human-generated
or drone’s propeller noise.

RAIL employs a hybrid Frequency Hopping Code Division
Multiple Access (FH-CDMA) waveforms to provide a multi-
path-robust ranging and significantly mitigate the localization
error. In addition, it provides signal separation at the receiver
with low latency. Frequency Hopping (FH) is a well-known
technique that has been mainly used in military communica-
tions as an anti-jamming strategy or in Bluetooth technology
to avoid interference with co-existing WiFi channels. On the
other hand, Code Division Multiple Access (CDMA) is a signal
spreading technique that has been primarily used in third-
generation cellular communication to provide multi-user capa-
bility. To the best of our knowledge, RAIL is the first to propose
employing the hybrid FH-CDMA for a completely different and
novel use-case: providing a multi-path-robust ultrasonic ranging
for a seamless three-dimensional localization of drones in GPS-
denied areas. Following is a summary of our contributions.
• We propose RAIL, a novel three-dimensional localization

scheme for drones in GPS-denied environments which is robust
against multi-path fading and provides location estimation with
high accuracy.
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• RAIL is the first scheme to employ the hybrid FH-CDMA
for ranging to make it resilient against multi-path fading and
provide signal separation at the receiver.
• RAIL reduces the communication exchanges required for

navigation by placing the receiver on-board the drone and
transmitter beacons in the room. This becomes feasible due
to the use of the CDMA techniques.
• Our simulation and experimental results indicate that

RAIL’s localization error is low, approximately 1.5 centimeters
on average, in three-dimensional space across different trajec-
tories.

The rest of this paper is organized as follows. In the next
section, we briefly review the related work. Then, in Section III,
we explain how RAIL works in GPS-denied environments.
In Section IV, we detail our simulation setup and results.
Our experimental testbed and outcomes from our prototype
are discussed in Section V. Finally, we conclude our work in
Section VI.

II. RELATED WORK

Pinpointing a moving target in indoor environments without
the GPS signal has been a topic of interest. Ranging-based
methods are of the most well-known approaches for indoor
localization. In this category RF, acoustic, or ultrasound signals
are employed to find the distance between the beacons and
the target. By combining distance measurements between the
target and several beacons, the target’s position is estimated
using lateration or angulation [2], [5]–[8]. However, in indoor
environments, traditional ranging techniques face performance
challenges due to noise and multi-path fading [2], [6].

Another class of approaches involves vision-based mod-
els. Using different visual information processing such as
visual odometry (VO), simultaneous localization and mapping
(SLAM), and optical flow [9]–[11]. There are also some
research papers where they used deep neural networks in
combination with visual techniques [12] or use of LiDAR [13]
for autonomous flying. However, all of these vision-based
techniques require costly sensors and extensive computing
resources and energy that make them impractical for indoor
drone use.

III. ROBUST LOCALIZATION WITH HYBRID FH-CDMA
ULTRASOUND SIGNALS

RAIL is a novel and highly accurate three-dimensional lo-
calization scheme for drones designed for indoor environments.
RAIL uses the hybrid FH-CDMA technique to overcome the
multi-path effects and improve the accuracy of localization.
It also harnesses an additional ultrasonic range measurement
sensor to compensate for the Z−axis estimation error due to
the relative geometry between the transmitters and the receiver.

This section thoroughly investigates how RAIL provides a
high-accuracy three-dimensional localization by making the
system robust against noise and the indoor multi-path fading
effects.

A. Measurement Methods and Location Estimation Techniques

RAIL leverages ultrasonic acoustic signals for distance es-
timation because they have advantages over the other ranging
techniques, as we discussed in Section I. Well-known mea-
surement methods for ranging are the angle of arrival (AOA),
time of arrival (TOA), time difference of arrival (TDOA),
and received signal strength (RSS). For location estimation,
angulation, lateration, and fingerprinting are the main tech-
niques. AOA approaches require costly special antenna arrays
and complex calculations while RSS and fingerprinting are
too prone to changes in real-time. Therefore neither method
is reliable nor highly accurate for indoor drone deployments.
To avoid these pitfalls, RAIL uses trilateration and the TOA of
the received ultrasound signals for localization. However, due
to multi-path fading, accurately measuring TOA is challenging
because of the copied version of the original signal. Thus,
we first need to address multi-path fading before calculating
the TOA of the received signal. To achieve that, RAIL uses a
novel hybrid FH-CDMA communication scheme for its signal
transmission.

B. Implementation Challenges

In terms of placement of the transmitter(s) and receiver(s) for
a ranging-based localization, there are two general scenarios:
either have the receiver(s) on-board the drone and keep the
transmitter(s) in the room or the reverse. The localization
calculation task takes place in the receiver side of the system.
Therefore, if the receivers are not on-board the drone, another
communication link for sending the final location estimation
to the drone is required. This additional communication link
can add latency and incur errors degrading the accuracy of the
overall approach. Thus, we decided to place the receivers on
the drone while keeping the transmitters in the room. Another
observation is that having one transmitter in the room and
multiple receivers on-board the drone raises several issues [14].
First, it adds extra weight to the drone and increases power
consumption. Most importantly, due to the size of indoor
drones, there is not enough space between the receivers, which
induces additional errors.

To overcome these challenges, RAIL mounts only one re-
ceiver on-board the drone. We keep all the transmitters spatially
distanced from each other in the room. However, this method
raises yet a new challenge: the need for signal separation in the
receiver. The receiver needs to be able to detect the TOA from
individual transmitters. To rectify this, RAIL deploys a code
division technique. It assigns a code to the transmitted signals of
each of the ultrasound transmitters in the room. This means that
the transmitted signals at each transmitter are encoded using a
code that is orthogonal to all other transmitters’ codes. Having
four transmitters, RAIL generates a different orthogonal code
for each transmitter using a Walsh-Hadamard matrix of size
four. Data bits of each transmitter would be multiplied with
one of the rows of this matrix. At the receiver side, received
signals will be multiplied with all the four codes, and signals
from each transmitter get detected.



C. Hybrid FH-CDMA
RAIL deploys a hybrid FH-CDMA technique for multi-path-

robust ranging. To the best of our knowledge, this is the first
time FH-CDMA has been used for localization. We show that
FH-CDMA is the most desirable communication encoding to
address both multi-path and signal separation problems. The
hybrid FH-CDMA is a communication encoding that combines
two well-known techniques, the Frequency Hopping (FH) and
the Code Division Multiple Access (CDMA). RAIL uses this
method to rectify the challenge of signal separation in the
receiver with the multiple access capability and, at the same
time, brings robustness against noise and the indoor multi-path
fading using the frequency hopping technology.

In our system, we just need to guarantee that frequency
hops occur fast enough that the transmission frequency has
already been changed before the appearance of the first multi-
path reflection at the receiver. If this holds, our receiver hops
to another carrier frequency before the multi-path reflections
can introduce errors. We select the hopping rate to be equal
to the symbol rate which, according to the room channel
characteristic, is fast enough to avoid multi-path and guarantee
that our system is robust against multi-path fading. We show
this assertion more clearly in the steps below.

First, we assign the same code to all the data bits coming
from a specific ultrasound transmitter beacon in the room.
Therefore, the symbols are no longer just a bit; they are coded
bits that include four bits. Thus, data-symbols from different
beacons are spread with their assigned code and generated
coded symbols. Then, since the hop rate equals the symbol
rate, each of those coded symbols is transmitted in different
FH-channels. In our design, the coded symbols enable signal
separation of different transmitters in the receiver side and the
different frequency channels are used to manage the room’s
multi-path fading effect.

In our scheme, the transmitting signal of the i-th transmitter
is modulated using Binary Phase Shift Keying (BPSK) modu-
lation and then encoded with its dedicated code. We claim that
since throughput is not essential in our scheme and precise
detection matters the most, BPSK is the best option with its
robust performance against noise and low error rate. Similar to
[8], the coded symbols are spread using a sinusoidal signal with
a variable frequency depending on the pseudo-random code
which is known both in the transmitter and receiver side:

s(i)(t) = d(i) · c(i) · pTB(t) · sin(2πfmt+ φ), (1)

where TB is the data symbol duration, d(i) · c(i) is the trans-
mitted symbol of the i-th ultrasonic transmitter in the room
where d(i) is the data bit and c(i) is the dedicated code to
that transmitter, the rectangular pulse pTB is equal to 1 for
0 ≤ t < TB and zero otherwise, and fm is the set of frequencies
over which the signal hops. Then the received signal is in the
form of:

r =
∑4

i=1 s
(i)(t− τi) +M+N ,

where τi is the propagation delay from the i-th transmitter to
the receiver on-board drone that we are using for calculating

the distance, N is the overall Gaussian noise, and M is the
summation of all the multi-path fading effects:

M =

4∑
i=1

N∑
j=1

αij · s(i)(t− τij), (2)

where αij is the attenuation of path j for the i-th transmitter and
τij is the time delay of the path j for the i-th transmitter. We
can defeat the multi-path fading effects, as long as we guarantee
that hopping speed is faster than the time delay of each path
(τj). This will prevent interference from any of the reflected
signals, because the receiver will change frequency by the time
any multi-path signals can cause interference with the original
signal. Having ensured that multi-path effects are eliminated
using different FH-channels, the received signal would be only
the delayed time of the transmitted signal plus noise:

r =

4∑
i=1

s(i)(t− τi) +N . (3)

By multiplying the received signal in each code related to each
transmitter, the received signal from the i-th transmitter in the
receiver would be in the form of:

r(i) = d(i) · pTB(t− τ) · sin(2πfm(t− τ) + φ) +N . (4)

Therefore, by implementing a cross-correlation between the
received signal and the known transmitted signal (the one
without the time delay) and detecting the sample at which the
peak occurs, the distance is calculated as the following:

d =
nsamples

fs
· csound, (5)

where nsamples is the sample number of the maximum peak,
fs is the sampling frequency, and csound is the speed of sound.

D. Three-dimensional Localization
Having successfully measured the distance between an ul-

trasonic transmitter and the receiver, the next step is the three-
dimensional localization of the receiver. In three-dimensional
localization, to identify the location of a target object, we
need to measure the distance between the target object and at
least four distinct sources. Let’s denote the distance between
the receiver and the i-th transmitter as di. The position of
the receiver is defined as [x y z]T (which is the position of
the drone). Similarly, the position of the i-th transmitter is
represented by [xi yi zi]

T . Using trilateration rules we get:
(xi − x)2 + (yi − y)2 + (zi − z)2 = d2i for i = 1 · · ·n. We can
then simplify these quadratic equations and write them down
in the form of Ax = b where A and b are equal to:

A =


2(xn − x1) 2(yn − y1) 2(zn − z1)
2(xn − x2) 2(yn − y2) 2(zn − z2)

...
...

...
2(xn − xn−1) 2(yn − yn−1) 2(zn − zn−1)

 ,

b =


d21 − d2n − x2

1 − y2
1 − z21 + x2

n + y2
n + z2n

d22 − d2n − x2
2 − y2

2 − z22 + x2
n + y2

n + z22
...

d2n−1 − d2n − x2
n−1 − y2

n−1 − z2n−1 + x2
n + y2

n + z2n

 .



The vector x = [x y z]T which includes the coordinate of the
target drone would be: x = (AT A)−1AT b.

IV. SIMULATION ANALYSIS

This section evaluates the performance of the proposed
FH-CDMA localization and presents a benchmark for our
experimental tests. First, the simulation setup is described in
IV-A, and then the results of our simulation are depicted in
IV-B.

A. Simulation Setup

The performance of the localization scheme proposed in
section III is assessed by simulation in MATLAB. Similar to
[2], we locate the transmitters at the (x, y, z) coordinates equal
to (2.5, 0, 1.5), (5, 2.5, 2.5), (2.5, 5, 2), and (0, 5, 3) where all
the numbers are in the meter unit. To better observe how the
simulation is conducted, we divide it into three sub-systems, as
shown below.

The transmitter sub-system, which is the ultrasonic transmit-
ters at the known positions in the room, generates the desired
FH-CDMA signals. We used signals in the frequency range of
20 KHz to 50 KHz because of two reasons. First, to avoid
inciting excessive audible noise or facing interference from
human-generated voice, we pick frequencies over 20 KHz to
prevent overlapping with the audible frequency range. On the
other hand, according to the Nyquist theorem, the sampling
rate needs to be at least twice the maximum frequency to avoid
aliasing; hence, if the system works in the frequency range of
20 KHz to 50 KHz, then the sampling frequency needs to be at
least 100 KHz. To avoid the cost of processing and equipment,
dealing with high frequency is not suitable; therefore, we do
not transmit above 50 KHz, which means that the sampling
rate could be 100 KHz or more. To generate the FH-CDMA
waveform successfully, we use 6 different frequency hops with
5 KHz bandwidth dedicated to each hop. Also, it assigns a code
to each transmitter, so every data bit of each transmitter would
first be multiplied with the code and then transmitted via one
of the six frequency hops centered at frequencies 22.5 KHz,
27.5 KHz, 32.5 KHz, 37.5 KHz, 42.5 KHz, and 47.5 KHz.
The codes are orthogonal to each other and made by a Walsh-
Hadamard matrix of size 4. At each hop, one data symbol which
already been multiplied by its code would be transmitted, so the
hop rate is equal to the data bit rate (actual data bit rate before
multiplying by the code) which is fast enough to mitigate the
multi-path fading effect of the indoor environment. Although a
sampling rate of 100 KHz would be enough for our simulation,
we picked sampling frequency (fs) equal to 340 KHz to ensure
it would be large enough to avoid aliasing, and it also helps to
simplify some of our calculations. Since the throughput is not
essential in our case, we use BPSK modulation, which does
not have a high transmission rate, but is highly robust against
noise.

The channel sub-system is used to add white Gaussian noise
(AWGN) and simulate the multi-path fading of the indoor
environment. The drone’s movement is assumed to be restricted
to a rectangular room with dimensions of 5 m × 5 m × 4 m
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Fig. 1: Representation of the ultrasound speaker transmitter
placement in the room and a comparison between the estimated
trajectory of a drone and its actual trajectory.

with all the regular office environment considerations. We use
a Rayleigh channel with several paths for simulating the multi-
path fading effect due to the reflection of the signal from walls,
floor, and ceiling. The Rayleigh channel parameters that we
set for our simulations are the sample rate, maximum Doppler-
shift, number of different paths, delay of each path, and average
path gain. We put all these parameters concerning a typical
indoor room environment using image theory.

Finally, the receiver sub-system, which is the ultrasound
receiver on-board the drone, separates the signals from different
transmitters by multiplying them into the transmitters’ codes
and demodulating the frequency hopped signals. Then, it cross-
correlates the received signal with the original version and finds
the bit which makes the peak in the cross-correlation, and using
that, it estimates the distance from each transmitter to the drone
using: d = nsamples×csound/fs, where nsamples is the sample
number that the maximum cross-correlation occurs and fs is the
sampling frequency.

B. Simulation Results

We assess the performance of the FH-CDMA localization by
calculating the error between the actual position of the drone
and our estimated position. A Monte Carlo method with an
adequately large number of iterations is used for each of the
simulations.

In Fig. 1, a drone’s actual trajectory, as well as the esti-
mated trajectory using just FH-CDMA localization, is shown.
The locations of the ultrasound speaker transmitters are also
indicated in this figure. The actual and estimated trajectories
seem to overlap perfectly because the localization estimation
error is significantly small relative to the room’s dimensions.

Fig. 2 shows the relationship between FH-CDMA localiza-
tion performance and the signal-to-noise ratio (SNR) of the
signal received by the ultrasound receiver. The localization error
is inversely proportional to the SNR value of the signal, as
expected. In the figure, note that the Z-axis localization error
is much greater than that of the X or Y axis at any given SNR.

By conducting more simulations with different drone tra-
jectories, we observed that the error of Z-axis localization is
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Fig. 2: Average Localization error vs. SNR (dB).

always drastically more than the X−Y plane localization error.
This is despite the fact that all the X, Y, and Z axes should have
similar errors because they face a similar channel.

V. EXPERIMENTAL RESULTS AND EVALUATION

A. Additional Sensor for Height Estimation

To improve the height estimation, RAIL deploys an ad-
ditional ultrasonic transceiver mounted on-board the drone
to estimate the height continuously. Then, using a filter, it
incorporates this measurement with the Z-axis estimation that
is already available from the previous step. This significantly
improves the Z-axis estimation accuracy.

The ultrasonic transceiver is located on-board the drone
facing upwards and finds the distance between the drone and the
ceiling by calculating the time of flight of the ultrasonic signal
transmitted from the sensor, after it is reflected from the ceiling.
Then, simply by subtracting this result from the room’s height,
the drone’s height at each moment is calculated. The channel
between the drone and the ceiling is usually more reliable than
the one between the drone and the floor because usually, there
are no objects between the drone and the ceiling that induce
errors. Following shows the height estimation using this extra
ultrasonic transceiver:

d = csound · t/2 ; hdrone = H − d,

where d is the distance between the drone and the ceiling, t
is the total time that takes the signal to travel from ultrasonic
transceiver on-board the drone and hit the ceiling, reflecting,
and is received in the ultrasonic transceiver on-board the drone,
H is the room height, and hdrone is the estimation for drone’s
height.

B. Experimental Setup

We conducted different experimental tests based on and
coupled with our MATLAB simulations. As depicted in Fig. 3,
the experimental test-setup consists of two stations: first, the
drone and the system on-board it, and the second one is the
ground control station which helps to input the transmitted data
into the MATLAB program running on a Dell XPS 15 laptop.
The drone is being used for the experiment is a Parrot Mambo

Fig. 3: Parrot Mambo Drone equipped with the ultrasound
transceiver system at the left and the receiver side on the right
part.
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Fig. 4: (a) Evaluating the performance of RAIL: Comparison
between the X − Y plane average estimation error and the
Z-axis. (b) Assessing the performance of RAIL: overall three-
dimensional localization accuracy. In both figures, we plot the
comparison for just 5 random trajectories out of many more to
avoid having cluttered figures.

Drone. It is a cheap, off-the-shelf, and ultralight drone suitable
for indoor experiments, and also it has the capability of carrying
some light loads. The designed system mounted on-board the
drone consists of an Arduino Uno micro-controller connected
to an HC-SR04 sensor for ultrasonic distance measurement
purposes and a XBee S1 module for wireless communication
with the ground controller. In the ground control unit, another
Arduino Uno micro-controller connected to a XBee S1 receives
the data and transfers it into the MATLAB program running
on the laptop. All the experiments are conducted in a hallway
inside the building with dimensions 5 m × 5 m × 4 m.



C. Overall Combined Results

In Fig. 4a, the localization error of the Z-axis with the X−Y
plane is compared. This figure justifies the necessity of having
the auxiliary sensor for height estimation. Furthermore, this
figure shows how the last step of RAIL further improves the
Z-axis estimation by constantly transferring the measured data
from the ultrasound sensor on-board the drone (HC-SR04)
to the receiver module connected to the Dell XPS 15 laptop.
Therefore, RAIL successfully improves the Z-axis estimation.

In Fig. 4b, the performance of RAIL with that of the
benchmark scheme (which relies only on FH-CDMA distance
estimation to localize a target drone) in terms of the overall
three-dimensional localization error is compared. The aver-
age value of three-dimensional localization error for RAIL is
1.5 cm. As is seen in the figure, the benchmark scheme’s local-
ization error is almost twice that of RAIL. This is because the
benchmark scheme merely focuses on mitigating ranging-based
error by deploying the FH-CDMA communication scheme for
localization. Other drone localization schemes proposed in the
literature do the same and try to improve the localization
accuracy by offering their technique to mitigate the ranging-
based error. However, RAIL proposes a scheme that deals with
both ranging-based errors and fixes the Z−axis estimation error
induced by relative geometry between the transmitters and the
receiver and further improves the accuracy.

To report an overall average localization error for RAIL in
any possible scenario and compare it with the state-of-the-
art, we conducted ample simulation and experimental tests
with different trajectories with random paths and in various
environments. Based on our evaluations and the overall report
of the other work in the literature [2], [8], [14]–[16], RAIL
achieves significant improvement in comparison with the pre-
vious drone localization schemes. For instance, in [2], their
approach incurs a high Z-axis estimation error, and they did
not propose any solution to fix it. Moreover, their scheme
requires an additional communication link which may induce
more latency and error. We rectify this issue and eliminate the
extra link by changing the setup and leveraging the CDMA
technique to provide signal separation at the receiver. On the
other hand, [15] has a localization error of at least 2 cm only
for two dimensions without even addressing three-dimensional
localization. In [14], the proposed scheme has an average error
of 5.2 cm for three-dimensional localization for drones which
is more than three times what RAIL achieves.

VI. CONCLUSIONS

In this paper, we designed and evaluated RAIL, a novel three-
dimensional localization approach for drones in GPS-denied
environments. To our knowledge, RAIL is the first scheme to
leverage the hybrid FH-CDMA for multi-path resilient rang-
ing and provide high-accuracy three-dimensional localization,
which is necessary for successful autonomous drone navigation.
We evaluated RAIL over an ample of different random tra-
jectories. Our simulation and experimental results demonstrate
that RAIL’s localization error is 1.5 centimeters on average in

three-dimensional space, making RAIL an excellent alternative
to GPS for any indoor drone deployment case.
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