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Abstract—On-board processing of digital beamforming in
satellites is an efficient solution for the higher data rates, more
capacity, and lower latency, but the available on-board limited
power makes it impractical to digitally create thousands of beams
at once. A significant portion of the analog hardware in a satellite
communications payload can be replaced with highly integrated
digital components, which are often more affordable, lighter,
smaller, and reprogrammable by employing digital beamforming.
In comparison to matrix-by-vector multiplication beamforming,
the discrete Fourier transform (DFT) beamformer enables the
finer realization of real-time beamformers with reduced circuit
complexity and lower power consumption. Fast Fourier trans-
form (FFT) methods can further reduce the computing cost of the
DFT computation. Therefore, in this paper, area-power efficient
two-dimensional (2D) FFT digital beamforming techniques are
analyzed and implemented. The major implementation challenge
is to produce N samples per cycle with lower area-power
consumption. Fully unrolled 4-bit twiddle factor (TF) quantized
FFT is proposed in this regard. The optimization techniques
through quantization, truncation, and complex multipliers are
thoroughly discussed for efficient implementation. The behavioral
and post-route timing simulations are validated, and implemen-
tation results like area and power consumption are estimated and
compared among conventional , fully unrolled, and the proposed
4-bit TF quantized 2D-FFT.

Index Terms—beamforming, fast Fourier transform, look-up
table, power estimation, quantization.

I. INTRODUCTION

The increasing number of users of satellite-based services
is pushing the requirements for high speeds, increased perfor-
mance, and more capacity [1]. In order to fulfill these require-
ments, satellites must be equipped to generate thousands of
beams across the coverage region, necessitating a substantial
capacity for aggregated beamforming. Analog beamformers
suffer from lack of flexibility and high consumption of power
and mass [2]. Feeder and reflector schemes stand as the practi-
cal alternative to achieve desired gains. When it comes to im-
plementing direct radiating arrays (DRA), hybrid beamforming
techniques represent the sole available option [3]. However, the
implementation of hybrid beamforming carries with it a trade-
off between complexity and flexibility [4]. The advancements
in digital hardware-based design have rapidly lowered the cost

and increased the abilities of digital components employed
in digital beamformers. In this context, on-board processors
can deal with a limited portion of the system’s capacity with
respect to digital beamforming. Reducing power consumption
would enable the deployment of a fully digital payload,
enhancing capacity allocation flexibility to cater to a wider
range of user applications [5]. These requirements can be
translated into an area and power-efficient digital beamformer
without impairing the flexibility of fully digital solutions.

Digital beamforming through matrix-by-vector multiplica-
tion operation is a brute-force method, and each scalar multi-
plication is a hardware process that consumes a lot of space
and power. When employing uniformly linear or rectangular
arrays, the apparent choice for implementing codebook-based
digital beamforming is to utilize the discrete Fourier trans-
form (DFT) as the beamforming matrix [6]. The fast Fourier
transform (FFT) algorithm can therefore be used to implement
the DFT effectively [7]. By leveraging FFT methods, the
computing cost of the DFT computation can be reduced to
O (NlogN). This reduction in complexity elucidates why
real-time beamformers can be implemented more efficiently,
requiring fewer circuitry and power compared to matrix-by-
vector multiplication.

Implementation of two-dimensional (2D) FFT digital beam-
forming requires N output samples per clock cycle. The
conventional FFT in [8] takes IV clock cycles for IV samples,
which does not fulfill the requirement to perform FFT-based
digital beamforming. A fully unrolled FFT is capable of
producing N samples per clock cycle [9]. As mentioned
in [10], the performance of the fully unrolled FFT-based
digital beamforming on satellite systems can be effectively
improved in terms of power reduction, area reduction, and
increased throughput. While efficient FFT algorithms enable
the realization of completely unrolled FFT beamforming, this
approach might still be overly complex for certain satellite
applications. In such cases, it becomes crucial to optimize
the utilization of on-board resources like power consumption
and mass. The twiddle factors (TF) consume more power
resources due to the existence of the multiplication process.



Quantization of TFs can be proven to be an efficient solution
in fully unrolled FFT architectures for digital beamforming
applications.

Therefore, in this paper, we have proposed 4-bit TF quan-
tized fully unrolled 2D-FFT digital beamforming for on-board
processing in satellites. First, we examine the conventional
FFT complexity, which operates in a rolled fashion, processing
one input sample per cycle of operation. Subsequently, we
delve into the fully unrolled FFT, which processes N input
samples per clock cycle of operation, eliminating the rolled
process. The implementation of a fully unrolled FFT results
in higher area and power consumption. To address this con-
cern and achieve further reduction in both area and power
usage, a 4-bit TF quantized FFT is proposed for the 2D-
FFT beamforming design. The proposed 4-bit TF quantized
fully unrolled FFT is analyzed with signal-to-noise ratio (SNR)
measurement and usage of truncation/rounding mode in imple-
mentation. Furthermore, the detailed 2D-FFT implementation
methodology with the optimization techniques and pipelining
strategy is presented for the proposed architecture. The 2D-
beamforming plot with the proposed 4-bit TF quantized FFT
is discussed, and the implementation results of the 2D-FFT
beamforming in a typical medium Earth orbit (MEO) satellite
scenario.

The remaining sections of the paper are structured as
follows. In Section II, we present an analysis of FFT archi-
tectures, covering aspects such as computational complexity,
effects of quantization, and SNR measurement. Then, the
implementation methodology of 2D-FFT in unrolled fashion
for 4-bit TF quantized FFT is presented in Section III. Lastly,
we discuss a preliminary evaluation of the 2D-FFT simulations
in MATLAB and field programmable gate arrays (FPGA)
concerning the implemented area-power consumption for the
FFT-based onboard digital beamforming in various scenarios
in Section IV. Subsequently, we offer concluding remarks in
Section V.

II. ANALYSIS OF FFT ARCHITECTURES

The conventional DFT entails N x N multiplications and
(N —1) x N additions, resulting in significant computational
complexity. As a more efficient alternative, FFT structures
are employed in beamforming, reducing the multiplication
complexity to N/2 x logy(N) and addition complexity to
N xlog, (V). Radix-4 based FFT requires 25% fewer multipli-
ers when compared to radix-2 even though the area of adders
remains the same in both cases [10]. In radix-4, the theoretical
total number of multipliers is equivalent to 3N x log,(N),
while the number of adders is N x log,(N).

The derived generalized equation for obtaining the
optimized complex multipliers and complex adders for
different FFT sizes using radix-4 can be expressed as follows:

m—1

3N
o Number of complex multipliers = Z (4 -3 4")

n=0
where m = log,(N/4) for FFT size > 16
o Number of complex adders = N x log, (V)

One input sample is processed in a rolled fashion by
the FFT in commercially accessible products like FPGA.
If N samples are required at once, which is the case for
beamforming, then utilizing this type of architecture will need
multiplying the hardware or frequency N times. A completely
unrolled FFT is capable of producing N samples at once [9].
Furthermore, in the context of a fully unrolled architecture, the
estimated number of multipliers is lower than the theoretical
computation. Additionally, this fully unrolled approach offers
resource reduction when not all FFT outputs are required for
the digital and radio-frequency (RF) chains. When designing
the multiplier for implementation, the twiddle factors (TFs)
W = 1 are excluded since they only result in data multiplied
by one. Despite the attractiveness of fully unrolled FFT for
beamforming operations, it comes with a substantial demand
for area and power consumption. As a result, a 4-bit TF
quantized FFT is proposed to mitigate these requirements.
In the subsequent subsections, it becomes evident that the
4-bit TF quantized FFT maintains linear operation without
introducing interference.

A. FFT with TF Quantization

The critical component in deciding the number of multiplier
operations and the number of look-up tables (LUTSs) occupied
by the multiplier is TFs. In this subsection, we analyze the
FFT with different quantization levels so that the quantized
FFT gives a similar SNR performance as that of conventional
FFT. In the extreme case, when all the TFs in the radix-4
FFT are rounded to the unity, the “DFT-like” transformation
is not exactly a DFT but is exactly a complex Hadamard
transformation. On the other hand, the advantage of quantized
FFT will have a smaller number of LUTs occupied compared
to conventional FFT. The plots in Fig. 1a, Fig. 1b, and Fig. Ic
present the real-part of TF for the last stage of a FFT quantized
with 4-bit, 6-bit, and 8-bit, respectively. From the plots in
Fig. la, Fig. 1b, and Fig. lc, it is observed that the TF
quantized FFT has a similar result compared to conventional
FFT. Furthermore, the equivalent SNR measured from mean
squared error for a complex Gaussian random input with
respect to the conventional FFT is presented in Fig. 2a, Fig. 2b,
and Fig. 2c. From Fig. 2a, Fig. 2b, and Fig. 2c, it is observed
that the SNR is 24.6 dB, 35.6 dB, and 47.9 dB respectively,
and approximately equal to the theoretical SNR given by
SNR~ 6b + 1.72, with b being the number of bits.

B. Truncation and Rounding in FFT

In this subsection, the analysis of employing truncation
instead of rounding in the implementation is presented. The
simulations using both rounding and truncation are presented
in Fig. 3a and Fig. 3b. The z-axis represents the repetition
number of FFT operations and y-axis denotes the SNR in dB.
The input random Gaussian data samples to the FFT are in the
format of Q(16,15) i.e., one bit for sign and fifteen bits for
the fractional part. In Fig. 3a, the input samples provided to
the FFT are the random Gaussian samples, and it is observed
that the rounding technique has an SNR of 69.31 dB and
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Fig. 1: Comparison of theoretical TFs with (a) 4-bit, (b) 6-bit, (c) 8-bit, TF quantization.
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Fig. 2: SNR measured for conventional FFT with (a) 4-bit, (b) 6-bit, (c) 8-bit, TF quantization.
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Fig. 3: Rounding and truncation for 16-point FFT with (a)
sinusoidal signal.

truncation has an SNR of 64.55 dB. The overall difference
in SNR between them is around 4.75 dB which indicates that
there is a precision loss of roughly around 1 bit by employing
truncation in the implementation i.e., SNR = 6.02b + 1.72
dB. On the other hand, the advantage of using the truncation
helps in reducing the number of extra additions required for
employing the rounding technique i.e., by 8(N/4) x log,(N).

Furthermore, for a better understanding of this performance,
a random Gaussian sample added with a sinusoidal signal is
provided as an input, and the obtained results are presented in

repetition number
(b)

random Gaussian samples, (b) random Gaussian samples and

Fig. 3b. It is noted that rounding is 71.26 dB and truncation
is 66.45 dB. The overall difference in SNR accounts for 4.81
dB which signifies a loss of precision by 1-bit by employing
truncation. So, we can say that even though truncation leads
to a loss of precision by 1-bit, we were able to save the
number of additions required for performing the quantization
operation by a factor of 8(N/4) x log,(NN). Based on the
advantage of fully unrolled FFT architectures, the 4-bit quan-
tization performance with its SNR measurement, the detailed
implementation with optimization of proposed fully unrolled
4-bit TF quantized FFT is discussed in Section III.
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III. IMPLEMENTATION METHODOLOGY

The fully unrolled architecture of 16-point FFT employed
for the implementation is presented in Fig. 4, and the same
architecture is used for 4-bit TF quantized FFT. In the fully
unrolled FFT architecture, the TF has a bit-width of sixteen
bits, whereas, in the proposed 4-bit TF quantized FFT, TF has
a bit-width of four bits. The architecture in Fig. 4 employs a
radix-4 algorithm that has two stages with four butterflies in
each stage. Each stage consists of four butterflies, and eight
butterfly modules are presented in total. The numbers circled
after STAGE 1, i.e., 0000, 0123, 0246, and 0369, represent the
TFs W]\l,k. Further, the red dotted module in Fig. 4 represents
Butterfly 1 of STAGE 1 with no twiddle multiplications. The
green color represents butterfly architecture’s output multiplied
by three TFs since one TF is zero (W3 = 1). Similarly, the
remaining two butterflies have three TFs, and are highlighted
in blue and brown colors. Since the output sample bit positions
are shuffled after STAGE 2, the output sample bit positions are
hardwired during implementation to represent normal order.

The intent in this implementation is to design an efficient
complex multiplier with less power and area utilization. For
understanding the implementation of the complex multiplica-
tion, the complex multiplier module implemented using three
real multipliers is better understood with an example. The
output of Butterfly 2 (green color) in STAGE 1 (let us say
X, + jX;) is multiplied with TF Wi, ie., e 33611 which
is equivalent to 0.9239 — j0.3827. We can realize them with
real and imaginary parts of the sample X, + jX; multiplied
with the above TF by considering temporary variables Z, D,
and FE, which can be expressed as

Z =0.9239 - (X, — X;),
D = 0.9239 + 0.3827,
E =0.9239 — 0.9827.

Thus, by performing D-(X;+Z) and E- (X, —Z), the real and
imaginary parts of the output of the multiplier are obtained.
Hence, the complex twiddle multiplication is realized with
three real multipliers and five real adders instead of four
real multipliers and two real adders. Similarly, if the sample
X, +jX; has to be multiplied with TF say 0.7071 — j0.7071,
then it is noted that ‘E’ is made zero, and hence one more
real multiplier is reduced. Further optimizations include when
TF of STAGE 1 Butterfly 3 say W22 ie., e 717622 (which
is equivalent to 0.0000 — j1.0000) multiplied with X, + jX;.
The resultant is equal to swapping the real and imaginary
parts, with the imaginary being two’s complements of the real
sample, i.e., the real part is Xj, and the imaginary part is
X: + 1. Hence, no real multiplier is required in this case.
Considering all these optimization techniques, an efficient,
fully unrolled radix-4 FFT is implemented.

The following subsections signify the incorporation of
pipelining technique (to achieve a higher operating frequency),
and the construction of 2D-FFT based on the 1D-FFT dis-
cussed earlier.

A. Implementation of Fully Unrolled and 4-bit TF Quantized
FFT with Pipelining

From the previous implementation architecture of the 16-
point fully unrolled architecture in Fig. 4, the maximum
operating frequency achieved is 83.3 MHz with a positive
slack of 0.011 ns. This low operating frequency is due to
the extensive combinational circuit path created due to the
multiplier module, as shown in Fig. 5a. Similarly, the im-
plemented design with 4-bit TF quantized FFT reported a
maximum operating frequency of 125 MHz with a positive
slack of 0.163 ns. Therefore, to increase the maximum oper-
ating frequency of the design, pipelining is introduced in the
multiplier module. The employment of pipelining will improve
the maximum operating frequency at the expense of increasing
the number of flip-flops (FFs)/registers, as shown in Fig. 5b.
The fully unrolled 16-point FFT with pipelining multiplier
module achieved a maximum operating frequency of 129.534
MHz with a positive slack of 0.029 ns. Due to the insertion
of FFs, the implemented design has an initial latency of six
clock cycles, although the iteration interval is one clock cycle.
Similarly, by employing the multiplier module with pipelining
in the proposed fully unrolled 4-bit TF quantized 16-point FFT,
an operating frequency of 212.766 MHz with a positive slack
of 0.174 ns is achieved.

B. Implementation of 2D-FFT Beamforming

Implementation of 2D beamforming employs 2D-FFT op-
eration. A 2D-FFT is performed comprising a row-wise oper-
ation and then followed by a column-wise operation. In this
paper, a 16x16 2D-FFT digital beamforming is performed.
Thus, a total of sixteen FFTs of 16-points are required to
accomplish the row-wise operation, and then sixteen FFTs of
16-points are required for column-wise operation, as shown
in Fig. 6. For the fully unrolled architecture TFs are 16-bits
in width and in the proposed 4-bit TF quantized 2D-FFT,
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Fig. 5: Multiplier module for TF multiplication (a) without pipelining, (b) with pipelining.

each TF has 4-bits in width. It can be visualized that the two
hundred and fifty-six inputs are fed to the sixteen blocks of
16-Point FFT-1 to perform row-wise FFT operation. Then, the
rewiring block performs the re-connecting of the outputs from
the sixteen blocks of 16-Point FFT-1 to the sixteen blocks of
16-Point FFT-2 for the column-wise operation. Inputs to the
first block of the 16-point FFT-2 are denoted by the red wiring.
Similarly, the blue wiring represents inputs to the second block
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Fig. 6: Functional block diagram of 2D-FFT.

of the 16-point FFT-2. This process continues till the sixteenth
block of the 16-point FFT-2, denoted by the purple wiring
as shown in Fig. 6. Post FFT computation from the sixteen
blocks of the 16-point FFT-2 the second stage of rewiring is
performed to align the outputs.

IV. RESULTS AND DISCUSSIONS
This section presents the MATLAB simulations and the
implementation results targetting xcvu29p-12fsga2577e FPGA.
A. 2D-FFT Beamforming Simulation Analysis

The MATLAB simulation for beamforming via 2D-FFT TF
quantized is shown in Fig. 7 and Fig. 8. The 2D-FFT beam-
forming is carried out by multiplying the baseband signal with
the weight values corresponding to the beamforming vectors.

These weight values are obtained by performing 2D-FFT. The
simulation plot in Fig. 7 shows the beam directivity in dB
at 0° azimuth and elevation angles. The employed antenna
dimension is 16x 16 and the azimuth and the elevation cut are
-90° to 90°. With different indexing to the input fed to the 2D-
FFT, different beam directions are obtained as shown in Fig. 8,
and it corresponds to different user locations. Here, indexing
refers to the (row, column) position of the directed beams.
Therefore, with 2D-FFT efficient beamsteering is possible in
different directions with less complexity.

3D Directivity Pattern z 25
Az 0
190 20

Y
Az 90 0
EIO

Directivity (dBi)

Az 0
EIO

Fig. 7: 3D directivity beam pattern with indexing (1,1).

3D Directivity PattemZ

Directivity (dBi)

Az 0
EIO

Fig. 8: 3D directivity beam pattern with indexing (1,12).



Fig. 9: Behavioural simulation of fully unrolled 4-bit TF quantized 1D-FFT.
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Fig. 10: Post-route timing simulation of fully unrolled 4-bit TF quantized 1D-FFT.

B. FPGA Implementation Results

The implemented 2D-FFT has a structure of thirty-two 16-
point FFTs with 256 inputs and 256 outputs. Since implement-
ing a design with these numbers of high input/outputs (I/Os)
is not feasible on a single FPGA due to I/O constrainsts,the
out-of-context (OOC) synthesis was employed to estimate the
area power consumption. Considering this, we have validated
the proposed fully unrolled TF quantized 1D-FFT of 16-point
with behavioral simulation and post-route timing simulation as
shown in Fig. 9 and Fig. 10. Here axi4-stream protocol was
incorporated whereby by the input data stream ‘m_tdata’ has
an input width of 512 bits (16 samples x 16 bits x 2 for real
and imaginary ). The ‘m_tvalid’ and ‘m_tREADY"’ indicate
the valid and ready ports for input side. Similarly the output
data ‘s_tdata’ has corresponding 512 bits of data with valid
and ready ports. The design runs on active low reset, and it
can be notified from the Fig. 9 and Fig. 10 the outputs (which
are zoomed) are generated per clock cycle, and are same in
the both the cases.

The xcvu29p-12fsga2577e ultrascale+ FPGA is considered
for implementing the proposed architecture with a operating
frequency of 125 MHz (since the proposed 2D-FFT can be
clocked at 230 MHz maximum, we considered 125 MHz
frequency as the best scenario for extrapolation for 1500 MHz
). The power consumption and area utilization in terms of LUT,
FFs, digital signal processing (DSP) blocks for conventional
2D-FFT, fully unrolled 2D-FFT, and the proposed 4-bit TF
quantized 2D-FFT is presented in Table I. There were chal-
lenges when implementing the 2D-FFT using a conventional
FFT algorithm since it is serial in nature and produces one
sample per clock cycle. In this regard, there were two solutions
to implement it. In order to obtain the required frequency of
125 MHz with each beam, the conventional 2D-FFT should
be operated at 2 GHz (16 times the required frequency) using
the architecture shown in Fig. 6. The second solution is to

implement a 16x 16 2D-FFT using 256256 FFT architecture
since 256 output samples per clock cycle are needed at once.
The second solution of conventional 2D-FFT was adopted
while implementing the design since the first solution is not
feasible to implement at 2 GHz on the FPGA.

From Table I, it is noticed that conventional 2D-FFT con-
sumes 14.973 Watts (W) of dynamic power which is quite
high compared to fully unrolled and 4-bit TF quantized 2D-
FFT. The proposed 4-bit TF quantized 2D-FFT has a lower
power consumption compared with the remaining two, and
the main advantage is that there are no DSPs that can be used
for other signal processing blocks such as sparse matrix (used
for user selection) in the same FPGA.

TABLE I: Resource estimation for 16 x16 2D-FFT

Dynamic power

Resources consumption (W) LUT FF DSP
gg‘_‘;;r}ﬁ"““l 14.973 563680 | 1372544 | 6144
gg_l}y:F‘?m“ed 5.472 130208 | 112707 | 640
33‘;}: quantized 5.419 142592 | 112643 | 0

TABLE II: Extrapolated resource estimation in MEO scenario

MEO mission reference scenario

Power
Resources RE consum |- gr FF DSP

Chains -ption

(W)
gg_‘;?}“onal 10x10 | 179.676 | 6764160 | 14897664 | 73728
Fully
unrolled 10x10 65.664 1562496 1352484 7680
2D-FFT
4-bit TF
quantized 10x10 | 65.028 1711104 1351716 0
2D-FFT




The implemented design is a part of the technical specifica-
tions for the MEO scenario with 1500 MHz bandwidth and a
RF chain size of 10x 10. In order to approximate the power and
area consumption, the results presented in Table I are extrap-
olated. The extrapolated area-power estimation for the three
FFT implementations is presented in Table II. Considering
xcevu29p-12fsga2577e ultra scale+ FPGA, it is impractical to
prototype on a single FPGA using 2D-FFT conventional FFT
due to LUT and DSP constraints. The fully unrolled 2D-FFT
consumes too many DSP blocks which are required for other
processing blocks in a real-time beamformer. The proposed
4-bit TF quantized 2D-FFT has less power consumption and
consumes zero DSP blocks, and we can say that the proposed
4-bit TF quantized 2D-FFT is the feasibility of fully digital
beamforming in satellite communication systems.

V. CONCLUSION

This work developed an efficient digital beamforming tech-
nique for satellite communications. Firstly, the computational
complexity of the conventional FFT was discussed, showing
that it processes one input sample per cycle of operation in
a rolled fashion. Then, a fully unrolled FFT that processes
N input samples per clock cycle of operation was selected
for beamforming. The implemented fully unrolled FFT suffers
from high area and power consumption. We therefore proposed
and implemented an area-power efficient 4-bit TF quantized
2D-FFT. The implemented truncation in 2D-FFT assisted in
area reduction at a loss of 1-bit precision. The implementation
methodology with the optimization techniques and pipelining
helped in both reducing the area and increasing the maxi-
mum operating frequency of the design. The 3D directivity
pattern with the proposed 4-bit TF quantized 2D-FFT was
also discussed. Further, the FPGA implementation validation
results with timing simulations were provided and compared.
The resulting lower power consumption and area utilization
indicate that the proposed solution is promising for satellite
communications.
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