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Abstract—We propose LCMsec, a brokerless, decentralised
Publish/Subscribe protocol. It aims to provide low-latency and
high-throughput message-passing for IoT and automotive appli-
cations while providing much-needed security functionalities to
combat emerging cyber-attacks in that domain. LCMsec is an
extension for the Lightweight Communications and Marshalling
(LCM) protocol. We extend this protocol by providing not only
authenticated encryption of the messages in transit, but also a
group discovery protocol inspired by the Raft consensus protocol.
The Dutta-Barua group key agreement is used to agree upon
a shared symmetric key among subscribers and publishers on
a topic. By using a shared group key, we reduce the key
agreement overhead and the number of message authentication
codes (MACs) per message compared to existing proposals for
secure brokerless Publish/Subscribe protocols, which establish
a symmetric key between each publisher and subscriber and
append multiple MACs to each message.

Index Terms—Publish/Subscribe security, cryptography, mul-
ticast, IoT security, secure group communication, cybersecurity

I. INTRODUCTION

Publish/Subscribe architectures [1] are widespread and an
important building block for Internet of Things (IoT), auto-
motive and cloud applications. They can improve scalability
and flexibility of communication infrastructures by decreasing
dependencies between components, since entities in such a
system need not know about one another. They additionally
support dynamic communication patterns in which publishers
and subscribers can be added and removed without affecting
the rest of the system. Some Publish/Subscribe protocols
like the Lightweight Communication and Marshalling protocol
(LCM) [2] are brokerless, which offers advantages in terms of
latency and throughput in some situations, removes a central
point of failure (the broker) and reduces the administrative
overhead.

However, LCM fails to offer convenient and fast possibili-
ties of securing it. There exists no easy way to achieve security
by leveraging existing transport-layer encryption mechanisms
due to the multicast-based communication topology that is
used in LCM: achieving security in the multicast case is
generally a much harder problem than in the unicast case [3].
Thus, LCM, even when used in an isolated network, not only
violates the emerging zero-trust paradigm but also the need-
to-know principle: messages are simply routed to all other
users of the system, even those that have not subscribed to the
particular topic.

Nevertheless, the brokerless Publish/Subscribe communica-
tion topology offers the distinct advantages in terms of latency,
throughput and simplicity mentioned above. The purpose of

this work is therefore to provide an extension to LCM, which
preserves the benefits in performance and ease of usability.
Furthermore, it ensures confidentiality, integrity and authen-
ticity for the messages in transit.

An overview and evaluation of the existing security solu-
tions in the Publish/Subscribe space is discussed in Section II.
In Section III, we discuss the LCM protocol in detail since it
forms the basis for this work. After defining an attacker model
and security goals in Section IV, we present the proposed
LCMsec protocol in Section V, which contains two phases:
firstly, the scheme used to secure messages based on shared
keying material, secondly, the scheme used to agree on that
keying material. Finally, we evaluate the performance of the
proposed protocol in Section VI.

II. RELATED WORK

A. Publish/Subscribe Systems

Typically, a distinction is made between topic-based and
content-based Publish/Subscribe systems [1]. In a topic-based
system, subscribers can subscribe to one or multiple topics.
Messages in such a system are associated with a specific
topic, and receivers will only receive messages on topics
they are interested in. In a content-based system, subscribers
can instead express constraints on the contents of messages
directly.

Furthermore, Publish/Subscribe systems usually adopt either
a brokered or brokerless architecture. Brokered systems like
the widely used Message Queue Telemetry Transport (MQTT)
[4] use a central message broker to transmit messages between
the publishers and subscribers. This allows fine-grained control
over message distribution since brokers can route messages
based on the constraints of the subscribers (whether they are
content- or topic-based).

Brokerless Publish/Subscribe systems distribute messages
directly from publishers to subscribers in a peer-to-peer fash-
ion, which can improve latency and throughput characteristics
while reducing the amount of configuration that is required to
deploy entities. Additionally, the decentralised nature of such
systems does not depend on a single point of failure. Examples
for such systems include the Data Distribution Service (DDS)
[5] and LCM, both of which can use UDP over IP multicast
[6] for message delivery to achieve high-throughput and low-
latency in scalable systems.

B. Security in Publish/Subscribe Systems

Most work that proposes security solutions for Publish/Sub-
scribe systems focuses on brokered Publish/Subscribe architec-
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tures. For instance, Onica et al. [7] stated a list of requirements
for privacy-preserving Publish/Subscribe systems, but consider
only systems which use a broker. Bernard et al. [8] proposed a
general, conceptual framework for peer-to-peer data exchange
that can also be used with existing Publish/Subscribe systems,
although brokers are used in this scenario. Malina et al. [9]
proposed a security framework for MQTT which uses brokers.
Ion et al. [10] and Hamad et al. [11] described systems
in which brokers are employed but not trusted. Similarly,
Dahlmanns et al. propose ENTRUST [12], achieving end-
to-end security over any existing brokered Publish/Subscribe
system without trusting those brokers.

ZeroMQ [13] can be used to implement brokerless Pub-
lish/Subscribe messaging, however, there are no security ex-
tensions for it with support for this use-case. CurveZMQ [14],
while similar in name, is quite different and does not actually
provide security for Publish/Subscribe systems, but end-to-end
security between client and server. While CurveZMQ can be
used to secure Publish/Subscribe by being embedded in the
transport layer, this is only possible when client and server
are only one hop apart.

The Data Distribution Service (DDS), however, is quite
comparable to LCM with regard to their respective use-cases.
DDS supports the brokerless Publish/Subscribe paradigm in a
peer-to-peer fashion, that is without using a message broker,
however, it works slightly differently to LCM. Instead of
simply broadcasting messages to a preconfigured multicast
group, DDS features a discovery protocol that allows publish-
ers to discover the set of appropriate subscribers. Subsequently,
messages are routed only to these subscribers.

DDS also features a security extension [15] that provides
authenticated encryption on a per-message basis. However, a
handshake and key agreement is performed separately between
each publisher and subscriber to a topic (as discovered by the
discovery protocol) [16]. This may lead to scalability issues
during the discovery phase in the case of large numbers of
publishers or subscribers to the same topic. A high amount
of flexibility and many ways to configure the DDS middle-
ware can lead to misconfiguration, a problem which is also
mentioned in [16]. Additionally, there are scalability issues at
runtime. Authentication of messages is achieved by using a
separate Message Authentication Code for each receiver [15]
which, in the case of many subscribers, leads either to large
overhead for each message or separate messages for each
receiver, moving away from the multicast paradigm.

These scalability issues are quite inherent to the problem
of authenticating messages in a multicast setting in which
digital signatures are not desired due to their poor performance
characteristics. While a number of theoretical solutions are
discussed in literature [3], we bypass this problem entirely.
By defining a trusted group of legitimate publishers and
subscribers that share a common symmetric, ephemeral key,
we propose a protocol in which an authentic message is
understood to be a message originating from any member of
this group, not necessarily a specific one. In order to generate
this shared key while avoiding a scenario in which a total of

N ·M expensive key agreements need to be carried out (in the
case of N publishers and M subscribers), we use the Dutta-
Barua group key agreement (DBGKA) [17], an authenticated
group key agreement protocol that supports dynamic joining
and leaving of users. Furthermore, we implement a discovery
protocol, inspired by the Raft consensus algorithm [18], that
forms consensus about the state of the trusted group in order
to drive the DBGKA protocol.

III. DESCRIPTION OF LCM

Lightweight Communications and Marshalling [2] is a
brokerless, topic-based Publish/Subscribe protocol designed
for real-time systems that require high-throughput and low-
latency. Message types can be defined in the LCM type spec-
ification language, which is a language-neutral and platform-
neutral specification language for structured data. From this
specification language, language-specific bindings for binary
serialisation and encoding are generated, while maintaining
interoperability.

The binary-encoded LCM messages are then sent via mul-
ticast groups, which are identified by the multicast IP-address
and port on which they are transmitted. Each group comprises
multiple topics, which in LCM are called channels, identified
by a channelname string. Messages are transmitted using
UDP and routed via IP-multicast to all other nodes within
the multicast group. A node can subsequently subscribe to a
channel within that group by simply dropping all messages
except those that match the channelname. Since the same
channelname might be used in multiple multicastgroups at the
same time, we can uniquely identify a only by the combination
of multicastgroup and channelname. We will therefore define
LCMDomain=(multicastgroup, channelname).

LCM Type Specification
Language

language-specific code
(.java, .c, .py...)

LCM Packet Format

automatically
generates

creates

UDP
Multicast

Fig. 1. High-level illustration of LCM

The LCM packet format, as depicted in Figure 2, consists
of a 4 byte magic number to identify the LCM protocol, a
sequence number which is incremented by each sender sep-
arately, and a zero-terminated, ASCII-encoded channelname
string. The channelname string is immediately followed by the
payload. Large messages are fragmented into multiple smaller
transportation units to achieve a maximum message size of 4
GB, in this case a slightly more complicated header is used,
but omitted here.



 magic (4 bytes) msg_seqno (4 bytes)

channelname (up to 64 bytes)

payload

Fig. 2. LCM packet format

IV. ATTACKER MODEL AND SECURITY GOALS

We consider active and modifying attackers in the system.
Security is provided only against outsiders: we do not consider
an attacker who has the permission to send on the multicast
group in question (please refer to the discussion on permission
management in Section V-B1). The attacker has considerable,
but limited resources and cannot break common cryptographic
primitives.

Since channelnames in LCM are usually domain-specific
topics, they should remain confidential. LCMsec aims to
provide confidentiality and integrity of not only the messages
in transit, but also the channelname associated with them. We
also provide a notion of authenticity: messages are guaranteed
to have originated from a trusted entity within the LCMDo-
main, but cannot be attributed to a specific entity.

We provide a reduced form of security against an attacker,
who has no permission to send on a specific channel, but can
send on some other channel within the group. Against this
type of attacker, the integrity and accountability guarantees
remain unchanged, however, confidentiality is provided only
for the contents of messages, not for the channelname (or
topic) associated with messages. We elaborate on the reason
for this trade-off in Section V-A.

V. LCMSEC: THE PROPOSED PROTOCOL

This section describes the LCMsec protocol in detail. LCM-
Sec employs a hybrid cryptographic system: Messages in
transit are encrypted and authenticated using symmetric-key
cryptography to achieve confidentiality, integrity and authen-
ticity as outlined in Section IV. The symmetric key used to
this end is generated by an authenticated group key agreement
protocol that does not depend on any central instance to
facilitate. We assume however that each participant possesses
a digital identity with which he can express his rights to the
system, details on this can be found in Section V-B1.

In the following, we first present our solution for secur-
ing the messages under the assumption that each participant
already has knowledge of required keying material. The gen-
eration of this keying material is discussed subsequently.

A. Security of Messages in Transit

We maintain the hierarchy between channel and group that
is inherent to LCM – one participant can be active on any
number of multicast groups, and on any number of channels
within that group. However, participants should only be able
to read and send messages on the LCMDomains that they
have permissions to use. Thus, to maintain confidentiality and

Multicastgroup

Channel2

Channel1 Payload

Payload
Keystore

Channel1

Channel3

Channel2

Multicastgroup Channel3 Payload

Fig. 3. Hierarchical encryption of channelname and payload in LCMsec

accountability on a per-channel level, we use a hierarchical
scheme illustrated in Figure 3: one key, kg , is used to secure
the channelname. This key is shared between all users with
the permission to access the multicast group. A second key,
kch, is used to secure the message itself — this key is shared
by all users with permission to access the LCMDomain.

A receiver can use kg to decrypt the channelname, then
look up the associated kch to decrypt the message. This carries
with it a concession in terms of confidentiality: If an attacker
has access to kg (he might have access to another channel
within that group), he can learn the channelname of messages
on other channels. However, the alternative – encrypting the
channelname and payload with a single key which is unique
to the LCMDomain – would require a subscriber to attempt
decryption of the message with every key that he knows for
the group, until he succeeds. This clearly does not scale for
many topics in one group.

1) Symmetric encryption of LCM messages: We ensure
confidentiality and authenticity of LCMsec messages through
the use of authenticated encryption. Specifically, we use AES
in Galois/Counter Mode (GCM) in accordance with the NIST
recommendations [19]. Using the GCM mode of operation
requires specifying an Initialisation Vector (IV), which must
be unique for each message encrypted with the same key.

salt (16 bit) sender ID
(16 bit)

msg seqno (32 bit) zero (32 bit)

Fig. 4. Illustration of the IV used to encrypt LCMsec messages

While a sequence number is already part of the LCM header,
multiple parties might be communicating on one channel with
the same key. Since they increment their sequence number
separately, we also need to uniquely identify senders to form a
unique IV. To this end, we use a 16-bit sender ID. According
to the NIST recommendations, we construct a deterministic
96-bit IV as shown in Figure 4. The salt, which has not yet
been discussed, will be generated as part of the keying material
described in Section VI-B.

The LCMsec packet format shown in Figure 5 is similar
to the LCM packet format. The fields are explained in the
following:
magic : Number used to identify LCMsec protocol messages.



 magic (4 bytes) msg_seqno (4 bytes) sender_id (2 bytes)

encrypted channelname   (up to 64 bytes)

encrypted payload and authentication tag

Fig. 5. LCMsec Packet format

msg seqno : Message sequence number.
sender id : Unique identifier associated with the node send-

ing the message. Its generation is covered in section V-B.
channelname : Zero-terminated and ASCII-encoded channel-

name, encrypted with kg and AES-CTR. A receiver can
decrypt the channelnname bytewise until finding the null-
terminator. Unauthenticated encryption is used for the
channelname in order save the overhead of a separate
authentication tag. Authentication of the channelname is
instead guaranteed by including it in the authentication
of the payload.

payload : The AES/GCM encrypted message including au-
thentication tag, encrypted with kch. The channelname is
included as associated data of the AES/GCM mode.

The spatial overhead of the scheme compared to LCM
is thus 18 bytes: two for the sender id and 16 for the
authentication tag produced by GCM.

2) Fragmented messages: As explained in Section III,
messages that do not fit into a single UDP packet are sup-
ported by LCM and called fragmented messages. In LCMsec,
we encrypt and authenticate these messages before they are
fragmented (and conversely decrypt and verify them after they
are joined back together). This approach authenticates not only
the content of the fragment, but also their order.

3) Out-of-order messages and replay attacks: Since LCM
employs UDP-multicast, messages might arrive out of or-
der. However, with the introduction of sender IDs, the pair
msgid = (sender id, seqno) is a unique identifier for each
message. Therefore, it now becomes feasible to detect and
discard or even correct the order of out-of-order messages.
Such behaviour may optionally be configured in LCMsec.

More importantly, the msgid functions to prevent replay
attacks. To keep track of already received messages, a sliding
window of the greatest sequence number received for each
peer can be used, in addition to a window of previously
received messages. To efficiently keep track of this window,
the algorithm in appendix C of RFC2401 [20] or RFC6479
[21] can be used.

B. Group Discovery and Key Agreement

This section describe how the shared symmetric keying
material is generated. Sharing a key with other users is only
meaningful if a notion of identity and associated permissions
exists – specifically, the permission to send or receive on the
LCMDomain. The scheme used to this end is described in
Section V-B1.

Subsequently, we will describe the protocol used to perform
the key agreement on the group. We use the Dutta Barua group

key agreement [17] to generate a key among participants, but
this does not suffice: it is simply the backing algorithm used to
perform the key agreement. Thus, the key agreement process
is split into two phases. The first one is a setup phase, which
aims to achieve consensus within the group on the parameters
used to perform the DBGKA – we will call this phase group
discovery, described in Section V-B3. The second one is the
DBGKA itself which establishes the shared group key, to be
described in Section V-B2.

Here, we only discuss the key agreement protocol for a
single LCMDomain. In the case of multiple channels, multiple
runs of this protocol will be performed. Indeed, most of the
time, at least two runs of the key agreement protocol will be
performed simultaneously: one to generate kg , another one to
generate kch.

1) Certificate and permission management: Certificate and
permission management is not the main focus of this work, and
the solution presented here can easily be changed or extended:
it is not tightly coupled to the other areas of this work.
Nevertheless, we present an attribute-based access control
mechanism based on X.509 certificates [22] that is used to
both identify participants and manage their permissions.

A user U has access to a specific LCMDomain L if it
possesses a valid X.509 certificate which includes an identifier
IDU that uniquely identifies it on the LCMDomain L. This
IDU , which is understood to be the identity for that user
on L is encoded into the URN of the Subject Alternative
Name Extension (SAN) of the certificate in accordance with
RFC 5280 [22]. A Certificate Authority (CA) can issue this
certificate and generate the unique identifier for each domain
by incrementing it. The SAN’s used shall be of the form
urn:lcmsec:<group>:<channel>:<id>

Multiple SANs can be present in one certificate, enabling
an entity to be active on multiple LCMDomains.

2) Dutta Barua key agreement: To agree on a key among
entities of an LCMDomain, the Dutta Barua authenticated
group key agreement (DBGKA) is used [17]1. The protocol
is Diffie-Hellman based and has a number of properties that
are interesting for our use-case. Namely, it is a two-round
key-agreement algorithm that uses broadcast in the second
round, which fits the communication topology used in LCM.
Additionally, it is a dynamic protocol: Entities can join a
group of users that have already agreed upon a key amongst
themselves while taking advantage of previously computed
values, greatly increasing scalability by reducing both the
number of network transmissions and computations that need
to be performed.

The DBGKA provides three operations:
KeyAgree() : It allows a number of users to agree on a shared

key
Join() : If a set of users (participants) P has already per-

formed a KeyAgree() operation, this operation provides

1Two attacks on the DBGKA protocol have been presented in [23]. We have
analysed the attacks and conclude that they are not relevant for our solution.
Details on this are given in Appendix A.



a way for another set of users (joining users), J , to agree
on a shared symmetric key among P ∪J . This operation
is far more efficient than performing KeyAgree(P ∪ J)
in terms of network usage: in addition to J , only 3 users
within P need to be active on the network.

Leave() : Users can leave group, which causes a new key to
be generated among the remaining users.

However, to use the DBGKA in practice, we need an
additional phase which serves to (1) discover peers and ar-
ranges them in a circle, (2) exchange the certificates of each
participant and (3) synchronise the start of the key agreement
operations. In the brokerless spirit of LCM, we aim to achieve
these prerequisites without a central instance to coordinate. We
will call the protocol we use to achieve this the LCMsec group
discovery protocol, to be presented in the following section.

3) Group discovery: As discussed in Section V-B1, a
group G of entities might have a certificate that grants them
permission to be active on an LCMDomain. However, only a
subset of these may be active at a specific point in time – e.g.,
certain devices may be turned off or disconnected from the
system in an IoT context. Within G, we define two subsets:
Firstly P denotes the set of entities that have already agreed
upon a shared secret. Secondly, J consists of the entities
that are connected to the network and have expressed their
intention to join P .

G

P Participants J Joining

Fig. 6. Entities on the LCMDomain

First, we note that for the purposes of the group discovery
protocol, there is no need for a separate initial KeyAgree() and
subsequent Join() operation: without loss of generality, P may
be empty, and both cases can be handled by a Join() operation.

Additionally, we note that the problem of arranging par-
ticipants in a circle is equivalent to achieving consensus on
the sets of P and J among all U ∈ P ∪ J . They can then be
ordered by their unique identifiers (IDU ). Alternatively, a hash
of their certificate could be used. Subsequently, a deterministic
mapping to sender IDs (that is, an unsigned integer which
fits into 16 bits) can be performed. The synchronisation of
the KeyAgree() operation can also be regarded as part of this
consensus problem: the consensus on a timestamp t at which
the key agreement shall commence.

The problem of consensus in distributed computing is well-
studied. A popular solution is the RAFT Protocol [18], which
achieves consensus among a group of distributed nodes by
voting for a leader via a randomised timeout, who then
replicates a log data structure to all other nodes. In our group

discovery protocol, we take the lessons learned from RAFT
and adapt them to our use-case by noticing that replication of
a log data structure is not what we desire: We do not care
about consensus on data in the past, only the current sets P
and J are of interest. Additionally, we do not require a strict
form of consensus: The DBGKA will reliably fail if there is no
consensus on the participants involved (instead of producing
an invalid key). Finally, we notice that RAFT uses heartbeats
to ensure that a leader always exists, which is problematic in
a multicast communication topology due to scalability issues.
However, a leader is not always needed, but only when a Join()
operation is initiated.

We thus present the central idea of our group discovery
protocol. Unlike RAFT, we form consensus only on an as-
needed basis (that is, whenever a new key is necessary) and
vote for a leader not via timeout, but instead form consensus
on the data itself. By defining (P, J, t) ∈ D, we can impose a
weak order on D: for D1 = (P1, J1, t1) and D2 = (P2, J2, t2),
D1, D2 ∈ D,

D1 ≤ D2 ⇐⇒ (|P1| ≤ |P2|)∨
(|P1| = |P2| ∧ |J1| ≤ |J2|)∨
(|P1| = |P2| ∧ |J1| = |J2| ∧ t1 >= t2)

(1)

By adding a small, random offset ε to t, this weak order can
be transformed into a total order. The way we define this order
is not arbitrary: we maximise |J | and |P |, while minimising
t to guarantee termination of the discovery phase. Consensus
is now simply achieved by each participant keeping track of
the largest D it has observed.

With these considerations in mind, we will now describe the
discovery protocol in detail. All messages are authenticated
with a DSA, but the signatures – as well as the verification of
the signatures (and associated certificates) are omitted here for
brevity. Naturally, LCM is used as a communication medium.

An entity a ∈ G with a certificate certa expresses the intent
to initiate the group discovery and subsequent key agreement
on an LCMDomain L by transmitting JOINa = (ta, certa)
with ta = tnow + ε on L. Additionally, it initialises Da :=
(∅, {certa} , ta).

Upon receiving such a JOIN , entity b with Db =
(Pb, Jb, tb), stores the certificate contained for subsequent use.
After a randomised delay, a number of such JOINs may have
been received – we will call the set comprising them M . The
set Jnew = M \Jb then describes the JOINs that have been ob-
served by b, but are not yet answered. If Jnew ̸= ∅, b now sets
Jb := Jb ∪ Jnew and tb := min(tb,min(t | (t, cert) ∈ Jnew)
before transmitting JOIN Response = Db.

Any entity c with Dc, upon receiving JOIN Response =
Dr stores the included certificates for later use and sets Dc :=
max(Dc, Dr).

Once t has been reached, the DBGKA will be initiated
and no further modification to D is permitted until it fails or
succeeds. If successful, each participant will set P := P ∪ J
and J := ∅, otherwise they will set P := ∅ and J := ∅ and
restart the group discovery phase by transmitting a JOIN .



J1 J2 P1 P2

Join() 

Join()

Join()

Join()

start randomized timer; P2 times out first

D1 := { P1, P2, J2 } 

Join_Response(D1)

D := D1 Join_Respose(D1) Join_Response(D1)

D := D1 D := D1

P2 times out. D does not contain J1:
      send a better JOIN_Response

D2 := { P1, P2, J1, J2 }

Join_Response(D2)

D := max(D1, D2) = D2 Join_Response(D2)

D := max(D1, D2) = D2 Join_Response(D2)

D := max(D1, D2) = D2

Fig. 7. Sequence diagram illustrating a simplified version of the LCMsec
Group Discovery Protocol in the case of a lost message. A similar situation
arises if the Join() is delayed instead of lost. Additionally, Join() messages
between J1 and J2 exist, but are omitted for brevity.

VI. IMPLEMENTATION AND EVALUATION

An implementation of LCMsec is publicly available2. It is
written in C++ and uses the Botan3 cryptography library. In the
implementation of the Dutta Barua protocol, we use a modified
version based on elliptic curve cryptography for performance
reasons.

A. Latency and Throughput

Latency and throughput of the LCMsec protocol were tested
using two identical servers with an Intel Xeon Gold 5317
processor and 8GB RAM running Linux 5.15. The servers
were one hop apart with a 1GBit/s link between them. To test
the latency of LCMsec messages, an echo test was performed:
one of the servers, the source, transmitted messages of sizes
ranging from 100 Bytes to 100 Kilobytes. Upon receiving one
of these messages, the other server immediately re-transmitted
it. Upon receiving the original message back, the latency was
measured by the source. For each message size, a total of 1000
latency measurements were taken. The same was done for the

2https://github.com/Barkhausen-Institut/lcm-sec
3https://botan.randombit.net/

original LCM library. The results are depicted in Figure 8 –
as one can see, there is only a small latency overhead. Note
that the jump at 3 KB is due to fragmentation of the LCM
messages, which occurs at that size.

To measure the throughput achieved by LCMsec, a similar
echo test was performed on the same servers. Using a fixed
message size, the source increased the bandwidth at which it
transmitted while recording the number of messages it received
back. In such a test, the percentage of lost messages can
indicate the throughput capabilities of LCMsec. However, no
difference between LCM and LCMsec was observed: in both
cases, no messages were lost up to a bandwidth of 123MB/s.
After this point, a majority of messages were dropped since
the limit of the link between the servers had been reached.

Fig. 8. Latency comparison between LCM and LCMsec

B. Evaluation of the Group Discovery

The most expensive part of the group discovery are the
JOIN Responses: They may be large since they contain
the certificates of all other users. Thus, the number of
JOIN Responses needed should be kept to a minimum. To
evaluate the performance of the protocol, measuring the time
taken to perform the group discovery protocol is not helpful,
since it is bounded by timeouts. Instead, we count the number
of JOINs and JOIN Responses transmitted while a varying
number of nodes execute the group discovery protocol and
subsequent DBGKA twice (in order to agree on both kg and
kch).

Additionally, the Linux NetEm facility was used to emulate
noramlly distributed (µ = 25ms, σ2 = 5ms) network delays,
affecting all messages used during the consensus and key
agreement. The results are shown in Figure 9. While the
chosen distribution is somewhat arbitrary, the results show
not only that the group consensus protocol performs in real-
life networks with a large number of participants, but also a
certain resilience of the consensus protocol.

VII. CONCLUSION

In this work, we presented LCMsec, a new secure brokerless
Publish/Subscribe protocol based on UDP multicast. We have

https://github.com/Barkhausen-Institut/lcm-sec
https://botan.randombit.net/


Fig. 9. Performing the group discovery and key agreement protocol with
|P | = 0, varying |J | and emulated network delays

added confidentiality, integrity and authenticity to the existing
LCM protocol while minimising both overhead and computa-
tional complexity. LCMsec can be used in most environments
in which LCM is currently used, e.g., IoT, automotive and
robotics applications. This has been achieved by using a
different threat model than previous work in the domain of
multicast authentication. We make no distinction between
subscribers and publishers, each subscriber is also allowed to
publish messages. However, an attribute-based access control
mechanism is available through the use X.509 certificates that
grants access only to specific LCMdomains.

LCMsec is decentralised in the sense that there is no
need for a central server to broker messages, facilitate key
exchanges or discover peers. A discovery mechanism is instead
built-in, which facilitates ease-of-use and flexibility. Despite
the shared symmetric key, it should be noted that the protocol
is scalable in dynamic situations: Through use of the Dutta-
Barua group key agreement, the number of network interac-
tions when a publisher or subscriber joins a topic is minimised.

APPENDIX

A. Two attacks on the Dutta-Barua group key agreement

Zhang et al. present two attacks on the DBGKA protocol
[23]. To fully understand them and this section, some under-
standing of the Dutta-Barua protocol [17] is required. While
a full review of the protocol is out of scope for this work,
for the purposes of this section, the most important thing
is to understand that each KeyAgree() and Join() operation
is associated with an instance id d. This instance id is
incremented for each of those operations and can never be
reused. Note that d can be regarded as a nonce: while it is not
random, it is never reused. Another example of a protocol that
uses non-random nonces is Wireguard [24].

Both attacks described by Zhang et al. are carried out by one
or multiple malicious users who are part of the Dutta-Barua
group, that is they have successfully participated in the Dutta-
Barua key agreement in the past. In this sense, the premise
of the DBGKA is already violated: The DBGKA protocol

provides no security against malicious insiders. Nevertheless,
one should take this form of attack seriously: An honest user
- representing, for instance, an IoT device - might at some
point be compromised and become dishonest. Alternatively,
he might have been dishonest all along, but his certificate is
only revoked at a later stage. We will therefore discuss both
attacks and show why they pose no threat to the LCMsec
protocol.

1) First Attack: The first attack is carried out by a malicious
leaving user who has been part of a previous successful Dutta-
Barua KeyAgreement() operation during which he has made
some preparation for the attack by storing some of the protocol
messages. When the Leave() operation is executed to expel this
user from the group, Zhang et. al. show that the attacker can
compute the new session key using the values he stored earlier.

However, as we understand the DBGKA, the purpose of
the Leave() operation is not to expel dishonest users, but as a
way for honest users to leave. When an honest user leaves in
this way, it is possible for the remaining users to efficiently
agree on a new key. If an honest user, on the other hand,
does not execute the Leave() operation, a new KeyAgreement()
operation has to performed, which is a lot less efficient for
large groups. To expel a malicious user, the remaining users
instead execute the KeyAgree() operation amongst themselves
– this way, the attack is bypassed entirely.

Note that in the current version of LCMsec, we do not
include a mechanism for certificate revocation or expelling
users from the group and make no use of the Leave() operation,
so this attack does not concern us. Still, the ability to add such
a feature in the future is important. As we discussed, this can
be done safely by using the KeyAgree() operation whenever a
certificate is revoked.

2) Second Attack: The second attack is a replay attack
that is carried out by two cooperating, malicious users Ui

and Uj that have been part of a Dutta-Barua key agreement.
For simplicity and without loss of generality, we assume here
that for this first KeyAgree() operation, the associated instance
number of all users during this was d = 1. By storing some
of the messages during the second round of the protocol, the
authors claim that Ui and Uj with j > i + 1 are able to
impersonate all the users Uk, i < k < j between them (with
respect to the circle on which users are arranged) during a
subsequent Join() operation. The authors claim that this attack
is possible since the DB-Protocol does not use nonces, which
is the mechanism they say it should to prevent this attack.

However, as discussed earlier, the instance id d is a nonce,
though it is not a random one. Note that the round-2 messages
of the DBGKA are of the form Mk = (Uk|2|Yk|dk), where
Uk = k is the id of the user Uk, 2 indicates that it is the
message for the second round of the protocol, Yk is the result
of the computation for that round and user k, and dk = 1 is the
instance id of user k. Note also that the transmitted message
during the second round is M |σk, where σk is a signature over
Mk computed with the private key known only by user k. The
malicious users Uj and Uk can therefore not modify Mk|σk,
they can only store and replay it.



The actual attack consists of Ui and Uj impersonating
Uk by transmitting the stored round-2 messages Mk|σk with
dk = 1. However, dk = 1 has already been used for user
Uk. Legitimate users will have observed this during the initial
KeyAgree() operation and therefore simply ignore the replayed
messages – the attack fails.
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