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Abstract— The increasing utilization of unmanned aerial
vehicles (UAVs) in advanced air mobility (AAM) necessitates
highly automated conflict resolution and collision avoidance
strategies. Consequently, reinforcement learning (RL) algo-
rithms have gained popularity in addressing conflict resolution
strategies among UAVs. However, increasing digitization intro-
duces challenges related to packet drop constraints and various
adversarial cyber threats, rendering AAM fragile. Adversaries
can introduce perturbations into the system states, reducing
the efficacy of learning algorithms. Therefore, it is crucial to
systematically investigate the impact of increased digitization,
including adversarial cyber-threats and packet drop constraints
to study the fragile characteristics of AAM infrastructure. This
study examines the performance of artificial intelligence(AI)
based path planning and conflict resolution strategies under
different adversarial and stochastic packet drop constraints
in UAV systems. The fragility analysis focuses on the number
of conflicts, collisions and fuel consumption of the UAVs with
respect to its mission, considering various adversarial attacks
and packet drop constraint scenarios. The safe deep q-networks
(DQN) architecture is utilized to navigate the UAVs, mitigating
the adversarial threats and is benchmarked with vanilla DQN
using the necessary metrics. The findings are a foundation for
investigating the necessary modification of learning paradigms
to develop antifragile strategies against emerging adversarial
threats.

I. INTRODUCTION

The civil aviation infrastructure has experienced a signif-

icant annual increase of 1.5% [1], [2]. Furthermore, low-

altitude airspace as a part of AAM is witnessing continuous

growth in the presence of smaller autonomous aircraft [3].

Free flight for a UAV in AAM offers operational flexibility in

airspace, along with the enhancement of safety [4] and fuel

efficiency [5], [6]. By deploying sophisticated AI algorithms,

automated decentralized conflict resolution mechanisms can

alleviate the burden on air traffic controllers to realize the

futuristic vision of AAM.

The autonomous AAM necessitates real-time decision-

making to resolve conflicts while upholding safety and

mission requirements. Deep reinforcement learning (DRL)

algorithms offer a promising alternative, as they can handle

real-time uncertainty and dynamic interactions among au-

tonomous aircraft during conflict resolution [7], while lever-

aging real-time navigation information [8]. However, DRL

is vulnerable to real-time data integrity issues arising from
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adversarial disturbances and communication constraints. At-

tackers, who employ AI techniques [9], increasingly inject

adversarial disturbances into decision-making capabilities to

maximize impact while minimizing detection. These distur-

bances can lead to performance degradation in DRL systems,

causing suboptimal actions by agents [10]. The review of the

various threat models along with its varied impact has been

reviewed in Table I. As stated in Table I, various aspects

of the UAVs have been affected by the adversarial threats

which includes targeted tracking [11], collecting data from

ground nodes [12] and offloading policy [13]. Communica-

tion constraints also affect the mission requirements of the

UAVs [14], particularly in decentralized algorithms where

knowledge of nearby UAV positions relies on vehicle-to-

vehicle (V-V) communication links [15]. The effect of packet

drops on UAV swarms have been studied in [16], [17] where

the Bernoulli, Gilbert and extended Gilbert models have been

used to model the lossy conditions leading to packet drop

constraints.

This paper investigates the vulnerability of the AAM to

adversarial attacks and packet drop constraints. The study

focuses on the impact of fragility, encompassing various

factors such as fuel requirements, conflicts, and collisions

with other UAVs. The simulation setup builds upon previous

work [24], extending it to include adversarial attacks and

communication constraints. The fragility testing involves

evaluating the AAM system against emerging adversarial

threats, with a particular emphasis on countering the mo-

mentum iterative (MIM) attack studied in [24], which targets

the communication channel selection of air traffic control

(ATC). In this context, a safe RL (Reinforcement Learning)

architecture, previously designed to counter the fast gradient

sign method (FGSM) [24], is tested for its resilience against

the MIM attack. Furthermore, the resilience of the AAM

infrastructure is studied concerning packet drop rate models,

drawing comparisons with the studies presented in [16]

where Bernoulli packet drop rates were considered. The

research goes on to benchmark different packet drop rate

scenarios across various loss channels incorporating corre-

lated packet drop models, using two and three-state Markov

chains [17]. Unlike the approach in [24], which primarily

analyzed metrics using mean values, this paper introduces a

novel univariate distribution metric. The simulation involves

randomly generated targets and centralized control UAVs,

and it is compared against vanilla DRL architecture. The

contribution of this paper can be summarized as follows:

• Implementation of randomized MIM attack and Gilbert
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TABLE I

THE BRIEF REVIEW OF THE ADVERSARIAL ATTACKS ON UAV AND THEIR IMPACT

References Threat Models Impact

[11] Continuous disturbance signal with Gaussian noise Inability to estimate the flight path of the targeted UAV

[18] FGSM and BIM Collision risk and reaching goals

[19] Pixel level attack and semantic perturbation Object detection for UAV navigation

[13] Triggerless backdoor attack on the model parameter UAV offloading policy

[20] Adding imperceptible perturbations to the image Targeted UAV tracking

[21] Adversarial attack based on forward derivative and optimization Navigation and control of UAV

[22] Manipulate and control the input channel of the sensor. Collision with the obstacles.

[12] Jamming the input channel Reduce the signal-to-noise ratio (SNR)

[23] Time delay attack by delaying the transmission of data packets Military reconnaissance and strike mission.

and extended Gilbert model on RL based AAM.

• Fragility impact study of AAM with respect to safe

DQN under various adversarial attacks and packet drop

models.

• Benchmarking the results with respect to vanilla DQN

architecture.

II. METHODS

There are two modes of control for UAVs: free flights

and regulated flights, as shown in Figure 1. The centralized

controller guides UAVs along a predetermined trajectory and

is used for infrastructure inspection and monitoring [25],

[26]. On the other hand, free-flight UAVs, used for last-

mile delivery [27], autonomously detect their trajectory while

considering fuel levels and avoiding collisions with other

UAVs. The simulation setup is based on [24].

The state variables Φ represent navigational information of

the free flight Φfree and the nearest intruders Φint. The state

information is corrupted with packet drops and adversarial

disturbance. The effect of state disturbance, is reflected in the

performance of the free-flight UAV based on the number of

steps it takes to reach the target and the number of conflicts

and collisions with the neighboring UAVs. The actions of the

free-flight UAV are generated from a DNN architecture as a

part of DQN. The second architecture tested here is the safe

DQN architecture explained in [24]. The DQN models used

in this paper have been trained in [24]. This paper tests the

trained model considering disturbed states via several attack

and packet drop constraints. The deep RL has been trained to

maximize the reward, the minimum number of steps to reach

the target and minimize the penalty of conflict and collision.

The performance of the DRL architecture has been analyzed

concerning the probability distribution of the number of steps

to reach the target and the number of conflicts between the

free-flight UAV and other UAVs. The following subsection

will explain the dynamics of the free flight UAV used in this

paper as a part of the environment.

A. Environment

The UAV dynamics are based on [28] and simulated in

a 2D environment. In this simulation, (x,y) represents the

UAV’s position, v represents velocity and φ represents the

heading angle and their relationship is explained in 1.

ẋ = vcosφ

ẏ = vsinφ

φ̇ = a

(1)

The state space of DRL is further explained in the subse-

quent subsection.

B. States

As shown in [24], the DRL training reward is optimal

where the state space has navigation information from the

nearest three UAVs. Each state space consists of the position

and speed of free-flying UAVs and information from the three

nearest intruders. Hence, the state information is represented

as:

Φ =
{{

xi,yi,vxi
,vyi

: i ∈ N (o)
}

,xo,yo,vxo ,vyo ,s,h,Φgoal

}

,

(2)

where, N (o) represent the set of j free flight UAVs nearest

neighbor, with ‖N (o)‖ = j, Φgoal represents the goal coor-

dinates
(

xgoal,ygoal

)

. Here
{

xi,yi,vxi
,vyi

}

represents position

and speed of each intruder. s and h represent the speed and

the heading direction of the free flight. Since the number of

intruders considered here is 3, the state space dimensionality

is 20. The action to be described from the states Φ is

described in the next subsection.

C. Action

The action space of the free flight consists of direction

or speed control. The action space dictates that the agent

can either move in positive or negative velocity, turn left or

right, or take no decision. Hence, the action space consists

of two parts As and Ah, which control the speed and heading

direction, respectively, so that the rewards can be maximized.

The rewards are explained in the following subsection.

u = As ×Ah

As = {+v,0,−v}

Ah = {φ ,0,−φ}

(3)

D. Rewards

The goal of free-flight UAVs is to reach the target with

a minimum amount of steps and avoid collision while

minimizing conflicts. The reward function in achieving this
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Free Flight  

Fig. 1. Schematic of the entire AAM setup with gradient attacks and packet drop rate.

objective has been adapted from [24]. Vanilla DQN, having a

single DNN, will consist of a reward function achieving both

objectives. However, in safe DQN, separate reward structure

for both missions i.e. efficiency and safety, i.e. rc and rg has

been utilized, which is explained as follows.

rc =

{

1 target achieved,

−0.0001 otherwise step penalty.
(4)

rg =

{

−1 if a collision occurs,

−0.5 if a conflict occurs.
(5)

The above reward scheme is used for safety DQN. How-

ever, in vanilla DQN all the reward functionalities are shown

in a cumulative manner.

r =



















1 target achieved,

−1 if a collision occurs,

−0.5 if a conflict occurs,

−0.0001 otherwise step penalty.

(6)

E. Terminal State

The episode is terminated when either of the following

occurs:

• When the UAV reaches the goal target while satisfying

the necessary safety constraints.

• The UAV, not arriving at the target within 500 steps.

which represents the finite battery capacity within the

UAV.

• The free-flight UAV collides with another centrally

controlled UAV.

III. DEEP REINFORCEMENT LEARNING AND STATE

PERTURBATIONS

A. DQN and Safe DQN

The task of the RL is to take actions to maximize the

reward, as described in the previous section. The optimal

policy is obtained from the expected sum of future rewards.

For solving the sequential decision-making problem, the

optimal value must be estimated. When the agent follows

the policy π , the true value of the action u in a state Φ is

given as:

Qπ (Φ,u) = EΦ∼E,u∼π

[

∞

∑
t=0

γkrt

∣

∣

∣
Φ0 = Φ,u0 = u

]

, (7)

where, γ ∈ [0,1] is the discount factor, rt is the reward at

time t. The optimal policy is defined as argmaxπ Qπ (Φ,u),
which is parameterized by the deep neural networks. Here

θ represents the parameter of the network. The learning

objective is to update the policy parameter θ Q to minimize

the Bellman error represented as:

L
(

θ Q
)

= EΦ∼pβ
,u∼β ,rt∼E [(Q(Φt ,ut ;θ)− yt)] . (8)

Here, β represents random exploration policy,θ Q represents

the parameters of the Q function, which replaces θ every

τ steps respectively. The DQN described above does not

incorporate the safety aspects in the value function. The

safe DQN focuses on the learning policy which does not

violate the safety constraints where two separate Q-networks

are proposed for fulfilling efficiency and safety objectives.

In safe-DQN, rewards are obtained from goal-oriented and

safety-oriented objectives separately. Hence, we can split the



cost function in the Q value as:

Qπ (Φ,u)=EΦ∼E,u∼π

[

∞

∑
t=0

γk
[

wgCg +wsCs

]

∣

∣

∣
Φ0 = Φ,u0 = u

]

.

(9)

Hence, without loss of generality, we can split the final Q

value from the above equation (9), as given in [24] as:

Qπ = Qπ
c +Qπ

g . (10)

From (10), two deep neural networks are designed to

estimate the primary Q-value Qπ
c and safety value Qπ

g . Hence,

the safety Qπ
g value is used to validate the safety condition

of a certain state-action pair. In safety aware DQN, the

action is selected by u = argmaxu

(

Qπ
c (Φt ,u)+Qπ

g (Φt ,u)
)

if the safety value Qπ
g (Φt ,u) is above a certain threshold

value. Once the neural network is formulated, testing the

performance with several latencies and adversarial attacks is

essential, as explained in the next subsection.

B. Adversarial Attacks on RL

Adversarial examples tend to mislead the output of ma-

chine learning models [29]. In RL, adversarial examples

generally tend to perturb the input state values with minimum

detectability, causing the RL agent to take actions which

will mislead the agent away from the required goal or

compromise their safety [10]. Fast Gradient Sign Method

(FGSM) is a one-time attack popular for its low complexity

and is the common adversarial crafting algorithm in DRL.

The adversarial states Φadv
F after the FGSM attack is given

as:

Φadv
F = Φ+ εsign

(

∇
Φ

L(Φ,u;θ)

)

, (11)

where, J (Φ,u;θ) represents the cross entropy loss between

all the actions u and the distribution of the actions based

on the Q values. ∇
Φ

L(Φ,u;θ) represents the gradient of the

loss function with respect to the observation Φ. Perturbation

frequency is crucial, as frequent perturbations significantly

reduce detectability. Therefore, it is imperative to analyze the

frequency of FGSM attacks, aiming for maximum damage

inflicted while minimizing the effort.

In equation (11), the attack perturbation operates along a

fixed gradient direction across all observations throughout

the iterations. However, momentum is incorporated in the

iterative attack, which changes the gradient direction [30].

The momentum-based iterative attack has also been studied

concerning ATC jamming attack scenarios [31]. The attack

can influence the iterative step size based on the difference

in the gradients of consecutive observations. The dynamic

momentum iterative method (MIM) is described as:

αn =

∣

∣2∇Φn L−∇Φn−1
L
∣

∣

∥

∥2∇Φn L−∇Φn−1
L
∥

∥

1

,

gn+1 = µ ·gn +
∇Φn ∗L

‖∇Φn ∗L‖1

,

Φ∗
n+1 = ClipΦ,ε {Φ∗

n +αn · sign(gn+1)} .

(12)

As we observe in 12, the step size αn is dependent on the

gradient ∇
Φ

L(Φ,u;θ) with respect to current and previous

observation Φn and Φn−1 respectively.

C. Packet Drop Constraints

The trained DRL is tested with respect to packet drop

constraints in state observations. The loss in information,

i.e. free flying UAV and intruder navigation data, is con-

sidered as packet drop rates while modelling packet drop

constraints. Two cases are considered as they require separate

communication infrastructure [32]. Let us consider the packet

drop rate for the free-flying UAV to be pown and the nearest

intruders to be pint. Hence, we can write the state space [16]:

Φera =
{

Φown,Φint,xgoal,ygoal

}

,

Φown (t) = pownΦown (t)+(1− pown)Φown (t −1) ,

Φint (t) = pintΦint (t)+(1− pint)Φint (t −1) .

(13)

Here {pown, pint} are Bernoulli random variables. Nev-

ertheless, the current Bernoulli approach fails to account

for correlated packet drops, which depend on the status of

communication channels, denoted as either ”good” or ”bad”

In the former scenario, only a few packets are lost; in the

latter, most packets are lost [17], [33]. In the conducted

simulation, equal probabilities are assigned to the ”good”

and ”bad” states. However, in the extended Gilbert model,

an additional state is introduced alongside the ”good” and

”bad” states, with equal probabilities for packet transmission

and loss.

IV. RESULTS AND DISCUSSION

A. Implementation Details

Fig. 2. Univariate plot of the number of steps and conflicts for DQN and
Safe-DQN without any state perturbation.

We use the simulation setup described in [24] utilizing the

trained vanilla and safe DQN to test the system under various

attacks and packet drop constraint scenarios. The system

runs for 500 episodes, involving ten centrally controlled

UAVs placed randomly at the start and target positions. The

maximum number of steps allowed is 500, representing the

overall fuel capacity for the journey. Since intruder UAVs

and initial positions are randomly generated, analysis has

been performed using various fragility metrics of univariate



distribution. Unlike [24], these metrics are not averaged;

the univariate distribution provides insight into their values

across all randomized scenarios in each episode.

B. RL Performance without State Perturbation

Firstly, we evaluate the performance of the two DQN

architectures without state perturbations, as depicted in Fig-

ure 2. We find that the safe DQN requires more steps on

average to reach the target compared to the vanilla DQN,

as it adopts a conservative approach to handle potential

state perturbations. Although the average number of conflicts

is similar between the two architectures, the vanilla DQN

exhibits a higher distribution spread. Therefore, the safe

DQN’s cautious nature reduces the occurrence of separation

loss cases, ensuring enhanced safety at the expense of

slightly higher fuel consumption. Next, we will explore the

implications when the states are subjected to adversarial

perturbations.

C. RL Performance with Adversarial State Perturbation

In [24], the performance of the conflict resolution al-

gorithm under an FGSM attack was examined by varying

the perturbation magnitude for the safe DQN architecture.

Disturbances were randomly injected at different intervals,

and the corresponding performance metrics were measured.

It was observed that conflicts increased with higher fre-

quencies and magnitudes of disturbance. However, Figure

3 illustrates that the distribution spread widens with lower

attack frequencies for the MIM attack. A noticeable increase

was not observed for perturbation intensity of 0.03 with

the MIM attack, but the spread of the number of steps

was higher for perturbation intensity of 0.05 and 0.07.

In contrast, the number of steps did not show significant

changes with increasing perturbation intensity in the case of

an FGSM attack. Nonetheless, the distribution of the number

of steps remains similar for both the momentum iterative

and FGSM attacks for higher attack frequencies. Therefore,

we can conclude that the iterative attack tends to be more

impactful for lower probability attacks and increasing values

of perturbation intensity.

ε = 0.03 ε = 0.05 ε = 0.07 ε = 0.03 ε = 0.05 ε = 0.07

Fig. 3. Univariate plot of the number of steps of free-flying UAV with
safe DQN under FGSM and MIM attack.

As we observe in Figure 4, with a lower attack frequency,

conflicts are slightly increased, accompanied by a wider

ε = 0.03 ε = 0.05 ε = 0.07 ε = 0.03 ε = 0.05 ε = 0.07

Fig. 4. Univariate plot of the number of conflicts of free-flying UAV with
safe DQN under FGSM and MIM attack.

distributional spread as perturbation intensity increases. The

conflicts also increase as the attack frequency decreases for

MIM attacks. In the case of FGSM attacks, the spread

expands as perturbation intensity increases, indicating an

increase in the number of conflicts.

Similar to conflicts and the number of steps, it is observed

in Figure 5 that, the number of collisions is higher for MIM

attacks as compared to FGSM. The number of collisions

is way higher for lower randomized attack frequencies, and

it increases progressively with an increase in perturbation

magnitude. However, we observe a sharp decrease in the

number of collisions when the attack frequency is more than

50%. Hence, we can infer that safe RL, designed to mitigate

FGSM attacks in [24], is antifragile with respect to MIM

attacks when the attack frequency is more than 50%, while

it is highly fragile at lower attack frequencies below 50%.

ε = 0.03 ε = 0.05 ε = 0.07ε = 0.03 ε = 0.05 ε = 0.07

Attack Frequency =75% Attack Frequency = 100%

Attack Frequency = 50%Attack Frequency = 25%

Fig. 5. Number of collisions of the own UAV with other UAVs in case of
FGSM and MIM attacks.

D. RL performance with Packet Drop Constraints in Obser-

vation States

In the context of packet drops that adhere to the Bernoulli

distribution, the drop rate of 50% has been considered

[16]. When examining correlated packet drops using the

Gilbert-Elliot models, the probability in both good and bad

channel states has been considered to be 0.8, resulting in

an average packet drop probability close to 0.5, albeit with

correlated packet drops. Figure 6 illustrates that both vanilla



and safe DQN approaches exhibit slightly higher numbers of

steps and conflicts when correlated packet drop models are

employed compared to independent packet drops from the

Bernoulli distribution. However, it is essential to note that

no significant distinction is observed when there are packet

drops of navigation information of the controlled UAV and

those of the nearest UAVs.

Bernoulli Gilbert Extended

Gilbert 
Bernoulli Gilbert Extended

Gilbert 

Ownship Intruder

Fig. 6. Univariate plot of the number of conflicts and mission steps of
free-flying UAV for different correlated packet drop model of ownship and
nearest UAV with respect to safe and vanilla DQN.

However, concerning collisions, the safe DQN approach

demonstrates a notable reduction in collision occurrences and

proves to be more resilient to varying packet drop rates when

compared to the vanilla DQN, as evident from the findings

presented in Figure 7. It is also observed that the collision

rate is higher when correlated packet drop rates are applied

to the ownship navigation information, whereas uncorrelated

packet drop rates on navigation information of intruder

UAVs result in increased collision rates. These collision rate

patterns align with those seen in the 50% attack frequency

discussed in the previous subsection. Consequently, it can be

inferred that future efforts to develop robust reinforcement

learning (RL) strategies tailored explicitly for correlated

packet drop rates could exhibit antifragile behaviour against

the AAM with an attack frequency of around 50%.

Bernoulli Gilbert Extended

Gilbert 
Bernoulli Gilbert Extended

Gilbert 

Safe-DQN Vanilla-DQN

Fig. 7. Plot of the number of collisions of the free flying UAV with other
UAVs for different packet drop model of ownship and nearest UAV with
respect to safe and vanilla DQN.

V. CONCLUSIONS

In this paper, we have observed the fragility of RL-based

free-flying UAV in AAM with respect to adversarial attacks

and various uncorrelated and correlated packet drops. The

trained RL agent is tested while considering the random

number of intruder UAVs and the target position of the free-

flying UAV in 500 episodes. The fragility analysis has been

conducted with respect to the distributions of the number of

steps required to reach the target and the number of conflicts

and collisions with the intruder UAVs as a univariate plot.

The main takeaways from this research are as follows:

• Safe DQN navigation algorithm, effective for FGSM

attacks as studied in [24], is antifragile against MIM at-

tacks at higher frequencies, but fragile against the same

at lower frequencies with an increase in perturbation

intensity.

• The fuel required for the completion of the mission and

the number of conflicts is higher when it experiences

correlated packet drops as compared to uncorrelated

ones.

• The robust RL strategies designed to mitigate the corre-

lated packet drops can be antifragile against adversarial

attacks at around 50%.

Future work will focus on designing collision free nav-

igation trajectories of the free-flying UAVs which will be

antifragile against emerging adversarial attacks and packet

drop constraints.
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