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Abstract—In this paper, we propose a rate-splitting design
and characterize the sum-degrees-of-freedom (DoF) for the K-
user multiple-input-single-output (MISO) broadcast channel with
mixed channel state information at the transmitter (CSIT) and
order-(K−1) messages, where mixed CSIT refers to the delayed
and imperfect-current CSIT, and order-(K−1) message refers to
the message desired by K−1 users simultaneously. In particular,
for the sum-DoF lower bound, we propose a rate-splitting
scheme embedding with retrospective interference alignment. In
addition, we propose a matching sum-DoF upper bound via genie
signalings and extremal inequality. Opposed to existing works for
K = 2, our results show that the sum-DoF is saturated with CSIT
quality when CSIT quality thresholds are satisfied for K > 2.

I. INTRODUCTION

In practice, communications are always in the presence of

imperfect channel state information at the transmitter (CSIT).

Usually, the imperfection comes from channel feedback, chan-

nel state information (CSI) quantization, and estimation, re-

sulting in CSIT distortion [1]–[4]. A lot of research efforts

have been devoted to the study of fundamental multiplexing

limits, also known as degrees-of-freedom (DoF), in the pres-

ence of imperfect CSIT [5]–[16]. The results of two important

works in [6] and [7] showed that the rate-splitting is an optimal

transmission method in achieving sum-DoF of the two-user

multiple-input single-output (MISO) broadcast channel with

imperfect-current CSIT. A following-up work considering hy-

brid private and common messages was presented in [8]. The

authors of [9] investigated the sum-DoF for the K-user MISO

broadcast channel with imperfect-current CSIT.

Aside from imperfect-current CSIT, when the wireless chan-

nel is temporally correlated and the feedback is delayed, there

can be a mix of delayed and imperfect-current CSIT [10]–[16].

In the presence of mixed CSIT, the DoF region of two-user

MISO broadcast channel was characterized in [10] and [11].

In particular, optimal use of delayed and imperfect current

CSIT was found in [11]. For the two-user broadcast channel

and interference channel, the DoF region was derived in [12].

For the two-user MIMO interference channel with delayed

and imperfect current CSIT, a simplified precoding strategy

was proposed in [13]. The authors of [14] obtained the DoF

region of two-hop MISO broadcast channel with delayed and

imperfect current CSIT. In [15], the DoF region of two-user

Z MIMO interference channel with delayed and imperfect

current CSIT was derived. For the K-user MISO broadcast

channel with delayed and imperfect current CSIT, the optimal

transmission scheme and sum-DoF were obtained in [16], on

the condition that the number of transmit antennas is not less

than K . Although, the problem of the sum-DoF of the K-user

MISO broadcast channel with mixed CSIT remains open for

general transmit antenna settings.

In this paper, we propose a rate-splitting scheme and char-

acterize the sum-DoF for the K-user MISO broadcast channel

with mixed CSIT and order-(K − 1) messages. We consider

that the number of transmit antennas is arbitrary, and the

messages are desired by K − 1 users called order-(K − 1)
message1. Specifically, we propose a rate-splitting scheme

embedding with retrospective interference alignment, as the

sum-DoF lower bound. Besides, the matching sum-DoF upper

bound is derived via genie signalings and extremal inequality.

Finally, results reveal that the sum-DoF is saturated with CSIT

quality when CSIT quality thresholds are satisfied for K > 2.

II. SYSTEM MODEL AND DEFINITION

We consider a K-user MISO broadcast channel, where one

M -antenna transmitter is denoted by Tx and K single-antenna

receivers are denoted by Rx1, Rx2, ...,RxK , respectively. At

the time slot t, the received signal at Rxi is expressed as

yi(t) = h
H
i (t)x(t) + zi(t), i = 1, ...,K, (1)

where h
H
i (t) ∈ C

1×M denotes the channel state information

(CSI) matrix for Rxi, x(t) ∈ CM×1 denotes the transmit-

ted signal subject to power constraint E
(
‖x(t)‖2

)
≤ P ,

and zi(t) ∼ NC(0, 1) denotes the additive white Gaussian

noise (AWGN). For convenience, we further define H(t) :=
[h1(t),h2(t), ...,hK(t)]H ∈ CK×M and Hn := {H(t)}nt=1.

At time slot t, the historical delayed CSI Ht−1 is available

at Tx. Based on this, Tx can infer an imperfect estimate of the

current CSI Ĥ(t) := {ĥi(t)}, i = 1, 2, ...,K . To summarize,

the channel estimate is modeled as

hi(t) = ĥi(t) + h̃i(t), i = 1, ...,K, (2)

where the estimation error is denoted by h̃i(t). Each element

of ĥi(t) and h̃i(t) are characterized by NC(0, 1 − σ2) and

NC(0, σ
2). respectively. Furthermore, we assume that H(t)

1It was shown in [17] that the DoF of order-1 messages, i.e., private
messages, can be recursively expressed by that by higher-order messages.
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is independent of (Ht−1, Ĥt−1) when conditioned on Ĥ(t).
Besides, all Rxs are assumed to know Ht and Ĥt after

the transmission completion at time slot t, where Ĥn :=
{Ĥ(t)}nt=1. To quantify, we define CSIT quality metric as

α = − lim
P→∞

log σ2

logP
. (3)

Under this definition, E[|hH
i p|2] ∼ P−α, where α ∈ [0, 1],

if p is a unit-power zero-forcing (ZF) precoding vector (i.e.,

ĥ
H
i p = 0). α = 0 means delayed CSIT and α → ∞ means

perfect CSIT. The DoF is defined below.

The order-(K − 1) message is referred to as the message

desired by K − 1 receivers and is needless for only one

receiver. Let us denote W−i as the order-(K − 1) message

needless for Rxi and R−i = log |W
−i|

n as the rate. The

rate tuple (R−1(P ), ..., R−K(P )) is achievable if the average

decoding error probability of each user tends to zero as channel

uses n → ∞. The capacity region CK−1(P ) is defined as the

supremum of all achievable rate tuples. Thus, the DoF region

D is defined as

D =





{d−1, ..., d−K} ∈ RK
+ |

{R−1(P ), ..., R−K(P )} ∈ CK−1(P ),

d−i = limP→∞
R

−i(P )
log2 P , i = 1, ...,K.



 . (4)

Accordingly, the sum-DoF is defined as
∑K

i=1 d−i.

III. PROPOSED RATE-SPLITTING SCHEME

In this section, we propose a rate-splitting transmission

scheme embedding with retrospective interference alignment.

Furthermore, its performance serves as the sum-DoF lower

bound of the K-user MISO broadcast channel with mixed

CSIT and order-(K−1) messages. It is noted that the proposed

scheme below considers the situation M > 1.

A. When α ≤ 1
K−1 : Rate-Splitting Embedding with Retro-

spective Interference Alignment

First of all, we briefly review the proposed scheme. This

scheme has two phases. In Phase-I, a part of data symbols

are transmitted with random beamforming and a part of data

symbols are transmitted with ZF beamforming. In Phase-II,

interference is re-constructed and transmitted with random

beamforming and a part of data symbols are transmitted with

ZF beamforming. Retrospective interference alignment refers

to the interference re-construction and transmission, which

aligns the interference at receivers.

Next, the details of this scheme are elaborated.

1) Phase-I (K Time Slots): At the time slot t = 1, 2, ...,K ,

Tx transmits data symbols s
[I,RD]
−1 (t) ∈ Cmin{M,2}, s

[I,ZF]
−1 (t) ∈

C, s
[I,ZF]
−2 (t) ∈ C, ..., s

[I,ZF]
−K (t) ∈ C. The transmitted signal at

the time slot t is designed as follows:

x(t) = R(t)s
[I, RD]
−t (t) +

K∑

i=1

pi(t)s
[I,ZF]
−i (t), (5)

where R(t) ∈ Cmin{M,2}×min{M,2} is a unit-power random

beamformer whose items are generated randomly, pi(t) ∈
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Fig. 1: Phase-I and II received signal power level at Rx1.
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Fig. 2: Phase-I received signal power level at Rx1.

Cmin{M,2} is a unit-power ZF beamformer that satisfies

ĥ
H
i (t)pi(t) = 0. Furthermore, the power of s

[I,RD]
−1 (t) is set

as P − Pα. The power of s
[I,ZF]
−i (t) is set as (1/K)Pα.

As such, the received signal at Rxi is given by

yi(t) = h
H
i (t)R(t)s

[I,RD]
−t (t)

︸ ︷︷ ︸
denoted by ηi,(1−(K−1)α) logP bits

+ h̃
H
i (t)pi(t)s

[I,ZF]
−i (t)

︸ ︷︷ ︸
∼P 0

+
∑

j 6=i

h
H
i (t)pj(t)s

[I,ZF]
−j (t)

︸ ︷︷ ︸
∼Pα

+ zi(t)︸︷︷︸
∼P 0

, i = 1, ...,K. (6)

From the received signal, one can see that only s
[I,ZF]
−i term

falls into AWGN power level. At the end of this phase, the

CSI matrices are returned to Tx. Please refer to Fig. 1 for

the received power level at Rx1. From ZF parts of received

signals, at each time slot of Phase-I, Kα DoF can be achieved.

2) Phase-II (K − 1 Time Slots): At the very begin-

ning of Phase-II, the interference in Phase-I at Rxi, i.e.,

h
H
i (1)R(1)s

[I,RD]
−i (1), can be reconstructed at Tx. The order-K

symbols are thus made by

sorder-K :=




η1 + η2
η2 + η3

...
ηK−1 + ηK


 ∈ C

K−1. (7)

Besides, data symbols s
[II,ZF]
−i ∈ C, i = 1, 2, ...,K are trans-

mitted in Phase-II. The transmitted signal at the time slot

t = K + 1, ..., 2K − 1 is designed as follows:

x(t) = r(t)sorder-K(t−K) +

K∑

i=1

pi(t)s
[II,ZF]
−i (t), (8)

where r(t) ∈ Cmin{M,2} is a unit-power random beamformer

whose items are generated randomly, pi(t) ∈ Cmin{M,2} is a

unit-power ZF beamformer that satisfies ĥ
H
i (t)pi(t) = 0. In

addition, the power of sorder-K(t −K) is set as P − Pα. The

power of s
[II,ZF]
−i (t) is set as (1/K)Pα.

As such, the received signal at Rxi is given by

yi(t) = h
H
i (t)r(t)sorder-K(t−K)︸ ︷︷ ︸
(1−(K−1)α) logP bits

+ h̃
H
i (t)pi(t)s−i(t)

[II,ZF]

︸ ︷︷ ︸
∼P 0

+
∑

j 6=i

h
H
i (t)pj(t)s−j(t)

[II,ZF]

︸ ︷︷ ︸
∼Pα

+ zi(t)︸︷︷︸
∼P 0

, i = 1, ...,K. (9)



From the received signal, one can see that only s
[II,ZF]
−i term

falls into AWGN power level. From ZF parts of received

signals, at each time slot of Phase-II, Kα DoF can be achieved.

At the end, the decoding of random beamforming data

symbols can adopt [18, Algorithm 1] using backward/forward

cancellation. After that,
2K(1−(K−1)α)

2K−1 DoF can be achieved.

B. When α > 1
K−1 : ZF Transmission

In this case, each receiver has no space catering random

beamforming data symbols, whose decodability is ensured

by retrospective interference alignment. This motivates us to

design the following pure ZF transmission scheme.

This scheme only spans 1 time slot. The transmitter aims to

transmit s
[I,ZF]
−1 (1) ∈ C, · · · , s

[I,ZF]
−K (1) ∈ C. The transmit signal

is thus designed as follows:

x(1) =
K∑

i=1

pi(1)s
[I,ZF]
−i (1), (10)

where pi(1) ∈ Cmin{M,2} is a unit-power ZF beamformer

that satisfies ĥ
H
i (1)pi(1) = 0. The power of s

[I,ZF]
−i (t) is set as

P 1/(K−1). The received power level at Rxi is given by

yi(1) = h̃
H
i (1)pi(1)s

[I,ZF]
−i (1)

︸ ︷︷ ︸
∼P 0

+
∑

j 6=i

h
H
i (1)pj(1)s

[I,ZF]
−j (1)

︸ ︷︷ ︸
∼P 1/(K−1)

+ zi(1)︸ ︷︷ ︸
∼P 0

, i = 1, ...,K, (11)

which is also illustrated in Fig. 2. It can be seen that the

transmitted symbols can be decoded at each desired receiver.

As such, K
K−1 sum-DoF is achieved, as each message attains

1/(K − 1) achievable DoF.

C. Summary

The sum-DoF achieved by the proposed rate-splitting design

is summarized as follows:

K∑

i=1

d−i ≥





K(1 + min{M,2}−1
min{M,2} α)

K − 1 + 1
min{M,2}

, α ≤
1

K − 1
,

K

K − (min{M, 2} − 1)
, α >

1

K − 1
.

(12)

It is worth mentioning that the proposed scheme is applied

when M > 1. When M = 1, the sum-DoF of 1 can be trivially

achieved by sending one symbol at each time slot.

IV. PROPOSED SUM-DOF CONVERSE

In this section, we construct the converse from two parts.

A. Part-I: Upper Bound with Perfect CSIT

For the K-user MISO broadcast channel with order-(K−1)
messages, we first provide a sum-DoF upper bound with

perfect CSIT. Since the DoF of Rxi is bounded by 1,

we obtain inequalities
∑K

i=1,i6=k d−i ≤ 1, ∀i. By summing

these inequalities up, the sum-DoF upper bound is given by∑K
i=1 d−i ≤ K/(K − 1). When M = 1, the sum-DoF should

be 1. Hence, the sum-DoF upper bound with perfect CSIT is

finally expressed as

K∑

i=1

d−i ≤
K

K − (min{M, 2} − 1)
. (13)

The results in (13) does not take the influence of mixed

CSIT into consideration. By considering that, we derive an-

other sum-DoF upper bound in the rest of this section.

B. Part-II: Upper Bound with Mixed CSIT

As for genie signalings, a genie provides Rx2 with mes-

sages {W−2,W−3, ...,W−K} and Rx1’s received signals

y1(m), ∀m ≤ t. For convenience, we denote notations Y n
k :=

{yk(t)}nt=1, and W[i:j] := {Wi,Wi−1, ...,Wj}, i ≥ j.

By employing Fano’s inequality and genie signalings, we

can upper bound the achievable rate R−1 as

n(R−1 −O(1))
(a)

≤ I(W−1; y
n
1 , y

n
2 |W[−2:−K],H

n, Ĥn)

(b)
=

n∑

t=1

I(W−1; y1(t), y2(t)|W[−2:−K],Y
t−1
1 ,Y t−1

2 ,Hn, Ĥn)

(c)
=

n∑

t=1

(
h(y1(t), y2(t)|U1(t),H(t))

− h(y1(t), y2(t)|W−1,U1(t),H(t)
)
, (14)

where U1(t) := {W[−2:−K],Y
t−1
1 ,Y t−1

2 ,Ht−1, Ĥt}, (a)

holds by using Fano’s inequality, (b) holds by using the chain

rule of mutual information, and (c) holds because of the

definition of mutual information and the fact that y1(t), y2(t)
are irrelevant to future states given past and current states.

Similarly, the sum of achievable rates R−k, k = 2, ...,K
can be bounded as

K∑

k=2

n(R−k −O(1))
(a)

≤ I(W[−2:−K]; y
n
1 |H

n, Ĥn)

(b)
=

n∑

t=1

I(W[−2:−K]; y1(t)|Y
t−1
1 ,Hn, Ĥn)

(c)
=

n∑

t=1

(
h(y1(t)|U2(t),H(t))

− h(y1(t)|W[−2:−K],U2(t),H(t))
)
, (15)

where U2(t) := {Y t−1
1 ,Ht−1, Ĥt}, (a) holds by using Fano’s

inequality, (b) holds by using the chain rule of mutual in-

formation, and (c) holds because of the definition of mutual

information and the fact that y1(t) is irrelevant to future states

given past and current states.

In what follows, we upper bound the weighted sum-

rate given by (16), where (a) holds from (14) and (15),

and (b) holds since entropy does not increase due to

conditioning (i.e. h(y1(t)|W[−2:−K],Y
t−1
2 ,U2(t),H(t)) ≤

h(y1(t)|W[−2:−K],U2(t),H(t))).



Fig. 3: Numerical sum-DoF of the K-user MISO broadcast

channel with mixed CSIT and order-(K − 1) messages.

Based on Lemma 1 in Appendix A, we have the upper

bound of the weighted sum-rate as follows:

n(R−1 −O(1))

min{M, 2}
+

K∑

k=2

n(R−k −O(1))

≤
min{M, 2}−1

min{M, 2}
αn logP+n logP+nO(1).

Therefore, we obtain

d−1

min{M, 2}
+

K∑

k=2

d−k ≤ 1 +
min{M, 2} − 1

min{M, 2}
α.

By permuting all possible receiver indexes, we can obtain

inequalities of the outer region in (17), which are shown below.

d−i

min{M, 2}
+

K∑

k=1,k 6=i

d−k ≤ 1 +
min{M, 2} − 1

min{M, 2}
α, ∀i.

(17)

C. Summary

Based on results in (13) and (17), we can obtain the sum-

DoF upper bound. Note that the bounds in Part-I and Part-II

intersects when K ≥ 2 and α = 1/(K − 1). Consequently,

the complete form of sum-DoF upper bound is given by

K∑

i=1

d−i ≤





K(1 + min{M,2}−1
min{M,2} α)

K − 1 + 1
min{M,2}

, α ≤
1

K − 1
,

K

K − (min{M, 2} − 1)
, α >

1

K − 1
.

(18)

V. CONCLUDING REMARKS

Based on the results of Section-III and -IV, we can conclude

that the sum-DoF of the K-user MISO broadcast channel with

mixed CSIT is given by

K∑

i=1

d−i =





K(1 + min{M,2}−1
min{M,2} α)

K − 1 + 1
min{M,2}

, α ≤
1

K − 1
,

K

K − (min{M, 2} − 1)
, α >

1

K − 1
.

(19)

As illustrated in Fig. 3, our results in (19) show that opposed

to existing works [10] and [11] in K = 2, the sum-DoF is

saturated with CSIT quality when α > 1/(K − 1) is satisfied

for K > 2. Besides, we proposed a DoF-optimal rate-splitting

scheme with mixed CSIT, which achieves the sum-DoF.

APPENDIX A: LEMMA 1

Lemma 1. For the entropy difference term in (16), we can

establish the upper bound shown below.

1

min{M, 2}
h (y1(t), y2(t)|U1(t),H(t))

−h (y1(t)|U1(t),H(t))

≤
min{M, 2} − 1

min{M, 2}
α logP +O(1). (20)

Proof: To obtain the upper bound of the entropy

difference term, we construct an optimization problem to

upper bound the term, where the distribution of U1(t)
and x(t) are variables. Based on extremal inequality

and [12, Lemma 3], we have the upper bound in (20).

The proof of Lemma 1 is elaborated in (21), where

H[i:j](t) := [hi(t),hi+1(t), ...,hj(t)]
H , i ≤ j, z[i:j](t) :=

[zi(t), zi+1(t), ..., zj(t)]
T , i ≤ j, K , and K

∗ denote the

covariance matrix of x(t) and the optimal K , respectively.

The reasons of critical steps are follows: (a) The maximization

is moved inside the expectation and the resultant value is

not less than the original one; (b) H(t) is independent of

(Ht−1, Ĥt−1) if conditioned on Ĥ(t); (c) The maximization

is divided into two parts (i.e., trace constraint and covariance

matrix constraint); (d) The optimal x(t) should be Gaussian

distributed, which is derived via extremal inequality [19];

(e) K
∗ always satisfies K

∗ � 0, tr(K∗) ≤ P and inner

expectation only relates to Ĥ(t), where tr(·) denotes the trace;

(f) This inequality is obtained from [12, Lemma 3].
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n(R−1 −O(1))

min{M, 2}
+

K∑

k=2

n(R−k −O(1))

(a)

≤
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{
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}

=
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