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Abstract—This paper addresses the problem of Age-of-
Information (AoI) in UAV-assisted networks. Our objective is to
minimize the expected AoI across devices by optimizing UAVs’
stopping locations and device selection probabilities. To tackle this
problem, we first derive a closed-form expression of the expected
AoI that involves the probabilities of selection of devices. Then,
we formulate the problem as a non-convex minimization subject
to quality of service constraints. Since the problem is challenging
to solve, we propose an Ensemble Deep Neural Network (EDNN)
based approach which takes advantage of the dual formulation
of the studied problem. Specifically, the Deep Neural Networks
(DNNs) in the ensemble are trained in an unsupervised manner
using the Lagrangian function of the studied problem. Our
experiments show that the proposed EDNN method outperforms
traditional DNNs in reducing the expected AoI, achieving a
remarkable reduction of 29.5%.

Index Terms—Age-of-Information, DNN, Ensemble DNN, Tra-
jectory optimization, UAV-assisted networks, Unsupervised Learn-
ing.

I. INTRODUCTION

Over the past few years, there has been a significant surge

in research around the concept of Age of Information (AoI).

This interest is driven by various network applications that

require timely information to carry out some specific tasks.

Examples of such applications include providing real-time traffic

to smartphone users and delivering status updates to smart

systems [1], [2]. For such applications, the AoI is an important

metric as it measures the freshness of the data and evaluates

how quickly the data update reaches the destination [3], [4].

In this paper, we are interested in the scenario where a set

of unmanned aerial vehicles (UAVs) is deployed to gather time-

sensitive data and send it to a server for analysis and decision-

making [5], [6]. To this end, the UAVs should dynamically

adjust their trajectories and strategically select the subsets of

users from whom data is collected so that the AoI is minimized.

Specifically, we answer the question: what is the optimal fre-

quency (or equivalently, the probability to select users) at which

UAVs should visit and gather data from devices, and what are

the optimal locations of UAVs over time so that the global AoI

is minimized?

A. Related work

Minimizing the AoI in UAV-assisted networks is a daunting

task. First, the dynamic movements of UAVs which are often

constrained by limited energy resources make the optimization

problem a challenging task. Second, the distribution of IoT

devices and users across the target area can be uneven, which

makes balancing data collection to minimize AoI across all users

a complex problem.

Recently, many works have investigated the AoI minimization

in UAV-assisted networks. In [7], the authors minimize the

peak of AoI between source-destination pairs. To this end,

the authors simultaneously optimize the UAV’s flight trajec-

tory and service time for packet transmissions. To solve the

problem, they propose an iterative approach where the initial

optimization is divided into sub-problems. Each sub-problem is

solved analytically and a closed-form expression of the sub-

solution is provided. Similarly, in [8], the problem of the

average peak of AoI is divided into two sub-problems. First,

a clustering algorithm is proposed to determine the locations of

data collection points. Then, the collection points are grouped

into clusters, and finally, the flight trajectories of the UAVs are

optimized using an ant colony optimization algorithm. In [9], a

probabilistic approach is proposed to minimize the probabilities

of associations between users and UAVs, and UAVs and the

base station. The authors propose a convex reformulation of

the problem, which is then solved numerically. The previously

cited works propose heuristics to solve the AoI optimization.

These methods suffer from several limitations. First, they do not

scale well with high-dimensional variables. Additionally, their

convergence time is considerably long, and they lack the ability

to adapt and generalize to new setups [10].

To overcome these limitations, machine learning (ML) based

approaches have been proposed. In [11], the authors propose a

deep-learning based method to obtain an efficient solution for

the flight speed and the trajectory of a single UAV that collects

data from IoT devices. A similar approach is proposed in [12]

where the AoI of ground users is minimized by simultaneously

optimizing the trajectory of a UAV, the scheduling of informa-

tion transmission, and energy harvesting for the ground users.

The proposed approach uses a deep reinforcement learning

(DRL) to efficiently find optimal solutions. In [13], the authors

tackle the problem of AoI minimization by using a transformer

network that outputs the optimal visiting order for the ground

clusters. The transformer network is combined with a weighted

A* algorithm that is used to determine the most suitable
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hovering point for each cluster. Unlike previous works which

considered a single UAV setup, the authors in [14] consider a

multi-UAV setup where the AoI is minimized. They introduce

a centralized multi-agent reinforcement learning approach to

optimize the UAV trajectories. The proposed scheme relies on

a centralized training where information about the environment

is shared between UAVs, and a decentralized execution.

Our paper presents two distinctive differences from existing

works. First, instead of considering the association variables

as binary, it rather deals with the probability that a UAV

visits a given device. This probability can be interpreted as the

frequency at which a UAV collects data from a device during

its flight. Accordingly, the event of collecting data becomes

stochastic, which justifies the use of the expected AoI as a target

of our optimization problem. Second, unlike existing works, we

propose a novel approach where a collection of DNNs is trained

using unsupervised learning. The proposed approach guarantees

accurate and robust results.

B. Contribution

In this paper, we aim to minimize the expected AoI while

optimizing the stopping locations of UAVs and the probabilities

of device selection. The probabilities of device selection can

be interpreted as the frequencies at which UAVs visit devices

during the target time. Our contributions can be summarized as

follows.

• First, we provide a closed-form expression of the expected

AoI of the network which involves the probabilities of

selection of devices. Then, we formulate the AoI mini-

mization problem as an optimization with quality of service

constraints.

• To address the studied problem, we leverage the framework

of EDNNs. The EDNN is based on training a collection of

DNNs. Each DNN is trained individually in an unsuper-

vised manner. The training of DNNs relies on the primal-

dual formulation of the initial optimization problem.

• Our simulation results show that the proposed EDNN

approach outperforms traditional DNNs, leading to a re-

duction of 29.5% of the expected AoI.

C. Organization

The remainder of the paper is organized as follows. First,

the system model is described in Section II. The mathematical

formulation of the problem is given in Section III. In Section IV,

we describe in details the proposed solution. Next, in Section V,

we show the performance of our appraoch using simulation

experiments. Finally, concluding remarks are provided in Sec-

tion VI.

II. SYSTEM MODEL

Consider a wireless network where a set I of I IoT devices

periodically generate data updates. The data is transmitted to a

server located at the base station (BS). Due to the restricted

communication range of IoT devices, a set U of UAVs is

deployed to collect data updates from IoT devices at regular

intervals, and then re-transmit the collected data to the BS.

During each time interval t ∈ T , {0, . . . , T−1}, an IoT device

i sends its data to a UAV u with probability pi,u[t] using the

air-to-ground channel. Our aim is to timely collect the generated

data so that its expected age is minimized.

A. Communication Model

To model the uplink channel between device i and UAV u, we

assume a block Rician-fading model, where the channel condi-

tions remain constant over a time interval t. As a consequence,

the channel response between device i and UAV u at time step

t is given by

hi,u[t] =

√

Φ

Φ+ 1
ξLoSi,u [t] +

√

1

Φ + 1
ξNLoS
i,u [t],

where Φ represents the Rician factor, ξLoS
iu [t] is the line-of-sight

(LoS) component with magnitude
∣

∣ξLoSi,u [t]
∣

∣ = 1, and ξNLoS
i,u [t]

is the random non-line-of-sight (NLoS) component following a

Rayleigh distribution with mean zero and variance one.

Let (xu[t], yu[t], Hu) be the 3D position of UAV u

at time interval t, where Hu is the altitude of UAV u

that is assumed fixed. Similarly, we denote by (xi, yi, 0)
the position of device i. Hence, the distance between de-

vice i and UAV u during time interval t is given by

di,u[t] =
√

(xu[t]− xi)2 + (yu[t]− yi)2 + (Hu)2. We assume

that devices use orthogonal frequency division multiple access

(OFDMA) to communicate with the UAVs. Hence, the signal-

to-noise ratio (SNR) of IoT device i with respect to UAV u at

time slot t is given by

Γi,u[t] =
Pi[t] |hi,u[t]|

2

σ2di,u[t]2
,

where Pi[t] is the transmit power of device i during time interval

t, and σ2 is the variance of an additive white Gaussian noise.

Accordingly, the rate of IoT device i with respect to UAV u

during time slot t can be expressed as

Ri,u[t] = Bi,u[t] log2 (1 + Γi,u[t]) ,

where Bi,u[t] is the allocated bandwidth between device i and

UAV u during time slot t.

We assume that the generated data from IoT devices is stored

in a buffer until it is collected by a UAV for transmission. We

also suppose that the size of the devices’ buffers is large enough

to save all the generated data during the entire time span T .

For a successful and efficient data transmission between

device i and UAV u during time interval t, the data rate Ri,u[t]
between device-UAV pair should exceed a predefined threshold

denoted as Rmin. This threshold Rmin is carefully chosen to

guarantee that data updates can be transmitted almost instan-

taneously, ensuring rapid and reliable communication between

the device and the UAV.



Throughout their flights, UAVs make stops to collect data

from subsets of IoT devices. We assume that the data collection

time is negligible compared to the overall flight time. We also

assume that the UAVs maintain a constant speed V during their

flight. Consequently, the total flight time of UAV u, denoted as

ζu, can be expressed as:

ζu(xu,yu)=
T−1
∑

t=0

√

(xu[t+ 1]−xu[t])2+(yu[t+ 1]−yu[t])2

V
.

B. Age of Information

The objective of this work is to optimize the UAVs’ 3D

locations over time jointly with the probabilities to collect

data while maximizing the freshness of the data updates. In

particular, our aim is to minimize the expected AoI. The AoI

is defined as the time elapsed between the last update is

successfully received by the UAV. Let αi,u[t] be the probabilistic

event that UAV u collects data from IoT device i at time interval

t, and let pi,u[t] be the probability that αi,u[t] = 1. Specifically,

αi,u[t] =

{

1, with probability pi,u[t]
0, with probability 1− pi,u[t].

(1)

We define the AoI of IoT device i with respect to UAV u at

time interval t ≥ 1 using a recursive formula as follows

Ai,u[t] = (Ai,u[t− 1] + 1) (1− αi,u[t]) , (2)

where Ai,u[0] = 0. Accordingly, when the data updates of de-

vice i are not collected during time interval t (i.e., Ai,u[t] = 0),

the AoI is increased by one unit of time. Inversely, when the

updates are transmitted, the AoI is reinitialized to zero. In this

context, it is judicious to consider the expected AoI with respect

to the probabilities of data collection over a number of intervals

T . The following lemma provides a closed-form expression of

the expected AoI.

Lemma 1. The expected AoI E(Ai,u[t]) for an IoT device i

associated with UAV u at time step t can be expressed as

E(Ai,u[t])

= pi,u[t]



1+pi,u[t− 1]+

t−1
∑

k=1





k
∏

j=1

pi,u[j]pi,u[j − 1]







 ,
(3)

where pi,u[t] = 1 − pi,u[t], and the expectation E(.) is with

respect to the probabilistic event that UAV u collects data from

IoT i at time t.

Proof. We prove the lemma by induction.

Base Case: For t = 1, we have

E(Ai,u[t])= pi,u[1]
(

1+pi,u[0]
)

= pi,u[1],

which matches the derived expression.

Inductive Step: Let us assume that the lemma holds for t =
n, 1 < n < T − 1 i.e.,

E(Ai,u[n])=pi,u[n]



1+pi,u[n− 1]+

n−2
∑

k=1





k
∏

j=1

pi,u[j]pi,u[j − 1]







 .

(4)

In the following, we prove that it holds for t = n+ 1.

E(Ai,u[n+ 1]) = E((Ai,u[n] + 1)(1 − αi,u[n+ 1])

= (1− pi,u[n+ 1])E(Ai,u[n]) + 1− pi,u[n+ 1].
(5)

Using our assumption in equation (4), we replace E(Ai,u[n])
by its expression and obtain

E(Ai,u[n+ 1]) = pi,u[n+ 1]pi,u[n](1+ pi,u[n− 1]

+

n
∑

k=1





k
∏

j=1

pi,u[j]pi,u[j − 1]



) + pi,u[n+ 1]).

Finally, by arranging the expression above, we obtain

E(Ai,u[n+ 1]) = pi,u[n+ 1]
(

1 + pi,u[n]

+

n
∑

k=1





k
∏

j=1

pi,u[j]pi,u[j − 1]



).

Therefore, the lemma holds for t = n+ 1. By induction, the

lemma is proven for all t ≥ 1.

From equation (3), we can observe that when pi,u[t] = 1 (or

equivalently pi,u[t] = 0) for all t ∈ T , i.e., the data is collected

from user i by UAV u for all time intervals, the corresponding

expected AoI becomes zero. Conversely, when pi,u[t] = 0,

i.e., no data has been collected over the considered time, the

expected AoI related to user i and UAV u reaches its maximum

value which is equal to T .

III. PROBLEM FORMULATION

The objective of this work is to minimize the expected

AoI across devices during a number of time intervals T . The

optimization problem involves finding the optimal probabilities

p of selecting devices to collect data updates and the stopping

points (x,y) of UAVs over time, while considering various

constraints. Accordingly, our problem is formulated as follows



min
p,x,y

∑

(t,u,i)∈
T ×U×I

pi,u[t]



1+pi,u[t− 1]+

t−1
∑

k=1





k
∏

j=1

pi,u[j]pi,u[j − 1]









(6a)

s.t. Ri,u[t] ≥ pi,u[t]R
min, ∀(t, u, i) ∈ T× U× I, (6b)

∑

u∈U

pi,u[t] ≤ 1, ∀(t, i) ∈ T× I, (6c)

∑

i∈I

piu[t] ≤ Nu, ∀(t, u) ∈ T× U , (6d)

ζu(xu,yu) ≤ T, ∀u ∈ U , (6e)

0 ≤ xu[t] ≤ xmax, ∀(t, u) ∈ T× U , (6f)

0 ≤ yu[t] ≤ ymax, ∀(t, u) ∈ T× U , (6g)

0 ≤ pi,u[t] ≤ 1, ∀i ∈ I, ∀(t, u) ∈ T× U (6h)

Constraint (6b) ensures that the expected rate between each

UAV and its served IoT device is above a predefined threshold

Rmin. Constraint (6c) guarantees that a device can transmit to at

most one UAV at a time, on average. Similarly, constraint (6d)

ensures that the expected number of served devices by UAV

u does not exceed its maximum capacity Nu. Constraint (6e)

guarantees that each UAV u adheres to a maximum flight

time, denoted as ζumax, which aligns with its energy budget.

Constraints (6f) and (6g) limit UAVs’ movements to a specific

area. Constraint (6h) bounds the probabilities of device selection

between 0 and 1.

Solving the expected AoI minimization is challenging due

to the non-convexity of both the objective function and con-

straints (6b) and (6e). To address this problem, we leverage

the power of EDNNs. EDNNs take advantage of the impres-

sive ability of DNN to approximate highly complex functions.

Specifically, EDNN is a collection of DNNs trained with dif-

ferent initial weights and training data. Each DNN model in

the ensemble is individually trained and stored. During the test,

the DNNs’ results are combined using an aggregation rule (e.g.,

averaging).

In the next section, we first explain how a single DNN

model can efficiently solve the expected AoI minimization, then,

we describe how the EDNN solution is leveraged to provide

accurate results.

IV. ENSEMBLE DEEP NEURAL NETWORKS BASED

APPROACH

To address the constrained AoI problem, an alternative ap-

proach is to solve its primal-dual formulation. In fact, while the

optimal solution of the dual problem may not necessarily be the

optimal solution for the original AoI minimization (due to the

non-convexity of the problem), it can still offer an efficient local

optimum. Specifically, the Lagrangian function for the problem

under study is defined in (7).

(Cj
. )

7
j=1 in (7) captures the constraints of

the problem, which are expressed as follows

Algorithm 1 EDDN for AoI Minimization

Training phase :

1: Let N be the number of models in the EDNN.

2: Generate the training data and split it into N datasets

3: for i = 1, . . . , N do

4: Initialize the weights of the ith DNN model w and the

Lagrange multipliers (µj
. )

7
j=1

5: for Iterations of stochastic gradients do

6: Select a mini-batch of data and use gradient descent to

update the weights of the DNN as follows w
t+1 = w

t −

η
∂L̂(w,µ)

∂w
in order to get xt,yt,pt .

7: Update the Lagrangian multiplier as follow (µj)
t+1

=

(µj)
t
+ β

∂L̂(w,µ)
∂µj = (µj)

t
+ β

(

Ĉj
)

∀j ∈ 1, . . . , 7.

8: end for

9: end for

Testing phase

10: Generate the testing data.

11: for i in N do

12: Output xi, yi, and p
i (the output vectors of DNN i).

13: Compute the expected AoI denoted as AoIi using (3).

14: end for

15: Compute the final output vectors from all DNN models x =∑
N
i=1

AoIi·x
i

∑
N
i=1

AoIi
, y =

∑
N
i=1

AoIi·y
i

∑
N
i=1

AoIi
, p =

∑
N
i=1

AoIi·p
i

∑
N
i=1

AoIi
.

C1
i,u,t = ReLU

(

Rmin − pi,u[t]Ri,u[t]
)

, C2
i,t =

ReLU(
∑

u∈U

pi,u[t]− 1), C3
u,t = ReLU(

∑

i∈U

pi,u[t]−Nu), C
4
u =

ReLU (ζ(xu,yu)− ζmax), C5
u,t = ReLU (xu[t]− xmax),

C6
u,t = ReLU (yu[t]− ymax), C7

i,u,t = ReLU (piu[t]− 1),
where ReLU(x) = max(0, x), is the rectified linear function,

and (µj
. )

7
j=1 are the non-negative Lagrange multipliers.

Accordingly, an alternative formulation to solve the expected

AoI minimization problem is given by

max
{µj}

min
x,y,p

L(p,x,y,µ). (8)

To solve problem (8), we leverage the ability of DNN to

approximate complex functions. To this end, the data collection

probabilities and the scheduling of UAVs locations are modeled

as an output of a DNN. Specifically,

(x,y,p) , f(w; θ), (9)

where w is the DNN’s vector of weights, θ is the input vector

composed of environment parameters (e.g., the transmit powers,

bandwidth, channel gains, etc) and f(.) is the DNN model.

Hence, to find the optimal data collection probabilities and

effectively schedule their locations over time, we adopt an

unsupervised learning approach. This approach differs from tra-

ditional supervised learning, where the DNN’s training depends

on a numerical algorithm to solve the optimization problem.

Instead, we utilize the Lagrangian of the optimization problem

as a cost function to train the DNN using an unsupervised



L(p,x,y,µ)=
∑

(i,u,t)∈
I×U×T

E(Ai,u[t])+









∑

(i,u,t)∈
I×U×T

µ1
i,u,tC

1
i,u,t









+









∑

(i,t)∈
I×T

µ2
i,tC

2
i,t









+









∑

(u,t)∈
U×T

µ3
u,tC

3
u,t









+

(

∑

u∈U

µ4
uC

4
u

)

+









∑

(u,t)∈
U×T

µ5
u,tC

5
u,t









+









∑

(i,u,t)∈
I×U×T

µ6
i,u,tC

6
i,u,t









+









∑

(i,u,t)∈
I×U×T

µ7
i,u,tC

7
i,u,t









.

(7)

learning. Moreover, to optimize the Lagrangian multipliers, we

employ a gradient ascent optimization.

Accordingly, at the tth iteration, the variables of problem (8)

are optimized using stochastic gradient descent and gradient

ascent as follows

w
t+1 = w

t − η
∂L̂(w,µ)

∂w
, (10)

and for all j ∈ {1, . . . , 7}

(µj)
t+1

= (µj)
t
+ β

∂L̂(w,µ)

∂µj
= (µj)

t
+ β

(

Ĉj
)

, (11)

where w
t and (µj)

t
are the vectors of weights and Lagrangian

multipliers at the tth iteration, respectively. L̂(w,µ) is the

expected value of the Lagrangian function applied to a batch

of input data. Similarly, Ĉj is the expected value of the jth

constraint applied to a batch of input data. Finally, η and β

are the learning rates of stochastic gradient descent and ascent,

respectively.

The DNN is trained with the aim to output the optimal UAV

positions x, y, and data collection probabilities p. To ensure

that each UAV’s position remains within the target area, a ReLU
function is applied to outputs related to UAVs’ 2D positions at

the output layer. Similarly, a Sigmoid function is applied to the

outputs related to data collection probabilities. These activation

functions guarantee that the DNN’s outputs are bounded within

the specified intervals.

To enhance the generalization performance and ensure the

robustness of the proposed DNN, we leverage the framework of

EDNNs. Compared to DNNs, EDNNs combine multiple DNN

models into an ensemble, which leads to enhanced accuracy

and robustness [15]. In the context of AoI minimization, the

EDNN will improve the generalization ability of the model

for unseen scenarios and handle the uncertainty of the wireless

environment. In the following, we describe how the EDNN is

efficiently trained and tested. The description of the proposed

approach is provided in algorithm 1.

1) Training EDNN: We implement an EDNN structure in

which the DNN models within the ensemble share the

same architecture. However, each DNN is initialized and

trained using different initial weights and training sets. In

fact, to achieve an efficient training of EDNNs and avoid

overfitting, it is important to ensure a minimal overlap in

the datasets used to train each DNN within the ensemble.

For the studied AoI problem, the input data is composed of

the channel gains, the bandwidth allocations, the transmit

power, and the locations of IoT devices. The data is

generated randomly and is equally divided between the

DNNs within the ensemble. Then, each DNN is initialized

randomly. At each iteration of the training, a mini-batch is

randomly selected to perform gradient descent and ascents

updates.

2) Testing EDNN: During the testing phase, the test set is

drawn from the same distribution as the training data. Each

trained DNN is provided with the test data and produces

the UAVs’ scheduling and data collection probabilities. The

final output of the EDNN is computed by taking a weighted

average of all the output vectors, where the weights are

proportional to the AoI provided by each DNN within the

ensemble.

It is important to note that due to the computational complex-

ity of the training and the relatively small gain in performance

that comes from adding multiple DNNs, the number of models

in EDNN is kept small (generally up to 10).

V. SIMULATION RESULTS

To evaluate the performance of the proposed approach, we

consider an area of 1000m × 1000m, where a number of 30
IoT devices are randomly scattered. We also suppose that 3
UAVs are deployed to collect and keep the data as fresh as

possible. The UAVs hover at altitudes between 80m and 100m.

Moreover, the devices are assigned a fixed bandwidth, randomly

picked between [1.5, 2] GHz and a constant power between [0, 1]
mWatt. To satisfy the quality of service constraint, the minimum

rate is set to 150 Kbit/s.

The parameters of our simulation setup are summarized in

Table I.

Parameter Value Parameter Value

I 30 U 3
xmax 1000m ymax 1000m
Hu [80, 100]m Rmin 150 Kbit/s

Nu 8 T 40
Bi,u [1.5, 2] GHz σ2

−120dBm

Pi [0, 1] mW T 40

TABLE I: Experiment setup
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The mini-batch size and the gradient descent learning rate

are taken as 50 and 0.001. At each iteration, the number of

epochs is 150. Moreover, the step size β of updating the penalty

parameters is set to 0.1. For each single DNN, the number of

neurons from the input layer to the output layer is given as

{600, 1200, 2400, 4800}. Finally, the ensemble size is set to 8.

In Fig. 1, we observe a consistent reduction in the expected

AoI for both DNN and EDNN during the training phase.

Moreover, it can be seen through the figure that by the end

of the training the EDNN achieves a substantial decrease in the

average AoI. These results are confirmed through the testing

phase as illustrated by Fig. 2. Specifically, Fig. 2 plots the

expected AoI in the test and compare it with DNN and a

numerical method (based on the interior- point algorithm). As it

can be seen through the figure, the EDNN approach outperforms

DNN and the numerical method as it achieves a reduction of

approximately 29.5% compared to DNN, and a reduction of

approximately 35.5% compared to the numerical method.

In Figure 3, we investigate the impact of the ensemble size

in EDNN on the achieved expected AoI during the test. It can

be seen from the figure that as the ensemble size increases, the

expected AoI is further minimized, which indicates the potential

for even better performance with larger ensemble sizes.

VI. CONCLUSION

In this paper, we studied the problem of AoI minimization

in UAV-assisted networks. Specifically, we proposed an EDNN

based approach to efficiently schedule the 2D positions over

time and optimize the probabilities of selection. The EDNN is

trained using an unsupervised learning which relies on the mini-

mization of the Lagrangian function of the studied problem. Our

simulation results show that the proposed approach outperforms

traditional DNN in minimizing the AoI.
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