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Abstract—A modern vehicle is no longer merely a trans-
portation vessel. It has become a complex cyber-physical system
containing over 100M lines of software code controlling various
functionalities such as safety-critical steering, brake, and engine
control. The amount of code is anticipated to rise to around 300M
lines of code by 2030. Furthermore, even well-tested code will
contain more than one bug per 1000 lines of code. Thus, it can be
expected that there will be around 100k bugs in a modern vehicle
and around 300k bugs in a few years, where some might have
a safety-critical impact. Automotive companies are transforming
into software companies with more software developed in-house.
The ability to hastily and securely patch vulnerabilities has
become vital and is a prerequisite when securing modern cars.
The UN Regulation No. 156 and the ISO 24089 emphasize the
ability to update vehicle software securely.

Consequently, we focus on securing the vehicle software
update process. Our contributions include defining an attacker
model and general security requirements. We further map these
requirements to common security goals and directives to ensure
broad coverage. Additionally, we present UniSUF, a secure and
versatile approach to vehicle software updates. We identify
entities involved during vehicle software updates, perform a
threat assessment, and map the identified threats to security
goals and requirements. The results highlight a secure framework
with high industrial relevance that can be used as a reference
architecture to guide securing similar software update systems
within automotive and related areas such as cyber-physical
systems, internet-of-things, and smart cities.

Index Terms—rvehicle security, vehicle resilience, vehicle soft-
ware updates

I. INTRODUCTION

The complexity of software within the automotive domain is
increasing at a high pace, and as a result, the number of poten-
tial software bugs increases as well. Hence, software updates
mitigating vulnerabilities need to be applied regularly. The
automotive industry has requirements for numerous software
deployment scenarios, such as over-the-air, in workshops, and
in factories, with or without Internet access [1]. However, there
is a risk that if the software update process is vulnerable,
it might leverage the potential for malicious code reaching
in-vehicle systems causing life-threatening hazards such as
manipulated brakes, steering, and engine control. Therefore,
UN Regulation No. 156 [2] and ISO 24089 [3] provide
demands on secure vehicle software updates.

A vehicle is a distributed system with dependability and
real-time requirements and can contain over 150 computers
running various operative systems, further interconnected us-
ing many different communication buses and protocols. Thus,
performing secure software updates to vehicles requires a
rather complex approach.

The software update process can be divided into data
distribution and data execution, where the former concerns
the difficulties of securely distributing all needed data, such as
software files, installation instructions (diagnostic commands),
and cryptographic material, to the entity responsible for the in-
stallation process for all in-vehicle computers, i.e., Electronic
Control Units (ECUs). The latter can be divided into pre-,
peri- and post-state for the installation process. Pre-state refers
to the preparation necessary to execute before the installation
process can start, including a version control validation for
all ECUs by comparing vehicle-unique software versions in
a database with the actual vehicle and handling deviations.
Additionally, it may be necessary to disable firewalls and
Intrusion Detection/Prevention Systems to enable unlocking
and placing ECUs in programming mode and verify that the
vehicle is in a state that allows software updates, e.g., parking
mode with a secure offline state.

The peri-state involves potential validation, decryption, and
installing and transferring the new software to affected ECUs.
Post-state is to perform the necessary validation of the update,
such as securely creating installation reports and logs that may
affect upcoming installation processes. For example, the instal-
lation report can include information about corrupt in-vehicle
data, such as invalid cryptographic keys or faulty ECUs, which
must be solved by downloading additional updates or replacing
hardware. Alternatively, the installation report can serve as
proof of a successful update.

Furthermore, every vehicle is unique and needs to have
unique data distribution and data execution. Thus, a unique
vehicle configuration, multiple software files for every ECU,
many unique cryptographic keys, and ECU-specific diagnostic
requests are required. For instance, special cryptographic keys
to turn off security functionality that might otherwise block
the installation process.

The ECU installation process typically uses Unified Diag-
nostics Services (UDS), a communication protocol specified
in the ISO 14229-1 standard [4]. UDS is also used for
various tasks such as reading out fault codes, activating or
deactivating firewalls, changing operations mode (e.g., driving
or passive), and testing functionality. Additionally, there are
different security levels related to diagnostics. To execute at
a particular level, the entity responsible for the installation
needs access to the corresponding key to unlock this level.
These keys need to be securely distributed and used securely
in the execution. Securing the distribution, storage, pre-, peri-,
and post-execution processes w.r.t. the infrastructure and all
in-vehicle processes is challenging.
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Fig. 1. A Goal Structuring Notation over Secure Vehicle Software Updates

Contributions. We have identified general requirements to
ensure a secure software update process. These requirements
fulfill common security goals for cyber-secure vehicles. More-
over, we present a reference architecture named UniSUF based
on previous work [1]. We validate the usability and security of
our reference architecture by identifying an attacker model and
performing a threat assessment. Finally, we identify mitigation
mechanisms and map the specific threats to security goals
and requirements to strengthen the robustness and design of
UniSUF for a broad industry adaption with UN Regulation
No. 156 in mind.

II. ATTACKER MODEL

There can be various threat actors, such as cyber terror-
ists, foreign countries, hacktivists, and vehicle owners [5].
However, we assume a common agenda where someone aims
to manipulate the software update process or the software
itself at any entity or during communication between entities
throughout the software update process. For instance, the
intent can be to recover and exploit secret signing or obtain
encryption keys used during the software update process. The
latter might enable disabling firewalls or switching ECUs
into programming mode to enable update capabilities. Ad-
ditionally, attackers might want to decrypt software files to
reverse engineer and gain insight into its contents affecting
the intellectual property and try to find vulnerabilities, e.g.,
through analysis of safety-critical systems. Thus, the attacker’s
ultimate goal is to exploit the software update system so
that malicious or unauthorized software providing additional
or altered functionality reaches the in-vehicle system, for
instance, to gain and maintain remote persistence.

III. METHODOLOGY

Related work by us on the resilience of vehicles against
security threats called Resilient Shield [5] provides a list of
common security goals (SG) and directives (D), shown in

TABLE I
GENERAL REQUIREMENTS

Requirement R1: infrastructure and communication. The infrastructure,
cryptographic algorithms, and key material shall follow best security prac-
tices. For instance, communication between backend entities shall encrypt
communication and use proper authentication between entities. The same
requirements shall be considered for in-vehicle entities directly related to
the update framework.

Requirement R2: code review, testing and validation. When possible,
external and internal code reviews shall be performed to detect vul-
nerabilities and deviations. Follow secure programming guidelines like
the Secure Software Development Lifecycle (SSDLC). Continuous testing
and validation shall be performed, such as positive/negative, vulnerability,
fuzzing, penetration testing, and validation of, e.g., security controls.
Requirement R3: secure storage. Key management, such as generation
and storage, shall be protected according to a high-security level within
HSMs. Access to such should be highly restricted and only accessible to
authorized users.

Requirement R4: redundancy. Relevant redundancy shall be used to
switch to redundant entities during failures and compromises of entities
or processes that are part of the update framework. For instance, traffic
shall be redirected to redundant systems if appropriate during a denial of
service attack.

Requirement RS: least privilege. Each backend entity shall be im-
plemented according to the least privilege principle. i.e., each entity is
responsible for securing its data (output), whereas data from other entities
are validated and visible only on a need-to-know basis (input).
Requirement R6: separation of duties. The separation of duties shall be
considered within the software update framework, where many separate en-
tities shall be required to complete the distribution and execution processes.
Requirement R7: state awareness. Employed mechanisms and functions
need to be robust against anomalies. The system shall be aware of its state
and shall be able to switch to other states when anomalies are detected. For
instance, when a cyber attack is detected, and if appropriate, the software
updates system shall be able to abort, roll back and perform a retry from
redundant entities.

Requirement RS8: secure boot. State-of-the-art secure boot protection
mechanisms shall be used where applicable, e.g., the installation responsible
entity (the diagnostic client), including TEE environments. For example, the
first image in a Chain of Trust has a ReadOnly Memory (ROM) and contains
an immutable Hardware Trust Anchor (HTA), i.e., a Root of Trust code,
including a root certificate. Hence, this image can be used to verify keys
and signatures for upcoming loaded images such as TEEs.

Requirement R9Y: Intrusion Detection/Prevention Systems. IDSs/IPSs
shall be used to detect and react to anomalies from normal communication
patterns and known attacks.

Requirement R10: fault-tracing and forensics. Events related to software
installation and security events (e.g., turning off the firewall) shall be
securely stored to enable fault tracing and forensics investigations. For
instance, traceability regarding time and source for events shall be possible.
Requirement R11: secure algorithms. The type and lifetime of key mate-
rial concerning its context, future maintainability, and implementation shall
be considered, e.g., using quantum-resistant algorithms and a set validity
time for key material. However, the author intends not to recommend the
type of algorithms to use.

Requirement R12: authenticity software. All encrypted software files
shall be validated for authenticity before decryption by the installation
responsible entity. Furthermore, supported end nodes shall perform another
validation for decrypted software files. These two separate validation steps
shall be based on different signing keys. The intermediate certificates shall
be fetched, received, or pre-stored and always validated via OCSP or CRL
requests and against a specific root certificate before being used.
Requirement R13: secure storage, freshness and authenticity within
TEE. a) The private vehicle unique decryption key at the consumer
(receiver) side shall be secured according to best security practices and
only accessible inside the TEE. Furthermore, the public counterpart, i.e.,
the encryption key, shall be validated for authenticity before use towards
Root CA, expiration date and revocation. b) The public key in R13a shall
only be used to encrypt session keys. The validity time of these session
keys shall be connected to the validity time of an update package. c¢) The
input data (function calls) to TEE shall be validated for authenticity.




TABLE II
MAPPING OF REQUIREMENTS TO SECURITY
GOALS, DIRECTIVES AND THREATS

[Requirement] [Security Goal] [Directive] [Threat]

[R1,R11][SG1: Secure Communication] [P1-P6, R, C1-C3]

[R4] [SG2: Readiness] [P1-P6, R]

[R5,R6] [SG3: Separation of Duties] [P1-P6, R, C1-C3]
[R2,R3,R8,R12,R13][SG4:Secure Software Techniques] [P1-P6,R,C1-C3]
[R5,R6] [SGS5: Separation/Segmentation] [P1-P6, R, C1-C3]

[R9] [SG6: Attack Detection and Mitigation] [P1-P6, R, C1-C3]

[R7,R9] [SG7: State Awareness]
[R3,R9,R10] [SGS: Forensics]
Directives

D1:Authentication, D2:Encryption, D3:Redundancy/Diversity, D4:Access Control,
D5:Runtime Enforcement, D6:Secure Storage, D7:Secure Boot, D8:Secure
Programming, D10:Verification & Validation, D11:Separation, D12:Specification/
Anomaly-based Detection, D13:Prediction of Faults/Attacks, D14:Adaptive Response,
D15:Reconfiguration, D16:Migration/Relocation, D17:Checkpoint &

Rollback, D18:Rollforward Actions, D19:Self-X, D20:Robustness, D21:Forensics

[P1-P6, R, C1-C3]
[P1-P6, R, C1-C3]

Table II, developed from an analysis of cyber attacks on
vehicles over a ten-year timespan to create a common baseline
for a cyber-secure vehicle. We have identified general security
requirements for software updates summarized in Table I and
mapped them to the SG and D from Resilient Shield as
security claims in Table II. We further use Goal Structuring
Notation (GSN) [6] to present proofs for claims in a graphical
manner to map these claims (i.e., SG and D) to the general
requirements in Table I, as illustrated in Figure 1. Additionally,
we map threats and elaborate on the fulfillment of require-
ments in Section IV-B. Thus, we achieve broad coverage
by ensuring requirements covering established security goals
and enhanced security by fulfilling these requirements. For
instance, as shown in Figure 1 and Table II, SG1 is fulfilled
by requirements R1 and R11 and reinforced by implementing
the detailed directives D1 and D2, mitigating threats P1-P6,
R, and C1-C3.

We further establish that the following security properties
and principles are fulfilled by enforcing the following gen-
eral requirements (cf. Table 1): Confidentiality by encryption
and authorization [R1,R3,R5,R13]. Integrity and authenticity
with hashes and signing [R1,R8,R12,R13]. Authorization and
isolation between entities and their data by signing, con-
tainerization, virtualization, and trusted execution environment
(TEEs) [R1,R3,R5,R13]. Freshness by a set validity time for
the update package and associated session keys [R11-R13].
Availability and reliability using redundancy in the update
system and support for implementing updates to the update
framework when requirements change [R1-R13]. Principles
such as the least privilege and separation of duties for entities
are ensured on a need-to-know basis, and many separate enti-
ties are needed to complete vehicle updates [R5,R6]. Forensic
capabilities with traceability by providing secure storage of
events in logs [R10].

IV. A REFERENCE ARCHITECTURE FOR SECURE
VEHICLE SOFTWARE UPDATES

This section introduces a reference architecture named
UniSUF [1] that fulfills the general requirements presented

in Section III. We describe the reference architecture compo-
nents, provide a threat assessment and elaborate on possible
mitigations. UniSUF is made to cover the whole software
deployment process, starting with securing the software update
files to the installation process and finally creating post-process
installation reports. UniSUF covers online and offline updates
without dependencies on the data distribution model or the
software update storage location. Additionally, it supports
updating of 3™ party components, which is an increasingly
important requirement. For instance, more companies are
using vehicle platforms extended with 3™ party components
and need to update such components ideally using the same
software update framework.

Three primary entities are involved in the update process:
the producer, the consumer, and the repository. The first entity
produces the software, which includes the automaker and 3™
party suppliers. The second consumes or uses the software
and comprises the vehicle and its users. The third entity is a
storage for the software before installation, such as various
cloud sources and local storage points, e.g., local network
workshop drives.

In UniSUEF, all data required for a unique vehicle software
update is encapsulated using encryption and signatures into
layers of data producing one single update file, the Vehicle
Unique Update Package (VUUP). As shown in Figure 2,
VUUP contains pre_data and content. The first part, i.e., pre-
data, contains a validation certificate and a signed hash of the
rest of the content of the VUUP file. The actual content in-
cludes a package containing the required certificates to validate
all signatures in the VUUP file. Moreover, the content includes
installation and download instructions and all the required
cryptographic keys. However, due to the complexity and cost
impact, modifying the E/E to all ECUs to accommodate a
new specific software update framework is rarely an option.
Instead, UniSUF allows securing the software update pro-
cesses without adding new functions to all in-vehicle ECUs.
Potential security mechanisms in use, such as secure boot and
software signing, in individual ECUs remain intact. UniSUF

Generates

{/ pre_data:{ VCM_cert;

: content_VCMsigned; }

| content: { encoded_certificate_package; |

‘ encoded_encrypted installation_instruction.PIAsigned; !
encoded_encrypted_IKM.PIAsigned; :
encoded_encrypted_download_instruction.PDAsigned;
encoded encrypted DKM.PDAsigned;};

Executes
Consumer

Fig. 2. The Vehicle Unique Update Package (adapted from [1])

uses isolation techniques such as containers, virtual machines,
or combinations of such for producer entities. Depending on
the context, producer entities shall be implemented as isolated
modules with controlled and secure communication, secured
on-premises or in the cloud. Thus, the communication shall be
encrypted and authenticated. Each entity is responsible for its



TABLE III
ABBREVIATIONS

Producer Security Agent (PSA) handles cryptographic material in the backend
systems.

Secure Key Generator (SKG) is used by PSA to secure key material generation.
Vehicle Identification Number (VIN) is a vehicle unique fingerprint, and is composed
of 17 characters.

Version Control Manager (VCM) manages software versions related to unique
vehicles and creates the software list and repackage data into the VUUP file.
Producer Download Agent (PDA) creates the instructions for downloading software
for a specific VIN.

Producer Installation Agent (PIA) makes the diagnostic instructions for software
installation for a certain VIN, including retrieving necessary cryptographic material.
VIN Database (VD) stores necessary VIN unique data related to software.
Cryptographic Material Storage (CMS) is a secure storage of cryptographic material.
Consumer Download Agent (CDA) executes download instructions and retrieves all
necessary software files to local storage.

Consumer Installation Agent (CIA) is a diagnostic client responsible for running in-
stallation instructions and requesting the execution of needed cryptographic algorithms.
Consumer Security Agent (CSA) has a trusted execution environment (TEE) with
pre-stored certificates between vehicle manufacturers and the CSA, enabling secure
transfers and execution of cryptographic material.

data security, i.e., data is encrypted and signed at the source.
Consequently, producer entities can validate the data. Still,
only the intended consumer entity can read the information on
a need-to-know basis via interaction with trusted applications
running processes securely in isolation within a TEE on the
consumer side.

A. Key management

UniSUF uses multiple signatures where producer entities
have their specific signing keys. Entities are prevented from
reading sensitive data created by other entities. Session keys
are secured by encapsulation (i.e., asymmetric key wrapping)
into layers within a final single file and transferred to the
consumer. Encapsulation into layers implies that producer
entities encrypt and sign their data (at the source). When
data is retrieved, it is validated by the receiving producer
entities that append their own encrypted and signed data.
Finally, all information is collected and appended into a
single VUUP file (cf. Figure 2 and 3). On the consumer
side, the VUUP file is validated in its entirety, and further
decapsulated, where after each internal component is validated
in itself with its corresponding certificate. Policy-based keys
are directed and bound to trusted applications by installation
processes (pre-state) and isolated within the TEE. Thus, poli-
cies dictate how specific trusted applications executing in a
trusted execution environment are allowed to use these keys.
Decryption processes and keys are therefore isolated within
these trusted applications and can be used for, e.g., decryption
of software files, unlocking ECUs for software updates, and
signing installation reports and logs.

B. Threat Assessment

This section lists the potential threats to UniSUF. The
abbreviations used are listed in Table III. We look at threat
probability and give examples of mitigating these threats.
Security goals, directives, and requirements are considered
for each threat, according to Table II. For instance, for
threat R, SG4 and SGS5 are most relevant, where R2 and

RS are mentioned as examples for mitigation. Although most
requirements are applicable for all threats, there are some
distinctions, e.g., R4 is typical for the producer and R13 for the
consumer. We start with the producer, i.e., the backend side,
then the repository, and end with the consumer, i.e., the vehicle
side. We start with the perspective of isolated compromise,
one entity at a time. Section IV-C, looks at a few examples
of the consequences when the attacker has gained complete
control over more than one isolated entity. Note that all attack
vectors depend on the localization and implementation details.
The probability is graded on a scale from low, medium and
high and is based on the required time, expertise, tools, and
proximity for the potential attack.

1) The Producer: We start with the perspective of isolated
compromise on the backend side as visualized in Figure 3.
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Fig. 3. Overview of the Producer and Repository threats

Threat P1: Producer Download Agent (PDA). Location:
Within the automaker’s internal infrastructure (on-premises)
or via 3™ party suppliers, e.g., the cloud. Functionality: PDA
receives a signed Software List (SL), validates the signature,
and creates download instructions (URLs to software files).
Assumption: PDA is compromised and under the complete
control of the attacker. The attacker can manipulate the SL
with instructions to download malicious data from an external
source. Furthermore, the attacker can encrypt and sign the
malicious download instructions with the correct keys. Proba-
bility: If PDA is secured according to the stated requirements,
the probability of compromise is low. If located on-prem,
it will likely be insider actors, and if located in the cloud,
external attacks will likely be detected by intrusion detection
systems. Consequence and Mitigation: Manipulated download
instructions can be included in the VUUP file. Still, since
all software files shall be encrypted and signed with keys
not accessible to the PDA, the update process will abort and
disrupt the software update process. A mismatch between the
installation instructions and available software files will be
detected. Redundant system shall be available to take over,
e.g., when an attack is detected, switch to another server [R4].

Threat P2: Producer Installation Agent (PIA). Location:
Same as in Threat PI. Functionality: PIA receives the SL,
validates its authenticity, and creates installation instructions



based on SL. PIA also receives all required cryptographic
keys in an encrypted form. Thus, not readable to PIA. As-
sumption: The attacker controls the PIA and can manipulate
the diagnostic instructions. For instance, decide what parts of
the software files should be installed, creating inconsistencies
in the vehicle software. Possibly, the attacker intends to
keep known exploitable vulnerabilities from being updated.
Probability: Same as in Threat Pl. Consequence and Mit-
igation: The consequence can be severe, depending on the
existing type of vulnerabilities. The results of inconsistencies
in vehicle software are difficult to anticipate. Post-installation
processes will detect inconsistencies via a complete vehicle
software readout, and additional updates can be issued using a
redundant, non-compromised system [R4]. A warning message
shall be given about a potential malfunction and compromised
PIA. The signed SL file can be included in the VUUP file,
validated, and used for a consistency check before performing
installation processes on the consumer side. The SL file is
composed and signed by another entity, i.e., the VCM [R6].

Threat P3: Producer Signing Server (PSS). Location:
Within automaker premises if possible. Functionality: PSS
consists of three sub-entities isolated to the PDA, PIA, and
the PSA. After a mutual authorization process, PDA, PIA, or
PSA request signatures of hash values from PSS. Assumption:
The complete PSS is under control by an attacker who can
freely decline or accept signing requests and return invalid
or valid signatures. Probability: Same as in Threat P1 and
P2. Consequence and Mitigation: A disruption of the software
update can occur. Invalid or non-existing signatures will abort
the update process. If signing keys are compromised, these
need to be revoked [R12]. Anomalies can be detected, and
signing requests redirected to redundant systems [R4,R9].

Threat P4: Producer Security Agent (PSA). Location:
Within automaker premises if possible. Functionality: PSA
has access to the CMS and the SKG, where PSA retrieves
and generates the required keys for the actual vehicle software
installation process. Assumption: Secret keys are compromised
and the threat actor has complete control over PSA, CMS, and
SKG. Probability: Same as in Threat P1-P3. Consequence and
Mitigation: The threat actor can disrupt the software update
process by blocking key transferals or communicating faulty
keys. IDS/IPS shall detect anomalies and react, e.g., switch
to a redundant entity [R4,R9]. However, suppose the threat
actor has physical access via the OBD-II port, debug ports,
or connected directly to the communication bus. In that case,
keys can be used to gain extended diagnostic privileges, for
instance, turning off a firewall. We must then rely on end-nod
security [R8, R12].

Threat P5: Version Control Manager (VCM). Location:
Same as in Threat PI-P4. Functionality: VCM verifies the
update request containing a fully signed software version read-
out from the vehicle, i.e., the current software composition for
a unique vehicle. VCM retrieves the latest available software
versions from the VIN database and creates a signed SL, which
PDA, PIA, and PSA further process. Moreover, VCM validates
input data from PDA and PIA and repackages the data into

the VUUP file. Assumption: A threat actor can create an SL
not corresponding with an approved combination of software
versions and add faulty data into the VUUP file. Probabil-
ity: Same as in Threat PI-P4. Consequence and Mitigation:
Considering the amount of ECUs running various operating
systems, aligned with the extensive amount of code, different
software versions between ECUs might not be compatible and
can cause unpredictable behavior. Thus, extensive testing is
performed within the automotive industry towards different
baselines, i.e., combinations of software versions [R2,R7].

A threat actor can prevent a specific software version with
known vulnerabilities from being updated by stating that the
ECU already has the correct software version installed. How-
ever, it will be detected by post-installation processes since a
complete vehicle readout will be included in the logs and can
thus be solved by issuing an additional update. Moreover, since
VCM only repackage already signed data, any manipulation
of such data will be detected [R5,R6]. If the issue remains,
a redundant system shall be used, and a warning message of
a potentially faulty VCM will be issued [R4]. Additionally,
a consistency check towards an approved baseline can be
performed by PDA, PIA, and PSA before the installation
process and give a warning message when deviations between
SL and an approved baseline are detected, and further allow
or block the update depending on the detected deviations
[R5,R6].

Threat P6: Order Agent (OA). Location: Same as in Threat
PI1-P5. Functionality: OA is responsible for managing the
queue of vehicle software update requests. Verify that the
update requests are authentic and initiate the update process
via the VCM. Assumption: A threat actor has control over
OA. Probability: Same as in Threat PI-P5. Consequence
and Mitigation: Threat actors can block or allow update
requests. Blocking updates can be performed by claiming that
the signature validation of software update requests failed or
supplying a malicious URL to a faulty VUPP file. In the first
case, no VUUP file will be created, and in the second case, the
VUUP file will be made. However, the signature validation of
an incorrect VUUP file will fail, and the update will be aborted
[R5,R6]. A warning message shall be issued when there are
signs of update failures, whereafter, a redundant system can
be used [R4].

2) The Repository: As shown in Figure 3, a passive entity
that contains, e.g., source code.

Threat R: Repository, supply chain and insider threats.
Location: 3 party suppliers and within automakers premises.
Functionality: Software controls various parts of the vehicle,
including safety-critical systems. Assumption: Attacks/threats
on the supplier and internal side, e.g., manipulation of source
code and attacks on servers. Probability: Low for automakers’
own developed software and medium for 3" party suppliers
due to the complexity of the supply chain and the limited
potential for code reviews. Consequence and Mitigation: Con-
sequences can be severe, depending on the code. For instance,
code might affect safety-critical ECUs directly or indirectly
via other ECUs not being satisfactorily isolated. Automakers



and external suppliers shall limit access to codebase [RS5]
and perform software code reviews [R2]. Code validation
processes shall be established through the supply chain and
internal automaker processes.

3) The Consumer: As shown in Figure 4, the focus of this
section is on the threats concerning an individual vehicle. The
threats are still dependent on implementation details, such as
the location of the various modules [1]. For instance, the
diagnostic client, i.e., CIA, can be part of an ECU in the
vehicle but also executed externally via a diagnostic update
tool connected to the OBD-II port.
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E Download Agent (CDA) Installation Agent (CIA)
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Fig. 4. Overview of the Consumer Threats

Threat C1: Consumer Download Agent (CDA). Location:
In vehicle or within an external tool. Functionality: CDA
checks if updates are available and receive a signed URL to
the unique VUUP file if that is the case. CDA then validates
the URL’s authenticity and downloads the VUUP file to local
storage. Further, the VUUP file is validated and decapsulated.
Whereafter all internal contents are validated with their re-
spective certificate. The next step is for CDA to request the
initiation of keys by the CSA. If successful, CDA can request
a decryption process of the download instructions from CSA.
Assumption: Threat actor has complete control of the CDA and
can block the update process and manipulate the download
URL to retrieve additional malicious files to local storage.
Probability: We consider a medium probability for external
tools and a low probability for in-vehicle implementations.

Consequence and Mitigation: From a CDA perspective,
malicious data can only be downloaded, not executed. The
attacker can allow CDA to finalize all steps with accurate
data. In that case, still, the CIA will never execute any data
from local storage without validating the signatures of the data.
Secure boot protection mechanisms shall detect manipulation
of CDA functionality [R8]. CDA and CIA can be integrated
into the same ECU and be part of the same secure boot
mechanisms. However, CDA can also be integrated into an
external download tool, whereafter data is pushed to local
vehicle storage, e.g., via mutual SSH [R1]. If the external
CDA has been compromised, malicious data might reach local
storage. Still, the CIA will not execute any data without
the successful validation of signatures of the data [R6,R12].
Detected comprise of tools shall lead to revocation. Thus,
mutual authentication shall fail for these devices concerning
downloads from external sources and pushing data to the
vehicle [R1,R11,R13].

Threat C2: Consumer Installation Agent (CIA).

Location: Same as C1. Functionality: The responsibility of
the CIA is to execute installation instructions, thus installing
decrypted and validated software files. Moreover, after the CIA
successfully established a communication interface with the
CSA, i.e., with the secure applications within a TEE, the CIA

has the potential to send encrypted keys to unlock ECUs to
deactivate firewalls, perform decryption of software and allow
software updates. Assumption: A threat actor controls the CIA
and might manipulate installation processes. Probability: Same
as Cl. Consequence and Mitigation: The decryption of keys
only takes place inside the TEE; therefore, not visible to the
CIA. However, the actual function calls to trusted applications
might be manipulated, for instance, by switching encrypted
keys between functions. Thus, function calls to the CSA shall
be authenticated, e.g., with an authentication tag. We assume
an isolated compromise; therefore, the CDA is still intact, and
we only have authentic data at local storage [R13].

Threat C3: Consumer Security Agent (CSA). Location:
Same as C1 and C2. Note that the VUUP file needs to be
created for a particular VIN when located in an external tool.
Functionality: CSA has a TEE and offers a secure execution of
cryptographic mechanisms and data. Assumption: We assume a
complete compromise of CSA. Probability: Low, since secured
with, e.g., R3, R8 and R13. Consequence and Mitigation:
Secret keys are compromised. Examples of usage include
turning off firewalls, unlocking ECUs for software updates,
and software decryption. A secure boot shall protect CSA, and
thus, manipulations shall be detected [R3, R8, R13]. However,
suppose a threat actor has gained physical control, and the
decryption/execution of keys within the TEE is compromised.
Keys can be used when connecting to a communication bus
to gain extended privileges to ECUs.

However, many ECUs have inherent protection mechanisms
such as secure boot and signed software [RS8, R12]. Thus,
malicious updates will not be approved even when valid
diagnostic keys are used to put them in a state for software
updates. However, a few legacy ECUs that do not fulfill
security requirements might be vulnerable.

C. Examples of Multilevel Compromise

UniSUF is made to cause the least possible harm when
entities are compromised. Each entity shall be implemented as
a separate module with the potential to be localized differently
(e.g., locally on-prem or containerized in the cloud), along
with necessary redundancy. This section will take a few
examples of when multiple entities are compromised.

1) The Producer: Threat P2, P3: PDA and PIA. Assume
that a threat actor has gained control over the download of data
and the diagnostic instructions to install data. ECUs without
end-node/secondary validation of signatures might be com-
promised in that case. However, the PSA is not under attacker
control in this scenario. Thus, there will be deviations from the
output data from PSA concerning the PDA and the PIA. The
PDA, the PIA, and the PSA generate data based on the signed
SL file. However, if an attacker can manipulate the normal
process flow, e.g., perform ECUs unlock by using authentic
data from PSA and then use malicious data for ECUs without
end-node protection, these might be compromised [RS8, R12].
Post-installation processes shall detect these deviations, and
additional updates shall be issued from a redundant non-
compromised system [R4,R9,R10].



Threat P2, P3, P5: PDA, PIA and PSA. In the previ-
ous multi-level compromise, PSA is not compromised. Thus,
cryptographic keys can be sent and processed encrypted to
TEE, e.g., to enable extended diagnostic privileges within
manipulated installation instructions. Still, the keys are not
exposed outside the TEE since they are encrypted. However, if
PSA is compromised, we can also assume that secret keys are
leaked because PSA can access CMS. In such a case, legacy
ECUs without end-node protection are at risk by physical
access, e.g., over the OBD-II port. PDA, PIA, and PSA shall
all create their data based on the signed SL file. However, if
all three entities are compromised, we can assume that the
SL file is not enforced. Thus, additional data validation and
comparison towards the SL file shall be made on the consumer
side, and warning messages issued for deviations [R9,R10].
The primary mitigation is end-node protection, such as using
secure boot and signed software [RS8, R13]. Legacy systems
not adhering to basic security requirements are always at risk.

2) The Consumer: We assume that CDA, CIA, and CSA
are localized in the vehicle for this specific case. These can
be physically or remotely compromised by, e.g., the driver
with the intent to chiptune or by other threat actors to cause
harm. Directly compromising entities not part of UniSUF is
out of the scope. However, indirect compromises via UniSUF
are considered.

Threat C1 and C2: CDA and CIA. A threat actor that
has gained control of the CDA can control the process of
downloading data. Still, the CSA is not exposed in this case.
Thus, the threat actor can only interact with CSA using
authentic data since validation of function calls and sent data
detects manipulations [R13]. However, a threat actor could
manipulate the instructions to download malicious data from
other sources. In typical cases, the only way to initiate the
installation process is to send authentic installation instructions
to the diagnostic client, i.e., CIA [R6]. In this case, the CIA
is also compromised but must still interact with CSA using
authentic data to start the installation [R13]. As long as CSA is
secured, the required keys to perform software installation via
UniSUF are not exposed, and no installation can be completed
using invalid data. Still, blocking the actual update might be
possible [R4,R9].

Threat Cl1, C2, and C3: CDA, CIA and CSA. In this case,
the threat actor has also managed to control CSA. If secret data
is leaked from the TEE, such as cryptographic material, we can
assume that these keys can be misused for one specific vehicle
[R6]. For instance, decrypt software files, disable firewalls and
unlock ECUs to enable software updates. Mitigations for these
cases are based on end-node protection mechanisms, such as
an additional layer for signed software and secure boot [RS8,
R12]. Critical ECUs, e.g., safety-related, shall always use end-
node security.

D. Comparison to other approaches

Previous solutions such as [7]-[11] lack a unified ap-
proach for the various software update scenarios required
within the automotive. Moreover, they do not consider vehi-

cles needing unique updates regarding specific configurations,
installed software versions, and unique cryptographic keys.
These solutions are missing necessary details, e.g., installa-
tion instructions such as handling pre-, peri- and post-state
diagnostics, secure transport, and secure execution of ECU-
specific cryptographic keys. They also consider changes to all
in-vehicle ECUs, which usually is not feasible. UniSUF aims
to fill these gaps by proposing a secure and versatile software
update framework with previously mentioned considerations
in mind.

V. CONCLUSION

Modern vehicles are complex systems containing more than
100M lines of software code controlling various functionality
including safety-critical functions and get increasingly vul-
nerable when adding connectivity. Thus, ensuring hastily and
secure software updates to patch vulnerabilities is imperative.
We have introduced UniSUF, identified entities involved in
the distribution and execution during vehicle software updates,
provided an attacker model, performed a threat assessment,
and elaborated on mitigation mechanisms. We have identified
general security requirements for vehicle software updates and
mapped them to common security goals and directives further
visualized with the Goal Structuring Notation (GSN). The
results show that UniSUF fulfills the stated security goals
and provides a secure and unified vehicle software update
framework that can serve as a detailed reference architecture.
We believe our results are valuable not only for automotive
software update architects. We also see high relevance for
engineers in related areas, such as cyber-physical systems,
internet-of-things, and smart cities, guiding the design of
secure software update solutions.
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