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Abstract—Cellular coverage quality estimation has been a
critical task for self-organized networks. In real-world scenar-
ios, deep-learning-powered coverage quality estimation methods
cannot scale up to large areas due to little ground truth can be
provided during network design & optimization. In addition, they
fall short in producing expressive embeddings to adequately cap-
ture the variations of the cells’ configurations. To deal with this
challenge, we formulate the task in a graph representation and
so that we can apply state-of-the-art graph neural networks, that
show exemplary performance. We propose a novel training frame-
work that can both produce quality cell configuration embeddings
for estimating multiple KPIs, while we show it is capable of gener-
alising to large (area-wide) scenarios given very few labeled cells.
We show that our framework yields comparable accuracy with
models that have been trained using massively labeled samples.

Index Terms—Self-supervised Learning, Graph Neural
Network, Cellular Coverage Estimation, Few-shot Learning

I. INTRODUCTION

Estimating mobile users’ Quality of Service (QoS) metrics
in cellular networks has been a long-studied problem, in the
context of network designing and optimization. As we approach
6G telecommunication networks, these are expected to be self-
aware [1] (i.e., Estimating service QoS-related Key performance
indicator (KPI) based on its configurations), paving the way
towards the goal of Self-Organized Network (SON). Estimating
radio-coverage-related QoS still remains a challenge, even for
cell-level [2] 1, mainly due to the complexities that emerge during
radio wave propagation. More specifically, to estimate a site with
multiple cells’ QoS KPI is NP-hard, whereas it is NP-complete
if many sites with heterogeneous inter-cell relations exist.
Conventional methods for such problems are often based on

logic-based simulations, where the simulator integrates complex
radio propagation models and computes the coverage quality
on a ‘per-cell’ basis. The simulator, then, integrates the results
of each cell to produce the area’s estimation. Despite the high
accuracy of such approaches, these are usually computationally
very expensive and in some cases infeasible for cellular coverage
computations at scale. Due to recent advances in deep learning
(DL), graph neural networks (GNN) have been proposed as an
alternative way to tackle in a time- and computation-efficient
way, such computationally difficult sub-problems, such as that
of estimating a single cell’s coverage KPI [3, 4], estimating
scenarios where a cell holds multiple users [5], as well as

1We define the term ’cell’ as Evolved Universal Terrestrial Radio Access
(eUtran)-Cell, i.e.: the cell’s coverage is denoted by one single carrier
frequency’s coverage.
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Figure 1: (a) Example of a graph representation of ’inter-cell’
relations. Each vertex represents a cellular coverage, color-coded
with its carrier frequency (Blue/Green/Orange). Each directed
edge denotes an interfering (Red)/complementing (Blue) impact
posed to the destination vertex, where edge strength denotes the
strength of impact. (b) A schematic overview of the proposed
solution. Bootstrapping time ranges from hours to days, training
time needs hours to complete, while test/validation time is in
the range of a few seconds.

estimating multiple cell-user pairs which co-exist in the same
scenario [6]. These holistic ‘inter-cell’ relations (illustrated in
Fig. 1a), though crucial during network design & optimization,
need to be learned.
In this paper, we study the KPI estimation problem in the context
of a realistic formulation, where we aim to: (i) learn to estimate
user QoS KPI measurement on a ‘per-cell’ basis, where each
cell’s configuration is independently devised and fine-tuned by
field experts, and (ii) use a minimum amount of ground truth
(i.e., KPI measurement), which is costly to acquire. (iii) capture
the cross-cell impact of configuration parameters through graph
representation, formulated by inter-cell relation, which has not
been addressed in previous works. A schematic representation
of the proposed solution is shown in Fig. 1b.

Recent DL methods have focused on predicting QoS KPIs
of single/multiple cells from the same site, using simulation,
crowd-sourcing [7], or road test data (usually collected at a small
scale) [8]. However, for cell-level QoS KPI prediction, network
measurements are required in both quality and quantity as
ground truth. Mobile service providers expect that such a model
can: 1) learn from network configurations and their respective
measurements in real-world deployments, and 2) scale-up from
measurements of a few cells, instead of densely running road mea-
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surement tests or frequently triggering measurement reports for
the serving users across many cells. On the other hand, properly
formulating the QoS KPI estimation task remains an open prob-
lem in representation learning, with only few papers [2, 9] adopt-
ing representations for modeling ’inter-cell’ relations. Even fewer
papers [10] have further considered heterogeneity (e.g: varying
inter-site distance) in cells’ representation, which is common in
real-world scenarios. A successful formulation of representation
would require: 1) great expressivity2 in terms of cell configuration
parameters & ’inter-cell’ relations. 2) the ability to perform well
with a limited amount of ground truth/measurements, i.e. as
for example in few-shot learning (FSL) settings. Leveraging
inter-cell relation with proper representation in a realistic setup
using few cells’ network measurements, so far, has not been
included in the problem formulation of state-of-the-art studies.

The remaining sections are organized as follows: In Sec. II
we discuss the related publications in the domain of QoS KPI
estimation of GNNs and DL in the cellular network, while in
Sec. III we present our problem formulation in more detail. In
Sec. IV we present our methodology followed by Sec. V, which
contains the experimental evaluation of our algorithm. Finally,
Sec. VI concludes with a discussion of our main contributions
and considerations for future work.

II. RELATED WORK

Cell configuration parameters are usually devised and
fine-tuned by field experts in real-world radio network
deployments. Besides the domain knowledge involved in the
configuration process, it is considered a laborious task which
cannot be easily automated due to the complex relations and
interactions between the networks nodes (which is neglected in
many previous work [11, 12]). Furthermore, subtle configuration
changes may considerably affect the network performance
through characteristics such coverage and interference (e.g., cell
edge performance [13]). Here, the aim is to produce a model
that has learned the associations and relations between cell
configuration parameters and their QoS KPI metrics.

Since we need to be able to capture subtle configuration
changes, it is essential to employ a representation that has
great expressivity. Furthermore, we need to be able to represent
heterogeneous data, while learning their relations. GNN satisfies
all the above requirements. Our proposed solution models
the QoS KPI prediction as a node-attribute prediction task.
Many recent advances (e.g.: [14]) in GNNs provide the needed
expressivity of the node/edge attributes, which further permits
the GNN to learn heterogeneous configuration parameters. On
the other hand, graph representations are getting popular in the
domain of radio networks. In the context of device-to-device
communication, GNNs are used to perform link-level KPI
estimation [6, 15, 16]. However, none aforementioned work
has addressed ‘inter-cell’ relations with respect to coverage QoS
estimation, which poses a cell/system level KPI prediction.

There exist previous studies (e.g., Wang et al. [17]) which
address ‘inter-cell’ relations through a graph representation
(geo-proximity for the GNN-powered ‘inter-cell’ handover
prediction problem). However, these do not consider important
aspects such as the heterogeneity of the relations, relations

2The ability of GNN to differentiate small perturbations on node attributes.

beyond geographically adjacent cells, and spatial orientation of
antenna, all of which impact the ‘inter-cell’ relations. Moreover,
cellular coverage embeddings have been used together with graph
attention to capture the ‘inter-cell’ relations, for the problem
of antenna tilt optimization [9]. This is done in a multi-agent
reinforcement learning framework, with identical action space
for all antennas. However, the authors have not considered
few-shot learning, while the results reported cannot be applied
to real-world scenarios. In our experiment, we include network
configurations crawled from real networks. The data-sets 3 pose
a diverse and unbalanced feature distribution, as each set of
configuration parameters is fine-tuned by human experts.

One can consider auxiliary property prediction as a pretext-
task in Self-Supervised Learning (SSL) scheme to overcome
the data constraint. Formalized by Liu et al. [18], the auxiliary
property can incorporate domain knowledge that helps GNN
backbone to learn transferable insights. Given such benefit,
there exist two open problems: 1) Formulate a proper auxiliary
property. 2) Select a suitable training scheme. Some recent
works (e.g., Jin et al. [19]) augment auxiliary properties based
on embedding’s pairwise similarities. While pre-training (PT)
toward such tasks can be generalized as a pre-clustering, such a
scheme constrains the expressiveness of the produced embedding.

Hu et al. [20] share a training framework similar to the one
we propose, which takes graph generation as pretext-tasks and
produces pre-trained embeddings that can be generalized by
fine-tuning some ground truth labels. While this method is not
suitable for cellular network since: (i) One can easily determine
the interfering/complementing relation by each cell’s carrier so
that little supervision can be expected. (ii) This method requires
more than 10% of data to be labeled in fine-tuning. This means
hundreds of cell measurements, which exceeds the scale of the
largest road test dataset to our best knowledge. Beyond the
novelty mentioned in Sec. I, we demonstrate the potential for
GNN and SSL to be used together in a practical setting: through
a novel formulation of auxiliary property inspired by network ge-
ometry [21, 22], bringing down the labeling requirement to 2.5%.

III. PROBLEM FORMULATION

We consider the task of estimating the QoS KPI for cell
coverage in this paper, which includes two target parameters,
Signal to Interference & Noise Ratio (SINR) and Channel
Quality Indicator (CQI) for each cell.

1) The ground truth Z includes a four-dimensional array,
denoting the Perfect, Good, Fair and Bad percentage of
area, within the cell’s coverage concerning the query KPI.

The input to the problem assumes an attributed directed graph
representation G(V,E,X,Y,M,O) that includes:

2) A set of nodes V , where each node vi ∈ V denotes a
cellular coverage.

3) A set of node attributes X denoting cells’ configurations,
where cell vi’s set of configuration is denoted as an array
xi ∈X . For k-th elements in xi denotes a configuration
parameter (in scalar) xki .

3 Detailed information regarding the dataset, training parameters
and respective simulation setup will be presented in Appendix:https:
//github.com/bluelancer/GNN4NDOSuppliment

https://github.com/bluelancer/GNN4NDOSuppliment
https://github.com/bluelancer/GNN4NDOSuppliment


4) A set of directional edges E that connect V , denoting the
cell relation. Each edge eij connects from source vi to
destination vj .

5) A set of edge attributes Y , denoting the property of ’inter-
cell’ relations. For specific edge eij , the edge’s property is
denoted as yij ∈Y , pose from source node vi to destination
node vj . Each yij includes a three-dimensional array, in-
cluding a one-hot encoded scalar that denotes the ’inter-cell’
relation type within {interfering, complementing, both},
a numerical scalar denotes the strength of the relation,
and a numerical scalar that denotes geographical distance
between vi and vj . Knowing the relation is asymmetrical
as vi could interfere with the whole coverage of vj , while
vj’s interfering coverage may only take up a small portion
of vi’s coverage area.

6) A set of measurement features M , which are expensive
to retrieve as mentioned previously. M includes Received
Signal Strength Indicator (RSSI) in a four-dimensional
array, denoting the Perfect, Good, Fair and Bad percentage
of area. mi∈M is considered as additional node attributes
of vi∈V .

7) A set of augmented geometric features O, inspired
by recent network geometry studies [21] to model the
orientation and shape of the coverage. gij ∈ O are
considered as additional edge attributes of eij or a novel
pretext-task in a different formulation of the problem. The
detailed formulations present as follows.

We consider two problem formulations (PF) in this paper:
PF1 we include all possible features (i.e. G(V,E,X,Y,M,O),

with abundant Z) in training time, to benchmark the upper
bound of baseline model performance on estimating Z.

PF2 We include only realistic features (i.e. G(V,E,X,Y, ,O),
with few-shot Z) in training time, to benchmark and mini-
mize the performance degradation on estimating Z in FSL.

We report both Transductive and Inductive generalization setting
performance in PF1, and report only the Transductive setting
performance in PF2. The motivation for a second PF is three-
folded: 1) M includes RSSI which is not included in signaling
from eNB to core network, making this expensive to collect in
the real network. 2) A huge amount of ground truth is required
for PF1. 3) In Sec. V, we see that the GNN does not learn O,
which motivates us to use SSL to reinforce the training.A detailed
illustration of the problem formulation is provided in Fig. 2

IV. METHODOLOGY

To prove the argument on GNN’s capability of learning
the inter-cell relation for QoS KPI estimation in the above
problem formulation, we benchmark many state-of-the-art models
that are reported to be leading in coverage QoS KPI estimation
task with different expressivity in Sec.II: GAQ/GAT, GINE,
WCGCN and multilayer perception (MLP), under different
PF with their respective training strategy: GAQ was proposed
by Jin et al. [9], on capturing inter-cell relation for antenna tilt
optimization with scalability towards unseen size of topology.
WCGCN was proposed by Hu et al. [23], for capturing relation
between transceiving pairs in D2D communication, for link-level
SINR estimation. GINE can be seen as more expressive WCGCN,
and is proven to be a suitable backbone for SSL by Hu et al. [23].

MLP is a baseline model that does not incorporate graph structure.
In addition, as pointed out by Chen [21], QoS KPIs like SINR
strongly depend on each cell’s spatial configuration. We per-
formed an ablation study towards introducing the augmented geo-
metric features O as additional node-feature/pretext-task in differ-
ent PF beyond those included in X (i.e., antenna azimuth, sector
ID, etc). O includes three augmented parameters denoting cell’s
spatial configuration, as illustrated in Fig. 3a 4: (i) Interference
Area (IA): denotes the searching area of possible interference. (ii)
Interference Distance (ID): denotes an averaged distance from
the interference source in the searching area. (iii) Interference
Centric (IC): denotes an averaged location of measurement in
the searching area. O is augmented based on the horizontal
beam-width of the serving antenna, with a radius of 10 km 5.

Besides the performance evaluation, we proposed a novel
SSL PT framework for PF2 to tackle the problem with
realistic data constrain, as illustrated in Fig. 3b. Instead of
using O as input feature, we considered a two-phased training
framework: Phase PT: We consider IA or ID as pretext-task
for PT. We first pre-train the selected backbone GNN against the
designated pre-text task on edge-level. This selection of pretext-
tasks is motivated by a series of work in road test measurement
of signal propagation (e.g. Cho [22] points out distance,
coordinate and searching areas are key factor to calibrate
simulation result to real-world measurement, while IC does not
perform well as pretext-task in our experience) Phase FT: We
freeze the weight of backbone GNN, and apply newly initialized
readout layers on downstream task. Such fine-tuning (FT)
formulation is inspired by graph lifelong learning [24]: GNN
may able to generalize by taking over the knowledge gained
in related previous tasks, even few ground truth is provided in
downstream tasks. In Phase PT, given the ground truth of select
pretext-task being Oz , we introduce the loss function in Equ. 1:

LSSL(H,Oz)=
1

|E|
∑

(vi,vj∈E)

||cos(hi,hj)−Oz
i,j ||2 (1)

where |E| denotes the number of edges in the training data.
hi,hj ∈H denotes the output node embedding after readout
layers , for node vi,vj , respectively. In Phase FT, we adopt
mean squared error (MSE) as loss function LMSE(H, Z)
for downstream task ground truth Z. We denote α% as the
percentage required for labeled data in Phase FT. To summarize,
we present the pseudo-code in Algorithm 1. Note [x||y]
represents concatenating model weight dict x and y.

V. EXPERIMENT

We have trained our model against the real network
configuration in two geographical locations, i.e., Copenhagen
(CPH) and Aalborg-Aarhus (A+A). The network measurement
and KPIs are obtained from simulation in Info-Vista
Planet 3. PF1: We first benchmark the state-of-the-art
performance of GNNs benchmark in the Transductive setting,
with an ablation study against O as an additional node feature.
The result in MSE(%) is presented in Table I. For the

4We augment O globally for all eij ∈E, regardless if vi and vj have applied
same or different (will not interfere each other in this case) carrier frequency.

5Note: One could use more precise value for estimated coverage radius
from crowd-sourcing. Here we used 10 km as an upper bound of coverage
in cell configuration design. Thus, we guarantee the generalization ability of
the solution regardless of the dataset/area.
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generalization setting, we denote X→ Y as training on dataset
X and test the model performance on dataset Y to verify
the model’s generalization ability across different scenarios.
Similarly, the generalization performance is shown in Table II.
Given presented result in Tables I and II, one can conclude that,

For Table I: (i) WCGCN outperforms most benchmark models
when given sufficient measurement on QoS KPI, while GAT has
almost equivalent performance to MLP, which is aligned with
the conclusion of Jin et al. [9]. (ii) Comparing the performance
between ‘with’ and ‘without’ O as additional edge attribute in
Table I, we observe that the augmented geometric feature does
not improve transductive performance with sufficient ground truth.
(iii) Comparing the respective cells between Table I and II, we
observe that the GNN model can not generalize its performance
to new area/dataset, without degradation. This is aligned with
the conclusion of Appendix A by Yehudai et al. [25], as the test
dataset introduces unseen structural feature and graph size during
training time. (iv) By carefully studying the variance (e.g: GINE
on CPH→A+A) on the MSE(%) in Table II, we find that
weight initialization in training time has a dominant impact on

Algorithm 1: Proposed GNN SSL Framework on FSL
Parameter:

1) Epoch length: NPT ,NFT ∈N;
percentage of ground truth needed: α%; training
hyper-parameter for Phase PT and FT: HPPT ,HPFT .

Initialization:
2) Backbone model

GNN , weight wGNN ; PT readout layers ROPT , weight
wPT ; and downstream readout layers ROFT , weight wFT .

3) Prepare graph representation
G(V,E,X,Y, , ), pretext-task ground truth Oz

for all v∈V . Uniformly sample vz∈Vz,Vz⊂V by α%.
Prepare downstream task ground truth z∈Z. Optimizer ∇.

for ePT =1,...,NPT do
4) H=ROPT (GNN(G(V,E,X,Y, , )))
5) ∇(LSSL(H,Oz),[wGNN ||wPT ],HPPT )

end
6) Frozen wGNN .

for eFT =1...,NFT do
7) H=ROFT (GNN(G(V,E,X,Y, , )))
8) Hz← Select Vz’s embeddings from H
9) ∇(LMSE(Hz,Z),[wFT ],HPFT )

end

the inductive generalization performance toward another dataset.
(v) Seeing Table II, introducing geometric feature (w.O columns)
does not benefit GNN generalization performance stably.
PF2: Since PF1 conclude that given sufficient measurement
on QoS KPI, the network geometric could be less important
for GNNs. We further studied the importance of O in a realistic
PF. In PF2, we compared our proposed SSL framework with
state-of-the-art training framework, as Fig. 1b. We adjust
provided percentage of ground truth α% to verify the gain
brought by Phase PT in SSL.



Table I: Model transductive Performance in MSE (%)

Model KPI CPH CPH(w.O) A+A A+A(w.O)

GAT SINR 5.7 ± 0.5% 5.6 ± 0.5% 5.6 ± 0.2% 5.6 ± 0.1%
WCGCN SINR 3.2 ± 0.7% 3.1 ± 0.3% 1.1 ± 0.1% 1.1 ± 0.2%

GINE SINR 3.4 ± 0.3% 3.5 ± 0.4% 2.0 ± 0.1% 1.8 ± 0.2%
MLP SINR 5.5 ± 0.1% 5.5 ± 0.1% 5.5 ± 0.1% 5.5 ± 0.1%

GAT CQI 0.31 ± 0.1% 0.30 ± 0.1% 2.9 ± 0.1% 2.9 ± 0.1%
WCGCN CQI 0.24 ± 0.2% 0.24 ± 0.1% 1.3 ± 0.2% 1.2 ± 0.2%

GINE CQI 0.28 ± 0.2% 0.26± 0.1% 1.7 ± 0.1% 1.6 ± 0.2%
MLP CQI 0.3 ± 0.1% 0.29 ± 0.1% 3.1 ± 0.1% 3.1 ± 0.1%

Table II: Model inductive performance in MSE (%)

Model KPI CPH→A+A CPH→A+A(w.O) A+A→CPH A+A→CPH(w.O)

GAT SINR 9.2 ± 0.2% 9.35 ± 0.3% 11.3 ± 0.8% 11.2 ± 0.7%
WCGCN SINR 9.5 ± 0.3% 9.4 ± 1.7% 11.6 ± 0.3% 8.7 ± 0.3%

GINE SINR 9.4 ± 2.0% 11.5 ± 4.2% 12.3 ± 3.0% 8.7 ± 0.2%
MLP SINR 12.0 ± 0.2% 12.1 ± 0.9% 10.9 ± 0.7% 10.9 ± 0.7%

GAT CQI 3.7 ± 0.2% 3.5 ± 0.8% 0.39 ± 0.1% 0.45 ± 0.7%
WCGCN CQI 4.3 ± 0.1% 4.05 ± 0.0% 0.34 ± 0.2% 0.52 ± 0.3%

GINE CQI 3.8 ± 0.7% 4.9 ± 2.9% 0.52 ± 0.4% 1.13 ± 0.9%
MLP CQI 3.5 ± 0.4% 3.5 ± 0.4% 0.88 ± 0.4% 0.88 ± 0.4%

In Table III, we consider two different baselines: 1) We
consider no PT training scheme as a first baseline: if we applied a
successful pretext-task, the GNN performance should outperform
the same model without PT. We list the performance diff in
column GAIN. Green text denotes SSL result (i.e. O←ID/IA)
outperform the benchmark by a positive gain (i.e. ∆O

CPH>0),
while Red text denotes a negative gain, indicating introducing
pretext-task O has down-graded performance. 2) We consider
MLP as a second baseline: Given MLP does not incorporate
inter-cell relation, if any GNN model benefits from SSL more
than MLP does with the same α% (e.g: ∆O, GINE

CPH > ∆O, MLP
CPH ),

we consider the SSL framework is helping GNN backbone to
incorporate inter-cell relation better, and color the block in green.

Given the presented result in Table III, one can conclude: (i)
GNN degrades heavily with insufficient ground truth compared
with PF1. When compared with the second baseline (MLP), one
can see degradation is not only due to difficulty in generalizing
towards inter-cell relational features but also node attributes,
as MLP also improves its SSL performance for CQI task. (ii)
When compared with the first baseline (train without SSL), SSL
PT benefits GNNs unevenly on both inter-cell relational feature
and node attributes. (iii) For the QoS KPI estimation task, a
more expressive GNN backbone benefits more from PT, than less
expressive ones (e.g., GINE is considered to be expressive by Hu
et al. [23], while WCGCN is less expressive due to an additional
maxpool during message passing beyond GINE’s design [6],
expressiveness: GINE > WCGCN > GAT). This is aligned with
the conclusion by Hu et al. [23] who observed similar behavior in
chemistry & biology datasets. However, their solution is limited to
small, non-planar graphs while our work extends the conclusion
for QoS KPI estimation, where the graph is near-planar.
Furthermore, we cherry-pick the best-performing model in FSL
by dataset and their estimating KPI to compare against the same
model’s performance in full training in table IV, where ’SOTA’
denotes a full training using 80% of ground truth (aligned with
Fig. 3b, State-of-the-art training scheme). This supports our aug-
ments that a proper SSL framework with only 2.5% ground truth
can compete with ’SOTA’ training in many downstream tasks.

We consider that our pre-text task (IA/ID) helps our GNN models
to learn network geometry knowledge, which enables them to
outperform the state-of-the-art training framework. Finally, we
include a comparative result in table V between GNN solution
and the baseline simulator INFOVISTA PLANET to prove GNN is
more time and computationally efficient. Seeing from the RAM
and inference time, GNN is significantly superior to the baseline
simulator. Since inference time for GNN is cell-independent, we
exclude the running time for the simulator for preprocessing per-
cell’s configuration parameter as that can grow linearly with the
number of cells for a fair comparison. (This step could take addi-
tional 2 hours for an A+A dataset.) One can also see from search
space size: In dataset (A+A) with more rural components, each
cell’s QoS estimation is less dependent on its neighboring cell
than the ’more urban’ one (CPH). Both methods reflect that, while
GNN more aggressively reduces the search space, this accelerates
its inference, but degrades its performance in more urban areas.

VI. CONCLUSION

The paper evaluates state-of-the-art coverage-estimation-
targeted GNNs in real-world configurations and identifies
inefficiencies in generalization when transferring learning
outcomes from one scenario to another. In addition, we
formulate a more realistic few-shot learning problem that
considers data constraints and propose a novel pretext-task for
PT to facilitate FSL performance with minimal performance
degradation. Our training framework confirms the benefits of
SSL with fewer ground truth samples. Future work can focus
on improving the model’s generalization ability and exploring
additional zero-shot estimation schemes.

ACKNOWLEDGEMENT

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] A. Chaoub et al. “Self-Organizing Networks in the 6G Era:
State-of-the-Art, Opportunities, Challenges, and Future
Trends”. In: IEEE Communications Standards Magazine
(2022).

[2] E. Balevi et al. “Online antenna tuning in heterogeneous
cellular networks with deep reinforcement learning”. In:
IEEE Transactions on Cognitive Communications and
Networking 5.4 (2019), pp. 1113–1124.

[3] J. Thrane et al. “Deep learning-based signal strength pre-
diction using geographical images and expert knowledge”.
In: IEEE GLOBECOM. IEEE. 2020, pp. 1–6.

[4] W. Cui et al. “Spatial deep learning for wireless schedul-
ing”. In: IEEE JSAC 37.6 (2019), pp. 1248–1261.

[5] N. Rajapaksha et al. “Deep learning-based power control
for cell-free massive MIMO networks”. In: ICC. IEEE.
2021, pp. 1–7.

[6] Y. Shen et al. “Graph neural networks for scalable radio
resource management: Architecture design and theoretical
analysis”. In: IEEE JSAC 39.1 (2020), pp. 101–115.

[7] A. Pimpinella et al. “Crowdsourcing or network kpis?
A twofold perspective for QoE prediction in cellular
networks”. In: WCNC. IEEE. 2021, pp. 1–6.



Table III: Benchmark FSL Performance in MSE (%), given α % ground truth and pretext-task as O

Model KPI α% CPH CPH(PT,O←ID) CPH(PT,O←IA) GAIN (∆O
CPH ) A+A A+A(PT,O←ID) A+A(PT,O←IA) GAIN (∆O

A+A )

SINR 2.5% 8.9 ± 0.2% 9.0 ± 0.1% 9.0 ± 0.1% -0.1%/-0.1% 9.1 ± 0.1% 8.9 ± 0.1% 9.1 ± 0.0% +0.2%/0
SINR 5% 8.9 ± 0.0% 8.9 ± 0.0% 8.9 ± 0.0% 0/0 9.0 ± 0.0% 8.9 ± 0.0% 8.9 ± 0.1% +0.1%/+0.1%
SINR 10% 6.2 ± 0.0% 6.0 ± 0.0% 6.2 ± 0.0% +0.2%/0 8.8 ± 0.0% 8.8 ± 0.1% 8.9 ± 0.0% 0/-0.1%

SINR 2.5% 6.6 ± 0.2% 6.5 ± 0.2% 6.0 ± 0.2% +0.1%/+0.6% 6.8 ± 0.1% 7.1 ± 1.0% 6.9 ± 0.3% -0.3%/-0.1%
SINR 5% 5.9 ± 0.2% 6.4 ± 0.3% 5.4 ± 0.1% -0.5%/+0.5% 5.9 ± 0.1% 6.7 ± 1.3% 6.3 ± 0.4% -0.8%/-0.4%
SINR 10% 5.4 ± 0.5% 5.3 ± 0.1% 5.0 ± 0.1% +0.1%/+0.4% 5.3 ± 0.1% 5.7 ± 0.1% 5.0 ± 0.1% -0.4%/+0.3%

SINR 2.5% 7.6 ± 0.8% 6.0 ± 0.2% 6.2 ± 0.2% +1.6%/+1.4% 7.8 ± 0.4% 5.9 ± 0.1% 6.6 ± 0.2% +1.9%/+1.2%
SINR 5% 6.9 ± 0.4% 5.9 ± 0.1% 5.4 ± 0.1% +1%/+1.5% 6.3 ± 0.2% 5.9 ± 0.1% 5.7 ± 0.2% +0.4%/+0.6%
SINR 10% 5.5 ± 0.2% 5.0 ± 0.1% 5.2 ± 0.1% +0.5%/+0.3% 6.1 ± 0.3% 5.6 ± 0.2% 5.5 ± 0.0% +0.5%/+0.6%

SINR 2.5% 9.1 ± 0.1% 9.0 ± 0.1% 9.1 ± 0.1% +0.1%/0 9.1 ± 0.2% 8.9 ± 0.0% 8.9 ± 0.0% +0.2%/+0.2%
SINR 5% 8.9 ± 0.0% 8.9 ± 0.0% 8.9 ± 0.0% 0/0 9.0 ± 0.0% 8.9 ± 0.0% 8.9 ± 0.0% +0.1%/+0.1%
SINR 10% 6.7 ± 0.0% 6.7 ± 0.1% 6.7 ± 0.1% 0/0 9.0 ± 0.2% 8.9 ± 0.1% 8.9 ± 0.1% +0.1%/+0.1%

CQI 2.5% 0.50 ± 0.0% 0.52 ± 0.0% 0.50 ± 0.0% +0.02%/0 3.3 ± 0.0% 3.3 ± 0.0% 3.4 ± 0.0% 0/-0.1%
CQI 5% 0.40 ± 0.0% 0.40 ± 0.0% 0.40 ± 0.0% 0/0 3.3 ± 0.0% 3.3 ± 0.0% 3.3 ± 0.0% 0/0
CQI 10% 0.30 ± 0.0% 0.30 ± 0.0% 0.30 ± 0.0% 0/0 3.3 ± 0.1% 3.3 ± 0.1% 3.3 ± 0.0% 0/0

CQI 2.5% 0.50 ± 0.1% 0.46 ± 0.0% 0.40 ± 0.0% +0.04%/+0.1% 3.1 ± 0.1% 3.2 ± 0.1% 3.3 ± 0.0% -0.1%/-0.2%
CQI 5% 0.40 ± 0.0% 0.28 ± 0.0% 0.31 ± 0.0% +0.12%/+0.09% 3.0 ± 0.0% 3.1 ± 0.1% 3.3 ± 0.2% -0.1%/-0.3%
CQI 10% 0.40 ± 0.0% 0.25 ± 0.0% 0.25 ± 0.0% +0.15%/+0.15% 3.1 ± 0.0% 3.0 ± 0.1% 3.3 ± 0.2% +0.1%/-0.2%

CQI 2.5% 3.1 ± 0.5% 0.33 ± 0.1% 0.30 ± 0.0% +2.8%/+2.8% 3.6 ± 0.1% 2.8 ± 0.0% 3.0 ± 0.1% +0.8%/+0.6%
CQI 5% 2.3 ± 0.3% 0.33 ± 0.0% 0.28 ± 0.0% +2.0%/+2.0% 3.4 ± 0.1% 2.9 ± 0.0% 2.8 ± 0.0% +0.5%/+0.6%
CQI 10% 1.2 ± 0.3% 0.24 ± 0.0% 0.22 ± 0.0% +0.96%/+0.98% 3.2 ± 0.1% 2.7 ± 0.0% 2.7 ± 0.0% +0.5%/+0.5%

CQI 2.5% 1.4 ± 0.1% 0.40 ± 0.0% 0.30 ± 0.0% +1.0%/+1.1% 3.7 ± 0.1% 3.3 ± 0.0% 3.4 ± 0.0% +0.4%/+0.3%
CQI 5% 1.4 ± 0.3% 0.40 ± 0.0% 0.40 ± 0.0% +1.0%/+1.0% 3.6 ± 0.1% 3.4 ± 0.0% 3.3 ± 0.0% +0.2%/+0.3%
CQI 10% 1.4 ± 0.3% 0.50 ± 0.0% 0.40 ± 0.0% +0.9%/+1.0% 3.6 ± 0.1% 3.4 ± 0.0% 3.3 ± 0.0% +0.2%/+0.3%

MLP

GINE

WCGCN

GAT

MLP

GINE

WCGCN

GAT

Table IV: Comparing Best Performing FSL (α= 2.5%) with
SSL on Each Task, against Full Training (SOTA), in MSE(%)

Dataset KPI α% Best Model O FSL MSE(%) SOTA MSE(%) Gap

CPH SINR 2.5% WCGCN IA 6.0 ± 0.2% 4.0 ± 0.2% -2.0%
2.5% GINE ID 6.0 ± 0.2% 4.3 ± 0.2% -1.7%

CPH CQI 2.5% GINE IA 0.30 ± 0.0% 0.8 ± 0.3% 0.5%
A+A SINR 2.5% GINE ID 5.9 ± 0.1% 5.6 ± 0.1% -0.3%
A+A CQI 2.5% GINE ID 2.8 ± 0.0% 2.8 ± 0.1% 0

Table V: Computational Resource Comparison

Model GNN (GINE/WCGCN) INFOVISTA PLANET

Dataset CPH A+A CPH A+A
RAM ≤15 MiB ≤15 MiB 1.2 GiB 1.65 GiB
Inference Runtime ≤0.2s ≤0.2s 13.18 min 36.72 min
Searchspace per result 8.456 7.612 54.9 14.35

[8] A. Narayanan et al. “Lumos5G: Mapping and predicting
commercial mmWave 5G throughput”. In: Proceedings
of the ACM Internet Measurement Conference. 2020,
pp. 176–193.

[9] Y. Jin et al. “A graph attention learning approach to
antenna tilt optimization”. In: 6GNet. IEEE. 2022, pp. 1–5.

[10] R. M. Dreifuerst et al. “Optimizing coverage and capacity
in cellular networks using machine learning”. In: IEEE
ICASSP. IEEE. 2021, pp. 8138–8142.

[11] A. Margaris et al. “Hybrid Network–Spatial Clustering for
Optimizing 5G Mobile Networks”. In: Applied Sciences
12.3 (2022), p. 1203.
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