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Abstract—Root Cause Analysis (RCA) in the manufacturing
of electric vehicles is the process of identifying fault causes.
Traditionally, the RCA is conducted manually, relying on process
expert knowledge. Meanwhile, sensor networks collect significant
amounts of data in the manufacturing process. Using this
data for RCA makes it more efficient. However, purely data-
driven methods like Causal Bayesian Networks have problems
scaling to large-scale, real-world manufacturing processes due to
the vast amount of potential cause-effect relationships (CER’s).
Furthermore, purely data-driven methods have the potential to
leave out already known CER’s or to learn spurious CER’s. The
paper contributes by proposing an interactive and intelligent
RCA tool that combines expert knowledge of an electric vehicle
manufacturing process and a data-driven machine learning
method. It uses reasoning over a large-scale Knowledge Graph
of the manufacturing process while learning a Causal Bayesian
Network. In addition, an Interactive User Interface enables a
process expert to give feedback to the root cause graph by
adding and removing information to the Knowledge Graph. The
interactive and intelligent RCA tool reduces the learning time
of the Causal Bayesian Network while decreasing the number of
spurious CER’s. Thus, the interactive and intelligent RCA tool
closes the feedback loop between expert and machine learning
method.

Index Terms—Root Cause Analysis, Sensor Networks, Electric
Vehicles, Interpretable Machine Learning, Interactive Learning,
Bayesian Network, Knowledge Graph

I. INTRODUCTION

Machine learning is heavily used in driver assistant systems
of electric vehicles [1l]. The electric vehicles benefit from
machine learning not only on the road, but also during the
manufacturing process as the latter has become more intelli-
gent and data-driven. The manufacturing process is monitored
via sensor networks, resulting in significant amounts of data
hour by hour. The data includes faults diagnosed by quality
control process steps. However, detecting a fault in a complex
manufacturing process does not necessarily uncover in which
Process Steps the fault was induced. Finding the cause-effect
relationships (CER’s) leading to the diagnosed fault is called
Root Cause Analysis (RCA) [2].

Traditionally, RCA is a manual, labor-intense, and thus
expensive process [3} 4} 5], involving design of experiments to
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study manipulations and resulting effects. RCA requires high
amounts of process expert knowledge. Such that only process
experts can conduct a RCA in a reasonable timeframe.

Digital support tools promise to make RCA more efficient,
data-driven, and less dependent on individual process knowl-
edge [2], to reduce costs and improve the performance of the
manufacturing process.

Previous work identified Causal Bayesian Networks as a
machine learning technique to automate RCA [6] by learn-
ing CER’s between Sensor Variables. The Causal Bayesian
Networks constructs a root cause graph over the manufac-
turing process, showing potential root causes [7l]. However,
learning Causal Bayesian Networks for large manufacturing
processes becomes prohibitively expensive as the search space
for potential cause-effect relations explodes. This problem can
be mitigated by including process expert knowledge in the
learning process of the Causal Bayesian Networks [8]. In
addition, expert knowledge can improve the learned root cause
graph by identifying spurious CER’s.

The remaining challenges for scaling Causal Bayesian Net-
works to large-scale manufacturing processes are to model
process expert knowledge in detail and to provide an accessible
way for the process expert to interact with and improve the
root cause graph. The paper investigates those challenges by
combining a large-scale Knowledge Graph of the manufactur-
ing process with a Causal Bayesian Network. The Knowledge
Graph allows detailed modeling of large-scale manufacturing
processes and enables the process expert to improve the root
cause graph.

In this work, a support tool for interactive and intelligent
RCA in the manufacturing process of electric vehicles is
proposed. The RCA is conducted by finding CER’s between
Sensor Variables of the manufacturing process.

In detail, the paper contributes by:

o Detailed modelling of process expert knowledge in a
large-scale Knowledge Graph for a real-world electric
vehicle manufacturing process.

o Automatically considering manufacturing knowledge
from the Knowledge Graph to drastically prune the search
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space while learning the Causal Bayesian Network.

« Allowing the process expert to interact with and improve
the root cause graph by explaining the Causal Bayesian
Network where and how to do better.

II. RELATED WORK

RCA in manufacturing is dominated by methods defined
in the ISO/IEC 31010 [9], including versions of the Five
Why’s (3], the Failure Mode and Effect Analysis (FMEA) [4]],
or the Fault Tree Analysis [3]]. The methods structure expert
knowledge, such that a process expert can use it as a manual
for RCA. However, the decision-support tools do not take
advantage of today’s sensor networks and data.

Thus, machine learning methods were introduced in RCA,
enabling automated and intelligent decision-support tools [10,
2l]. In particular, Causal Bayesian Networks were identified as
beneficial for RCA by learning CER’s between measurements
(L1l 12k (130 14].

For large and complex manufacturing processes, the num-
ber of possible Causal Bayesian Network grows super-
exponentially and its derivation becomes challenging [15].
Additionally, one is not only interested in the existence
of CER’s, but also in their strength to prioritize potential
root causes. The derivation of the CER’s is called structure
learning, while the identification of the strengths is called
parameter learning. [[I] proposes an FMEA-based approach,
while [6] proposes an ontology of the manufacturing process
to determine the structure of the Causal Bayesian Network.
However, the ontology only considers classes of entities and
does not allow pruning the search space for individual mea-
surements. Furthermore, in complex manufacturing processes
many CER’s are unknown to the experts and both methods
are unable to uncover them. On the contrary, [15] combines
expert knowledge and data to derive the Causal Bayesian
Network. This idea improves the quality of the root cause
graph, as shown by [16]. While Sensor Variables can be
continuous, most of the aforementioned approaches consider
a discretization to decrease the complexity of learning the
Causal Bayesian Network [13]]. However, this practice may
lead to such a degree of information loss that the data-
driven identification of CER ‘s becomes infeasible [17]]. Recent
approaches [18, [19] for learning complex Causal Bayesian
Networks based on Structural Equation Models (SEM’s) were
applied on manufacturing processes [8, 20] and the benefits
of the inclusion of expert knowledge were demonstrated [8]].

In this work, we present a large-scale modeling of domain
expertise into a Knowledge Graph that leverages the sensor
network topology for deriving the Causal Bayesian Network
of a real-world manufacturing process of electric vehicles.
Furthermore, we show how the Knowledge Graphs contributes
to an interactive RCA and closes the feedback loop for the
Causal Bayesian Network learning algorithm of [8].

III. SYSTEM OVERVIEW

The system for interactive and intelligent RCA consists of
five components (cf. Figure [I)), where each is a microservice

on its own.
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Fig. 1. The system architecture of the interactive and intelligent root cause
analysis tool.

The Controller and the Data Layer enable the core com-
ponents. The Knowledge Graph, Causal Bayesian Network,
and Interactive User Interface are the core components of the
interactive and intelligent root cause analysis tool.

The following describes the components’ high-level func-
tionalities and their interactions. Later on, the three core
components are described in detail.

The heart of the system is a Controller that handles the
communication between all other components. It receives
requests and triggers processes.

The Data Layer accesses data from a vehicle
manufacturing-sensor network. Next, the data is preprocessed
according to the input format of the Causal Bayesian Network
and stored in the Data Layer. The preprocessing shall be
elaborated in Subsection

Another primary source of data is the Knowledge Graph
(cf. Subsection [[II-A). The Knowledge Graph holds formalized
expert knowledge about the manufacturing process of electric
vehicles, like the temporal-spatial relations of Stations, Pro-
cess Steps, and Sensor Variables.

The Causal Bayesian Network takes the preprocessed sen-
sor data from the Data Layer for learning CER’s between
the Sensor Variables (cf. Subsection [[II-B). The information
from the Knowledge Graph is used while learning to reduce
the search space drastically. The resulting Causal Bayesian
Network shows, which Sensor Variables may induce faults in
other Sensor Variables. Thus, we call the graph learned by the
Causal Bayesian Network a root cause graph.

The root cause graph is visualized in an Interactive User
Interface (cf. Subsection [II-C). The visualization enables
experts to explore root causes in the manufacturing process
of electric vehicles. Additionally, it allows for feedback of
the process expert on the root cause graph. For example, the
process expert may add an edge between two Sensor Variables
to the Knowledge Graph or defines a Sensor Variable as a Root
Variable.

A. Knowledge Graph

A Knowledge Graph [21] is a directed labeled graph [22, [23]]
and, therefore, optimal for storing highly relational data while



preserving its semantics and allowing for deductive reasoning
[21].

The Knowledge Graph of the RCA tool formalizes expert
knowledge of the manufacturing process of electric vehicles.
This allows the automatic, efficient, and large-scale mining
of expert knowledge, which is then used while learning the
Causal Bayesian Network.

The expert knowledge of the manufacturing process is
modeled as depicted in Figure [2]
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Fig. 2. Schema of the manufacturing Knowledge Graph.

The Knowledge Graph models the manufacturing process
of electric vehicles as a sequence of Lines. A Line has
various Stations. The Stations are also modeled as a sequence.
Each Station implements multiple Process Steps. Again, the
Knowledge Graph models the sequence in which Process Steps
are executed. Each Process Step measures Sensor Variables.
The Knowledge Graph models explicitly a “hasNolmpact”
relation between Sensor Variables that are known to have no
causal effect on each other.

In addition, a Sensor Variable can be a member of one
subclass, which are Root, Leaf, and Irrelevant Variable.

Formalizing expert knowledge of the manufacturing process
in such a way allows automatic reasoning over the manufactur-
ing process. The intelligent and interactive RCA tool employs
reasoning from the two following dimensions.
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Fig. 3. Example of the manufacturing Knowledge Graph.

a) Temporal-spatial relations between Variables: The
Line is modeled as a sequence of Stations, each with a
sequence of Process Steps. At the bottom of this hierarchy are
sensors measuring the Sensor Variables. Thus, the Knowledge

Graph constructs a topology of the sensor network. It enables
automatic reasoning to create a partial ordering over the Sensor
Variables. For every Sensor Variable, it is known which Sensor
Variable is measured before and after and a Sensor Variable
measured in an earlier Process Step may influence a Sensor
Variable measured in a subsequent Process Step, but not vice
versa.

Let us consider the Knowledge Graph from Figure [3] The
topology of the sensor network allows inferring that the Sensor
Variables “Weight” and “Sorting Time” may causally impact
the Sensor Variable “Heat Input”, but not vice versa and not
the Sensor Variables “Humidity”, “Amount Adhesive”, and
“Pressure”.

The example shows the reasoning on how a significant
amount of possible CER’s between Sensor Variables are ex-
cluded a priori and do not have to be considered while training
the Causal Bayesian Network. This reduces the search space
of the Causal Bayesian Network learning algorithm drastically,
compared to a naive approach of learning the Causal Bayesian
Network solely on tabular data (cf. Figures [ and [3).

b) Properties of Variable subclasses: Additionally, the
Knowledge Graph incorporates expert knowledge over the
Sensor Variables in the form of their subclass membership.
This information is introduced to the Knowledge Graph by
the feedback of a process expert and is vital to reduce the
Causal Bayesian Network’s learning algorithm’s search space.

Root Variables cannot be impacted by any Sensor Variables.
However, they may impact other Sensor Variables. For exam-
ple, the Sensor Variable “Humidity” in Figure [3] cannot be
affected by Sensor Variables, as the air humidity is external to
the manufacturing process. However, “Humidity” may affect
other Sensor Variables in the manufacturing process.

Leaf Variables are the inverse of Root Variables. They may
be impacted by Sensor Variables, but cannot impact other
Sensor Variables. The “Heat Input” Sensor Variable in Figure
Bl is an example of a Leaf Variable, as it is the only Sensor
Variable of the final Process Step.

Finally, there are Irrelevant Variables. Any manufacturing
process measures a minor amount of Sensor Variables that
do not impact any other Semsor Variables in the process.
Irrelevant Variables are artifacts of unclear requirements,
highly specific use cases, or legislation. The “Sorting Time”
Sensor Variable in Figure [3]is an example, as the sorting time
does not impact other Sensor Variables. Thus, they shall be
excluded from the RCA.

Figures E| and |§| show the impact of reasoning over the
temporal-spatial relations between Sensor Variables and their
subclasses on the search space of the Causal Bayesian Network
learning algorithm. In Figure [d] every Sensor Variable‘s fault
is potentially caused by any other Sensor Variable, as the
sensor network’s topology modeled in the Knowledge Graph
is not considered. This amounts to a total of 30 possible
CER’s between the six Sensor Variables. However, considering
the sensor network topology, the search space of the Causal
Bayesian Network learning algorithm is reduced to seven
potential CER’s between the Sensor Variables (cf. Figure



Fig. 4. The potential CER’s between the
Sensor Variables of the manufacturing
Knowledge Graph (cf. Figure[3) without
considering the topology of the sensor
network.
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Knowledge Graph (cf. Figure [3) while
considering the topology of the sensor
network.
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Fig. 6. The assumed true causal graph
between the Sensor Variables. Its edges
are contained in the relations of the
potential CER’s graph of Figure [5]

[B). This example shows that automated reasoning over the
expert knowledge formalized in the Knowledge Graph prunes
the search space of the Causal Bayesian Network learning
algorithm significantly.

B. Causal Bayesian Networks

This section introduces important concepts of Causal
Bayesian Networks, which represent CER’s behind data sets,
and how it incorporates the Knowledge Graph into its train-
ing. CER’s are dependencies, where the manipulation of one
Sensor Variable changes the value of the other even if all
remaining Sensor Variables are fixed. Assume the true causal
graph is depicted in Figure [6] Then a change of “Pressure”
influences “Heat Input” through the path “Pressure” —
“Amount Adhesive” — “Heat Input”. For example, a higher
“Pressure” might lead to a higher “Amount Adhesive”, which
in turn results in a larger “Heat Input”. Now imagine that after
an increase of “Amount Adhesive” we manually change all
Sensor Variables but “Heat Input” back to their original level.
Then, the manipulation of “Pressure” does not impact “Heat
Input” anymore, as it is only directly influenced by “Weight”
and “Amount Adhesive”, which are as before. Therefore, the
influential path “Pressure” — “Amount Adhesive” — “Heat
Input” is blocked. We understand these direct impacts as
the CER’s. They are pivotal for root-cause analysis, process
control, and process understanding. CER’s imply an order
over the Sensor Variables, which we call the causal order.
In our running example (cf. Figure [6), one possible causal
order of the Sensor Variables is (“Sorting Time”, “Weight”
“Humidity”, “Pressure”, “Amount Adhesive”, “Heat Input”).

This paper’s scope is to derive the unknown causal graph.
Instead of labor and cost-intensive design of experiments,
we would like to leverage our sensor network along the
manufacturing process to derive the causal graph in a data-
driven manner. However, if we rely exclusively on data, this
is challenging due to the following reasons:

1) Confounding: Even if we have identified a correlation,
say between “Amount Adhesive” and “Heat Input”, it
might be, that there is a third Sensor Variable, say
“Machine Operator”, impacting both and there is no
direct impact between the two. We call this third Sen-

sor Variable a confounder. Besides pathological cases,
confounders lead to extra spurious relationships.

2) Causal Order: Even if we can exclude confounding it
remains still unclear, whether “Amount Adhesive” is the
cause and “Heat Input” the effect or it is vice versa.

3) Complexity: The number of potential graphs grows
super-exponentially. Beyond a small number of Sensor
Variables, it is thus impossible to evaluate all of them.
This is especially worrisome if there are many cause-
effect pairs.

Expert Knowledge to the Rescue: In the following, we
present how expert knowledge contributes to derive the causal
graph. As Section mentions, the number of potential
causal graphs can be drastically reduced by the sensor net-
work’s topology and expert knowledge on the manufacturing
process:

1) sensor network topology provides a partial ordering of
the Sensor Variables and

2) expert knowledge helps to exclude certain relationships
and thus avoids spurious relationships.

Additionally, even a partial ordering drastically reduces the
number of potential graphs. The classification of Sensor Vari-
ables into roots and leafs reduces not only the number of
potential edges but also the number of relevant orderings. For
example, as “Weight” and “Humidity” are defined as Root
Variables, the relevant orderings are those that assign them
to any of the first two positions. This reduces the number of
permutations by a factor of 30. The effect of Leaf Variables is
analogous. In the following, we present how we leverage the
background information for causal graph identification.
Causal Additive Models: The derivation of the CER’s from
observed data is of central interest in many domains [24} 25]].
For this task, score-based methods relying on Structural Equa-
tion Models (SEM’s) [26] have recently become increasingly
popular due to their ability to incorporate machine learning
methods [[18 |19} 27, 28]]. The underlying assumption is that all
Sensor Variables can be expressed as a function of inputs and
a noise term, that captures unknown influences. In the example
of Figure 5] “Heat Input” can be described by Equation

HeatInput = f( Weight, AmountAdhesive, Noise) (1)



We emphasize that this follows an intuitive understanding of a
manufacturing process. Process Steps transform input material
to an output, while they are impacted by machine settings and
the environment. We assume that the data follows a Causal
Additive Model, where Equation (I)) is replaced by:

HeatInput = f1(Humidity) + fo( AmountAdhesive) + Noise

2)
The Noise is normally distributed and f; and fo are non-linear.
Under mild assumptions [26] on f; and f5, one can derive
the true causal graph from observed data. [19] proposes an
approach, that identifies the graph using the following steps:

1) Find the causal ordering of the Sensor Variables
2) Identify the CER'’s.

Given N observations of p Sensor Variables by
(xe1, .- xep),1 < £ < N. To derive the causal ordering in
step (1), search for the permutation 7 on {1,...,p} such that
Equation is minimized and f7; are learned by maximum
likelihood estimation [19].

N
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If the Knowledge Graph provides a complete ordering, then
we skip the first step, and the graph identification is found
using regression techniques [29]]. Unfortunately, the ordering
is usually partial, as Sensor Variables measured at the same
station cannot be ordered. We employ the algorithm of [8]],
which proposes an efficient adaption in case of expert knowl-
edge. It limits step (1) to finding the causal ordering of the
Sensor Variables within the Process Steps while mining the
rest of the ordering from the Knowledge Graph

C. Interactive User Interface

The Interactive User Interface visualizes the learned Causal
Bayesian Network (cf. Figure[7). Thereby, the Interactive User
Interface enables no-code usage and adaption of the root cause
graph by a process expert.

a) Root Cause Analysis: The workflow supported by the
Interactive User Interface is as follows (cf. Figure [7)):

The process expert searches for the Sensor Variable with
the diagnosed fault. All possible root cause paths for the
faulty Sensor Variable are displayed to the process expert. The
process expert now sees the information on which other Sensor
Variables the faulty Sensor Variable depends. That way, with-
out further labor-intense analysis, the process expert can move
to the physical manufacturing process and check all Process
Steps related to the identified Sensor Variables. The process
expert benefits from a highly directed root cause search in
the physical manufacturing process. Thus, the interactive and
intelligent root cause analysis tool minimizes and sometimes
even prevents the downtime of the manufacturing process and
maximizes the manufacturing process’s output.

b) Expert Feedback: The RCA is supported by various
means of interaction with the root cause graph (cf. Figure [7).
The process expert can choose the Product to be considered
in the RCA. This results in accurate root cause graphs, as
Sensor Variable measurements significantly depend on the
Product measured. In addition, the process expert can select
the RCA timeframe via the Interactive User Interface. Select-
ing a timeframe enables the process expert to look precisely
at the period when the faults were detected. It thus customizes
the RCA to the individual fault at hand.

However, the root cause graph might include spurious
CER’s and needs to be corrected. In this case, the expert
is able to explain the Causal Bayesian Network where and
how to do better, via adding or removing information to
the Knowledge Graph. The Causal Bayesian Network may
learn a CER between two Sensor Variables, which has to be
rejected based on the knowledge of the process expert. The
process expert can select such an edge and check ”Add to
Blacklist”, which adds an “hasNolmpact” relation between the
two Sensor Variables to the Knowledge Graph (cf. Figure
(1)). The expert feedback is considered at the next iterations of
learning the Causal Bayesian Network, and thus is accounted
for in the next RCA'’s.

In addition, spurious CER’s might be the cause of in-
complete information over subclass membership of Sensor
Variables in the Knowledge Graph. Thus, the process expert
can add and remove Root, Leaf, and Irrelevant Variable
subclass membership from Sensor Variables (cf. Figure[/|(2)).
This feedback is also considered in the next iteration of the
Causal Bayesian Network. Assuming that the expert feedback
is correct, the root cause graph converges each iteration closer
to the true root cause graph.

IV. EVALUATION

The evaluation is conducted on a real-world electric vehicle
manufacturing process. One Line is taken as an example to
show the RCA with the interactive and intelligent tool.

A. Data

The data is two-folded. There is the Knowledge Graph and
the Data Layer as a source of data.

The Knowledge Graph is implemented in Neo4J [30]]. This
allows querying all knowledge via the Cypher API. Cypher
is a deductive reasoning query language [30]. The real-world
Knowledge Graph holds a total of 100,015 nodes and 417,944
relationships. This amount of expert knowledge constitutes a
large-scale knowledge graph. For the Line of this evaluation,
there are 53 Stations with 96 Process Steps and 1683 Sensor
Variables and a total of 2143 relations modeled.

To learn the Causal Bayesian Network we prepare the
data by assigning the Sensor Variables to individual output
products. Then, we preprocess the data by removing columns
with only one value. Further, we remove one part of a column
pair, if they have a correlation above 0.95 to avoid collinearity.
Afterwards, we remove columns and rows, where more than
50% of the values are missing. As the rate of missing values
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is low, we simply impute the column’s mean for missing
values. The presented approach is generic and can be applied
dynamically to different products and time windows. For this
section, we consider data of one day and for one specific
product type.

B. Experiments

The contribution of the paper is to give a real-world
example of how to interactively improve the performance of
Causal Bayesian Networks for RCA with large-scale modelled
expert knowledge in the form of a Knowledge Graph. The
contribution is shown by three experiments.

1) Decrease in learning time of the Causal Bayesian Net-
work by including the Knowledge Graph: As argued above,
one major motivation for including expert knowledge is a
decrease in the learning time of the Causal Bayesian Network
algorithm. Figure [§] shows the average decrease in learning
time with an increase in expert knowledge. The experiment
was conducted five times. For each run-through, randomly
25%, 50%, 75%, and 100% of data from the Knowledge
Graph were selected for training the Causal Bayesian Net-
work. A decline by 79.0% in training time can be observed,
with an increase in data from the Knowledge Graph. Thus,

expert knowledge optimizes and enables the training of Causal
Bayesian Network in large-scale manufacturing processes.

2) Decline of spurious CER’s in the Causal Bayesian Net-
work by including the Knowledge Graph: As argued above,
Causal Bayesian Networks for manufacturing processes tend
to include spurious CER’s. Figure [§] shows the average decline
in spurious CER’s with an increase in expert knowledge. The
experiment was conducted as described in [V-BI] A steep
decline in the amount of learned CER’s is observable. The
result indicates that data from the Knowledge Graph prunes
60.6% of spurious CER’s. This leads to a more accurate root
cause graph and thus increases the performance of the root
cause analysis tool. The following experiment shall underline
the latter claim.

3) Expert feedback improves the Causal Bayesian Network:

To evaluate the usefulness of the interactive component,
we extend the evaluation proposed by [8]. A learned Causal
Bayesian Network is compared to a partially known root
cause graph, using an adapted Structural Hamming Distance
(aSHD), which describes the deviation of the learned Causal
Bayesian Network from the partially known root cause graph
[8]. A lower number indicates a better result. The learning
algorithm is applied on 100 random samples of eight Sen-
sor Variables, using the temporal-spatial ordering. For each
learned Causal Bayesian Network, the aSHD 1is calculated. The
mean and standard deviation of the aSHD are 0.47 and 0.74,
respectively. If an expert now adds one hasNolmpact relation
to the Knowledge Graph, the mean and standard deviation of
the aSHD go down to 0.44 and 0.70. This corresponds to
an improvement of the aSHD by almost 6% and the learning
algorithm is stabilized, as the standard deviation is lower. The
results illustrate the benefits of including expert knowledge and
exemplify one iteration step of the interactive and intelligent
root cause analysis tool.

V. CONCLUSION

This work proposes an interactive and intelligent root cause
analysis tool for the manufacturing process of electric vehi-



cles. It shows how to model detailed expert knowledge of a
real-world manufacturing process in a large-scale Knowledge
Graph, which is used for automatic reasoning over potential
root causes. It is described how the reasoning is used to
prune the search space of a Causal Bayesian Network learning
algorithm. In addition, this work shows how to include expert
feedback in the learning of the Causal Bayesian Network via
the Interactive User Interface and the Knowledge Graph to
identify and exclude spurious CER’s. The evaluation of the
interactive and intelligent root cause analysis tool on a real-
world manufacturing process of electric vehicles proves the
tool’s feasibility.

Machine learning makes RCA more efficient. However, it
will only succeed if we rely on data and expert knowledge.
Let us put the human back in the loop.
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