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Abstract—In conventional supervised deep learning based
channel estimation algorithms, a large number of training
samples are required for offline training. However, in prac-
tical communication systems, it is difficult to obtain channel
samples for every signal-to-noise ratio (SNR). Furthermore, the
generalization ability of these deep neural networks (DNN) is
typically poor. In this work, we propose a one-shot self-supervised
learning framework for channel estimation in multi-input multi-
output (MIMO) systems. The required number of samples for
offline training is small and our approach can be directly
deployed to adapt to variable channels. Our framework consists
of a traditional channel estimation module and a denoising
module. The denoising module is designed based on the one-
shot learning method Self2Self and employs Bernoulli sampling
to generate training labels. Besides,we further utilize a blind spot
strategy and dropout technique to avoid overfitting. Simulation
results show that the performance of the proposed one-shot self-
supervised learning method is very close to the supervised learn-
ing approach while obtaining improved generalization ability for
different channel environments.

Index Terms—Channel estimation, one-shot self-supervised
learning, Self2Self, Bernoulli sampling, dropout.

I. INTRODUCTION

Massive multi-input multi-output (MIMO) systems have
been widely researched and regarded as a key technique in
5G wireless communications. To fully exploit the spatial mul-
tiplexing gain by multiple antennas, channel state information
(CSI) is regularly required for precoding at the base station
(BS). Many works consider channel estimation in MIMO
systems. Least squares (LS) is a classic estimation approach
with low computational complexity but often unsatisfactory
performance. Several researchers exploited the sparsity of
the channel and designed compressed sensing (CS) based
algorithms [1] such as orthogonal matching pursuit (OMP) [2],
sparse Bayesian learning (SBL) [3] and burst least absolute
shrinkage and selection operator (LASSO) [4].

CS based algorithms rely on the prior assumption of a sparse
structure of MIMO channels. In addition, these techniques
often have high computational cost. Recently, deep learning
methods have attracted much attention for channel estimation
with satisfactory performance under appropriate training and
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low computational complexity. The authors of [5] and [6]
designed deep neural network (DNN) based algorithms for
channel estimation and a model-driven deep-learning method
was proposed in [7]. A complex-valued denoising convolution
neural network (Cv-DnCNN) was proposed in [8] to enhance
the performance of channel estimation.

The deep learning approaches above are supervised learn-
ing methods, which require a large number of samples to
optimize the trainable parameters in offline training which
render them difficult to implement in practical communication
systems. In addition, these networks have a poor generalization
ability for example when the SNR is changed. To address
the aforementioned problems, some self-supervised learning
methods for channel estimation have been proposed, which
can be trained online and significantly reduce the number
of training samples [9], [10]. The authors of [9] proposed
a self-supervised learning DNN based on deep image prior
(DIP) to denoise the received pilot signals. The main idea of
DIP is that the DNN has low impedance to the structured
signals and high impedance to the noise, which means that
the structured signals are easier learn. Thus, the denoising
effect can be achieved by early stopping the training of the
DNN. Nevertheless, the performance of DIP is sensitive to
the iteration number and it is difficult to determine when to
stop the iteration.

In this paper, we propose a MIMO channel estimation
framework based on the one-shot self-supervised learning
method Self2Self [11], which is not strict on the iteration
number. The framework can treat the real-time received pilot
signal as the training sample. Thus, it can be directly deployed
online without offline training, which can save the training
overhead and adapt to variable channels in dynamic envi-
ronments. The proposed framework consists of the principle
estimation module and a denoising module. For the estimation
module, we use classic algorithms to obtain a preliminary
estimation, which can be viewed as a noisy channel. The
denoising module is designed based on a one-shot learning
NN with Self2Self, aiming at denoising the noisy channel to
obtain a more accurate estimation result. In particular, in the
training stage, Bernoulli sampling is performed on the noisy
channel to generate training pairs. Blind spot strategy and
dropout technique are used to avoid model overfitting to the
noisy channel. In the prediction stage, dropout is employed
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Fig. 1: The structure of the one-shot self-supervised learning framework.

to improve the estimation accuracy. Simulation results show
that our approach achieves better performance than the DIP
method and has better generalization ability than the traditional
supervised learning method.

II. PROBLEM FORMULATION AND ONE-SHOT
FRAMEWORK

A. Problem Formulation

We consider a MIMO system where the base station (BS)
is equipped with Nr antennas and the receiver is equipped
with Nt antennas in a time-division duplex (TDD) mode. To
estimate the downlink channel, we can estimate the uplink
channel thanks to channel reciprocity in TDD systems. The
user equipment (UE) sends uplink pilots X ∈ CNt×L to the
BS, where L is the length of the pilot. The received signal
Y ∈ CNr×L at the BS is given as

Y = HX+N, (1)

where H ∈ CNr×Nt is the channel matrix and N ∈ CNr×L is
additive white Gaussian noise (AWGN) with zero mean and
variance σ2

n. With the pilots X and the received signal Y,
the channel is estimated by an estimator F(·) at the BS. The
estimated channel is denoted as He = F(X,Y).

B. Overview of the One-Shot Framework

In this subsection, we introduce a one-shot self-supervised
deep learning framework for channel estimation. Our proposed
approach requires no training data, which significantly reduces
the training overhead. In addition, the framework can deal with
the real-time received pilot signals, which can adapt to the
dynamic wireless environments.

The framework is shown in Fig. 1, and consists of two
modules. The first module is the main channel estimation part
using traditional algorithms to obtain a preliminary estimation
H̃. Specifically, we can use LS estimator, where

H̃ = YXH(XXH)−1. (2)

H̃ can be viewed as a noisy channel and we hope to further
improve the estimation performance based on H̃, which can
be treated as a denoising problem. Thus, we establish the latter
module as a channel denoising module, which is designed
based on convolutional neural network (CNN) with the one-
shot self-supervised learning method Self2Self. In particular,
the BS received the real-time signal Y and pilots X, and input
them to the first module to obtain the preliminary estimation
H̃. Then we input H̃ to the second module, i.e., the denoising
NN and train the network online to obtain the final estimation
result He.

III. ONE-SHOT DEEP LEARNING NEURAL NETWORK

In this section, we first introduce the self-supervised learn-
ing method Self2Self for channel denoising and then show
the architecture of the denoising NN. Besides, we explain
the differences between traditional supervised learning method
and our approach.

A. The One-shot Learning Method Self2Self

In the one-shot self-supervised learning, we only have one
training sample ,i.e., the noisy channel H̃ and no correspond-
ing clean channel H. Thus, the big challenge of the one-shot
self-supervised method is over-fitting the noisy channel, which
means that the network converges to an identity mapping
from H̃ to H̃. Specifically, for channel denoising, we need to



minimize the mean square error (MSE) between the estimated
channel He and H. As we know, the denoising NN can
be considered as a Bayes estimator and the MSE can be
decomposed as the sum of squares of estimation bias and
estimation variance, where

MSE = bias2 + variance. (3)

When we only have one noisy sample H̃ for training, the
estimation variance will increase significantly, which causes
that the prediction result He converges to the noisy sample
H̃. Thus, the key point is to avoid the identity mapping and
reduce the estimation variance.

To overcome the aforementioned problem, we adopt the
self-supervised learning method Self2Self to train the channel
denoising NN. First, we apply the dropout approach in certain
layers of NN, which is a common regularization technique
in deep learning. It randomly discards some of the neuronal
nodes while training, which means that the model structure
of the denoising NN in each training epoch is different. In
this way, the outputs of these different models have certain
degree of statistical independence, which can help to reduce
the variance of the prediction result.

Secondly, to avoid the convergence to an identity mapping,
we adopt the strategy of blind spot [12]. It refers to that
when the network outputs a certain element of channel matrix,
the input only contains the information of its surrounding
elements instead of the element itself. In general, the channels
have strong spatial correlation, which means each element has
strong relationships with its surrounding elements. If the noise
is spatially independent, the network with blind spot strategy
cannot deduce the noise through the surrounding elements
but only can predict the channel information related to the
surrounding elements. Hence, the noise reduction effect is
achieved. Here we perform Bernoulli sampling on the noisy
channel H̃ for the blind spot strategy, where

Ĥm = Bm ⊙ H̃, H̄m = (1−Bm)⊙ H̃, (4)

where Bm ∈ CNr×Nt is the binary Bernoulli matrix with
element 0 or 1 in the m-th training epoch, ⊙ represents
multiplication element by element. We denote H̄m as the blind
channel part which is masked by Bm and Ĥm is the unmasked
channel part. The input of the NN is Ĥm and the training loss
function is defined as

M∑
m=1

∥fm(Ĥm;θm)− H̄m∥2Bm
, (5)

where M is the total number of training epoch, fm(·) is the
model of the NN in the m-th training epoch, ∥A∥Bm

=
∥(1−Bm)⊙A∥22. The loss function is measured only on the
blind channel part H̄m instead of the unmasked input Ĥm,
which conforms to the blind spot strategy. In addition, when
the elements of noise between H̃ and H are independent and

zero mean, the expectation of loss function (5) is the same as
that of

M∑
m=1

∥fm(Ĥm;θm)−H∥2Bm
+

M∑
m=1

∥σ∥2Bm
, (6)

where σ is the standard deviation of noise between H̃ and H.
The proof is provided in [11]. Form (6), we can see that the
loss function of training with the paired samples {Ĥ, H̃} is
very related to that of training with the clean labels H, which
infers the rationality of the method.

For the test stage, the dropout technique is also adopted to
reduce the prediction variance. We use dropout to generate
T different models f1(·), f2(·), . . . , fT (·) to obtain estimated
results with certain degree of independence and average them
to acquire the recovered channel, where

He =
1

T

T∑
t=1

ft(Ĥt;θt). (7)

B. The Architecture of the One-Shot Denoising NN
We use the U-Net model [13] for the one-shot learning

NN, the architecture of which is shown in Fig. 1. The model
consists of a contracting path and an expansive path, which are
designed for extracting channel features and restoring the orig-
inal resolution, respectively. Since the input of the NN after
Bernoulli sampling can be regarded as degraded channels, the
contracting path is set up with partial convolutional (PConv)
layers, which are more effectiveness in dealing with degraded
signals compared to the traditional convolution layers [14].
Each PConv layer is followed by a max pooling operation
with a stride of 2 for downsampling. The number of feature
channels expands to 48 from 2 (real and imaginary part of the
channel) after the first convolutional layer and then remains
the same. The output of the contracting path is the feature
with size Nr/32×Nt/32× 48.

The expansive path is set up with several blocks. Each block
consists of two 3× 3 convolutions and a concatenation oper-
ation, and each block is connected with an up-sampling layer
with a scaling factor of 2. The concatenation operation stacks
the feature from the up-sampling layer and the corresponding
feature in the contracting path to fuse the feature information.
The number of feature channels in each output layer of the
block is 96 except for the last block. The size of output feature
restores to Nr × Nt × 2. In addition, dropout is configured
in each convolutional layer of the expansive path. We use
rectified linear unit (ReLU) as the activation function in this
model.

C. Differences between Supervised Learning and Our Ap-
proach

For channel denoising, in the supervised learning, we first
collect a large number of noisy channel samples and corre-
sponding clean channel label as training pairs to optimize the
trainable parameters of the NN offline. The optimization target
of supervised learning method can be written as

min
θ

∑
m

L(f(H̃(m);θ),H(m)), (8)



where L(·) is the loss function, H̃(m) and H(m) are the noisy
channel samples and clean channel labels in the m-th training
epoch, respectively. After offline training, the NN is deployed
to the actual scenario to test online with the parameters of
NN fixed. The supervised learning NN works best when the
training and test environments are consistent. If the channel
statistics in the test environment change, the performance will
degrade due to data mismatch.

In the one-shot self-supervised learning, we only have the
noisy channel H̃ for training. We need to exploit the useful
information of H̃ and generate training pairs from H̃. The
optimization target of our self-supervised learning method can
be written as

min
θ

∑
m

L(f(Ĥ(m);θ), H̄(m)). (9)

Then the trainable parameters are optimized online with the
generated training pairs. In practical applications, the self-
supervised one-shot learning NN can be directly deployed
online to process the real-time received noisy sample H̃.
Thus, the proposed self-supervised learning channel estimation
approach can adapt to variable channels in dynamic environ-
ments.

IV. SIMULATION RESULTS

In this section, we verify the performance of the proposed
one-shot self-supervised learning framework by simulation
results. Normalized mean squared error (NMSE) is used as
measurement, where

NMSE =
∥He −H∥22

∥H∥22
, (10)

where He is the estimated channel. We generate the channels
with ’3GPP-3D’ model in the QuaDRiGa [15] simulation
platform and set Nr = 64, Nt = 32. We use Python as the
programming language and use the Pytorch to build the deep
learning framework.

In the proposed framework, we use LS estimator for the esti-
mation module. We compare the performance of the proposed
Self2Self based self-supervised learning method with that of
linear minimum mean square error (LMMSE) estimator, the
DnCNN based supervised learning method [8] and DIP based
self-supervised learning method [9]. Besides, we use MMSE
estimator as a performance upper bound, where we assume
the channel correlation matrix is known.

Fig. 2 illustrates the NMSE of the proposed one-shot
learning framework and the benchmarks for different values
of SNR. For the ‘DnCNN (no mismatch)’, the training and
test SNR configurations are the same; while for the ‘DnCNN
(mismatch)’, we train the DnCNN with the configuration
SNR=18dB and test it in other SNRs. We can see that the
performance of the proposed Self2Self algorithm is much
better than the LS estimator, which indicates the effectiveness
of the denoising NN. Besides, at a high SNR, the performance
of our framework is better than that of the DIP based method
and LMMSE estimator. Furthermore, the performance of our
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proposed self-supervised learning method is very close to
that of the ‘DnCNN (no mismatch)’ based supervised method
and is better than that of the ‘DnCNN (mismatch)’, which
illustrates that our self-supervised learning method has a
much better generalization ability than the supervised learning
method. The performance gap increases as the SNR decreases,
which is because that the mismatch between the training and
test stage increases for the supervised learning.

Fig. 3 illustrates the NMSE of the proposed one-shot
learning framework and the benchmarks for different lengths
of pilots. For the ‘DnCNN (no mismatch)’, the pilot length
L in the training and test stage are the same; while for the
‘DnCNN (mismatch)’, we train the DnCNN with L=60 and
test it with other pilot lengths. It can be seen that the estimation
performance of Self2Self algorithm is much better than that
of LS estimator with the same length of pilots. We can see
that the NMSE of Self2Self approach with the pilot length of
44 is less than that of LS estimator with the pilot length of
60, which demonstrates that our proposed channel estimation
method can save the pilots. In addition, our one-shot learning
method achieves comparable performance with the ‘DnCNN
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(no mismatch)’ based supervised learning approach. When
there is a mismatch of pilot lengths in train and test stage, our
method is much better than the supervised learning, which
demonstrates our framework can adapt to the adjusted pilot
length.

Fig. 4 illustrates the NMSE of the proposed one-shot
learning framework and the benchmarks when the channel
changes with the frame. We set SNR=10dB and the length of
pilot L=48. We simulate the variation of channels by changing
the receiver’s position. In the first three frames, we keep the
receiver’s position fixed, where the channel remains unchanged
and it is consistent with the training channels for the super-
vised learning. In this case, the DnCNN based supervised
learning method performs well. From the 4-th frame, we fix
the position of BS and move the receiver, which causes that
the angle of arrival (AoA) of the LOS path changes. We can
see that the performance of the DnCNN based supervised
learning method deteriorates due to the mismatch between the
training and application environments. At the 8-th and 9-th
frame, the performance of DnCNN deteriorates dramatically,
which is probably because the testing channel varies greatly
compared to the training channels. In contrast, the performance
of our proposed self-supervised learning method maintains
stability, which illustrates that it can adapt to variable channels
in dynamic environments.

V. CONCLUSION

In this paper, we proposed a one-shot self-supervised deep
learning framework for MIMO channel estimation. It can be
directly deployed online without acquiring large numbers of
samples for offline training and it is robust to the variable
channels in dynamic environments. The framework consists of

the traditional estimation module and the denoising module.
The denoising NN is designed based on the Self2Self one-
shot learning method, where Bernoulli sampling and dropout
approaches are employed. The simulation results showed that
our proposed self-supervised learning method achieves the
comparable performance as the traditional supervised learning
method and has a better generalization ability.
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