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Abstract—We investigate constructive interference (CI)-based
symbol-level precoding (SLP) in large-scale systems with massive
connectivity of users to minimize the transmit power subject to
the instantaneous signal-to-noise-ratio (SINR) and CI constraints.
By converting the considered problem into a novel separable
formulation, we reveal the existence of separability in SLP,
which is therefore well-suited for decomposition. The proximal
Jacobian alternating direction method of multipliers (PJ-ADMM)
framework is adopted to decompose the reformulated problem
into multiple subproblems, which can be solved in parallel with
closed-form solutions. We further linearize the second-order
terms by approximation, which leads to a parallelizable first-
order fast solution to SLP. Our derivations are validated by
simulation results, which also show that our algorithm can pro-
vide optimal performance with substantially lower computational
complexity than state-of-the-art algorithms.

Index Terms—Massive MU-MISO, constructive interference,
symbol-level precoding, separability, ADMM, parallel and dis-
tributed computing.

I. INTRODUCTION

Multi-antenna technique is an overwhelming paradigm
for mainstream wireless communication systems. With the
growing requirements on efficiency and reliability, massive
multiple-input multiple-output (M-MIMO) that equips large-
scale antennas has been recognized as a promising enabler [1],
[2]. Precoding is an efficient downlink transmission technique
to fully utilize the degree of freedom offered by M-MIMO.
Conventional precoding maps the transmit data symbols into
transmit signal using channel state information (CSI), therefore
classified as linear precoding or block-level precoding (BLP).
Such as the zero-forcing (ZF) precoding [3], the regularized
ZF (RZF) precoding [4], and the minimum mean-square error
(MMSE) precoding [5], which has a closed-form precoding
structure. Additionally, the object-oriented linear precoding
that optimizes one performance metric subject to some given
constraints can achieve a particular systematic objective, which
is also widely investigated in the literature. The most rep-
resentative ones include the signal-to-interference-plus-noise
(SINR)-constrained power minimization (PM) precoding [6],
the power-constrained max-min SINR balancing (SB) pre-
coding [7]–[9], and the power-constrained weighted sum-rate
(WSR) maximization precoding [10], [11].

The above conventional precoding inspects the interference
from a statistical view, where interference cannot be con-
trolled accurately, thus acting as an unfavorable factor. On

the contrary, from an instantaneous perspective, interference
is controllable and can be manipulated to enhance signal
detection, which is the so-called constructive interference (CI)
[12]–[14]. CI-based precoding converts the known interference
into useful signal power with the aid of both CSI and data
symbols, thereby also known as symbol-level precoding (SLP).
It is also observed that the transmit signal of SLP is a nonlinear
transformation of data symbols. The typical objective-oriented
precoding schemes in SLP include PM and SB problems,
which optimize the corresponding objective in each symbol
slot rather than the coherence block. The advantages of CI-
based SLP over conventional precoding have been validated in
[12]. Despite the performance superiority of SLP, efficient so-
lutions to the underlying optimization problems are demanded
by practical communication systems, especially for large-scale
settings.

Towards fast and efficient CI precoding solutions, recently
several studies have endeavored to push the frontiers, such
as the efficient gradient projection algorithm to solve the
Lagrangian dual problem of PM-SLP [12], closed-form sub-
optimal solutions to PM-SLP [15], [16], derivations of the
optimal precoding structure for SB-SLP with iterative algo-
rithms [17], [18], the CI-based block-level precoding (CI-BLP)
approach [19], [20], the grouped SLP (G-SLP) approach [21],
and the deep learning-based schemes for PM-SLP [22], [23].
Nevertheless, the existing works described above focus on
sequential and centralized solutions and ignore the separable
nature of PM-SLP, which lead to a conservative complexity
reduction to the optimal solutions.

In this paper, we propose a parallelizable first-order fast al-
gorithm for the PM-SLP problem. We first derive the separable
structure for the PM-SLP problem by reformulating the canon-
ical problem to convert it into a novel separable equivalent,
which is amenable to decomposition methods. To take advan-
tage of the revealed separability, we subsequently decompose
the reformulated problem into multiple simpler subproblems
leveraging the proximal Jacobian alternating direction method
of multipliers (PJ-ADMM) framework. Since the second-order
terms in subproblems lead to inefficient solutions with matrix
inversion, we linearize them by approximation. Therefore the
subproblems can be solved in closed form without matrix in-
version. We also call it the parallel inverse-free SLP (PIF-SLP)
algorithm. Numerical results demonstrate that the proposed
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Fig. 1. Illustration of CI regions for a generic M-PSK modulation.

PIF-SLP algorithm can converge to optimal fast, significantly
outperforming existing works.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink multi-user multi-input single-output
(MU-MISO) system, where the base station (BS) equipped
with Nt antennas provides service for K single-antenna users
in the same time-frequency resource. The independent random
data bits for each user are modulated to normalized data
symbols. The data symbol vector s̃ ≜ [s̃1, · · · , s̃K ]T ∈ CK

contains the overall K data symbols in a symbol slot, which
is mapped to the transmit signal x̃ ≜ [x̃1, · · · , x̃Nt ]

T ∈ CNt at
the BS via SLP. The received signal of user k in one symbol
slot is given by

ỹk = h̃T
k x̃+ z̃k, (1)

where h̃k ∈ CNt denotes the quasi-static Rayleigh flat-fading
channel vector between BS and user k, and z̃k ∼ CN (0, σ2

k)
is the complex-valued additive white Gaussian noise at user
k. The channel matrix is denoted by H̃ ≜ [h̃1, · · · , h̃K ]T ∈
CK×Nt . To focus on the precoding design, perfect CSI is
assumed.

B. Constructive Interference

According to the concept of CI that was first introduced in
[24], the constructive and destructive pattern of the noiseless
received signal

{
h̃T
k x̃
}

is jointly determined by CSI and data
symbols. To predict the interference pattern and further exploit
the known interference, CI precoding optimizes the transmit
signal by judiciously utilizing both CSI and data symbols, such
that all the multi-user interference can add up constructively at

each receiver [14]. When interference exploitation is attained
by CI precoding, the received instantaneous SINR at user k is
given as

SINRk =
|h̃T

k x̃|2

σ2
k

. (2)

It can be seen that there is no interference in the denominator.
Because all signal is beneficial to correct decision, thus put in
the numerator. Consequently, the instantaneous SINR above is
equivalent to the conventional signal-to-noise ratio (SNR).

Geometrically, CI is obtained as long as the noiseless
received signal of each user lies in the symbol-specified CI
region in the complex plane, where the CI region refers to
a polyhedron bounded by hyperplanes parallel to decision
boundaries or Voronoi edges [12], [25], and the only vertex
of one CI region is the SINR threshold-dependent nominal
constellation symbol, as depicted in Fig. 1. For the sake of
illustration, let s̃k be the symbol of interest of user k, which
is an arbitrary constellation point drawn from a normalized
M-PSK constellation. We rotate s̃k to the positive real axis,
thereby the rotated symbol is 1, which is corresponding to−→
OS in Fig. 1. Other related signals are rotated by the same
phase. Consequently, the received noiseless signal of user k,
h̃T
k x̃, turns out to h̃T

k

s̃k
x̃, which is denoted by

−−→
OB in Fig.

1. For a given instantaneous SINR threshold γk for user
k, the nominal constellation point is equivalent to

√
γkσks̃k

according to (2). We introduce
−→
OA as the rotated nominal

constellation point, which is also the only vertex of the
interested CI region. When

−−→
OB is located in the depicted CI

region, then the received signal is pushed away from decision
boundaries and the instantaneous SINR is guaranteed to be
no less than the prescribed threshold γk, thus constructive to
correct decision. One of the criteria that specifies the location
of
−−→
OB in the CI region is

∣∣∣−−→CD
∣∣∣ ≥ ∣∣∣−−→CB

∣∣∣. The corresponding
explicit mathematical formulation of CI constraints for M-
PSK signaling can be written as

ℜ{ĥT
k x̃} −

|ℑ{ĥT
k x̃}|

tan π
M

≥ √γkσk, ∀k, (3)

where ĥT
k ≜ h̃T

k

s̃k
, γk denotes the pre-defined instantaneous

SINR threshold for user k. It is worth noting that the CI con-
straint for each user already incorporates the SINR constraint.1

C. Problem Formulation

Throughout this paper, we are interested in minimizing the
total transmit power subject to CI constraints, which is known
as the PM-SLP problem. This optimization problem has the
following mathematical form:

min
x̃

∥x̃∥2

s.t.ℜ{ĥT
k x̃} −

|ℑ{ĥT
k x̃}|

tan π
M

≥ √γkσk, ∀k.
(4)

1The CI constraints can be readily extended to multi-level modulation, such
as QAM, by employing the symbol-scaling metric [26].



The quadratic objective function and linear constraints indicate
that this problem is convex, and hence can be handled via off-
the-shelf solvers. Unfortunately, most generic solvers, e.g., Se-
DuMi and SDPT3, are based on the high-complexity interior-
point method (IPM). To alleviate the computational burden,
efficient algorithms based on gradient projection method [12],
suboptimal closed-form solution [15], and improved subopti-
mal closed-form solution [16] were proposed. Existing works,
however, focus on centralized iterative algorithms and ignore
the separable nature of the PM SLP problem. Exploiting such
separability, we propose the PIF-SLP algorithm in the next
section based on the PJ-ADMM framework.

III. PROPOSED PIF-SLP ALGORITHM

In this section, before elaborating on the proposed PIF-SLP
algorithm, we prove the underlying separability of the PM-SLP
by reformulating the original problem (4) into its separable
equivalent. In addition, the computational complexity of our
algorithm is analyzed at the end of this section.

A. Problem Reformulation
The real-valued equivalent of (4) can be written as

min
x

∥x∥2

s.t.NSkHkx ⪰
√
γkσk1, ∀k,

(5)

where

x ≜

[
ℜ{x̃}
ℑ{x̃}

]
∈ R2Nt ,N ≜

[
1 − 1

tan π
M

1 1
tan π

M

]
∈ R2×2,

Sk ≜

ℜ
{

1

s̃k

}
−ℑ

{
1

s̃k

}
ℑ
{

1

s̃k

}
ℜ
{

1

s̃k

}
 ∈ R2×2,

Hk ≜

[
ℜ{h̃T

k } −ℑ{h̃T
k }

ℑ{h̃T
k } ℜ{h̃T

k }

]
∈ R2×2Nt .

We further introduce Āk ≜ NSkHk, and bk ≜
√
γkσk1.

Accordingly, the CI constraints become

Ākx ⪰ bk, ∀k. (6)

Stacking the CI constraints, the compact formulation can be
written as

Ax ⪰ b, (7)

where A ≜
[
ĀT

1 , · · · , ĀT
K

]T ∈ R2K×2Nt , b ≜[
bT
1 , · · · ,bT

K

]T ∈ R2K . We can identify that the left-hand
side of (7) can be expressed as a linear combination of the
columns of A, i.e.,

∑2Nt

i=1 aixi, where ai is the i-th column of
A, xi is the i-th entry of x. Accordingly, (5) can be rearranged
as

min
xi

N∑
i=1

∥xi∥2

s.t.

N∑
i=1

Aixi ⪰ b,

(8)

where xi ∈ Rni with
∑N

i=1 ni = 2Nt is the i-th block of
x, composed of the adjacent and/or disadjacent elements of
x, and Ai ∈ R2K×ni is the i-th column block of A, each
column of which is uniquely taken from the columns of A.
Mathematically, for the adjacent case, x =

[
xT
1 , · · · ,xT

N

]T
,

A = [A1, · · · ,AN ], while for the disadjacent case, xi =
ET

i x, Ai = AEi, where Ei ∈ R2Nt×ni , and each column of
{Ei} is uniquely picked from the columns of the 2Nt × 2Nt

identity matrix.
With such formulation, (8) is partitioned into N blocks, here

we do not confine the number of blocks, so long as N is a
positive integer not greater than 2Nt.

B. PIF-SLP Algorithm
We reformulate (8) by introducing a slack variable vector

c ∈ R2K
+ to replace the original inequality constraints with cor-

responding equality constraints and nonnegativity constraints
as follows:

min
xi,c

N∑
i=1

∥xi∥2

s.t.

N∑
i=1

Aixi = b+ c,

c ⪰ 0.

(9)

Since the feasible region of the slack variable c is R2K
+ , by

introducing an indicator function, the nonnegativity constraints
can be incorporated into the objective function:

min
xi,c

N∑
i=1

∥xi∥2 + IR2K
+

(c)

s.t.−
N∑
i=1

Aixi + b+ c = 0,

(10)

where IR2K
+

is the indicator function of R2K
+ given by

IR2K
+

(c) =

{
0, if c ∈ R2K

+ ,

+∞, otherwise.
(11)

The augmented Lagrangian function of (10) is defined as
(14) on the top of the next page.

The augmented Lagrangian function of (8) can be obtained
by minimizing (14) with respect to c, i.e.,

Lρ (x,λ) = min
c
L̄ρ (x, c,λ) . (13)

The solution of the minimization with respect to c can be
written as

c = arg min
c∈R2K

+

ρ

2

∥∥∥∥∥−
N∑
i=1

Aixi + b+ c+
λ

ρ

∥∥∥∥∥
2

, (14)

which is equivalent to projecting the vector
∑N

i=1 Aix
t
i−b−

λt

ρ onto R2K
+ , denoted by PR2K

+

(∑N
i=1 Aix

t
i − b− λt

ρ

)
. Its

closed-form solution is given by

c = max

{
0,

N∑
i=1

Aixi − b− λ

ρ

}
, (15)



L̄ρ (x, c,λ) =

N∑
i=1

∥xi∥2 + IR2K
+

(c) + λT

(
−

N∑
i=1

Aixi + b+ c

)
+

ρ

2

∥∥∥∥∥−
N∑
i=1

Aixi + b+ c

∥∥∥∥∥
2

=

N∑
i=1

∥xi∥2 + IR2K
+

(c) +
ρ

2

∥∥∥∥∥−
N∑
i=1

Aixi + b+ c+
λ

ρ

∥∥∥∥∥
2

− 1

2ρ
∥λ∥2 (14)

where max{·} represents the elementwise maximum. Based
on the above, we can write (13) as

Lρ (x,λ) =

N∑
i=1

∥xi∥2 −
1

2ρ
∥λ∥2

+
ρ

2

∥∥∥∥∥max

{
−

N∑
i=1

Aixi + b+
λ

ρ
,0

}∥∥∥∥∥
2

. (16)

By adopting PJ-ADMM [27], each of the N blocks of
transmit signal is updated alternately in parallel as follows:

xt+1
i = argmin

xi

Lρ

(
xt
̸=i,xi,λ

t
)
+

1

2

∥∥xi − xt
i

∥∥2
Pi

,∀i, (17)

where Pi is a symmetric and positive semi-definite matrix and
∥xi∥2Pi

≜ xT
i Pixi.

The above update of xt+1
i is equivalent to solving an

unconstrained quadratic programming problem (18) as shown
on the top of the next page, whose optimal solution can be
obtained by setting the gradient of the objective function with
respect to xi to zero, i.e.,

2xi +Pi

(
xi − xt

i

)
+ ρAT

i Aixi

−ρAT
i

(
Aix

t
i +max

{
−

N∑
i=1

Aix
t
i + b+

λt

ρ
,0

})
= 0,∀i.

(19)

After some calculations, the closed-form solution for minimiz-
ing xi can be written as

xt+1
i =

(
2I+ ρAT

i Ai +Pi

)−1[
Pix

t
i + ρAT

i

(
Aix

t
i +max

{
−

N∑
i=1

Aix
t
i + b+

λt

ρ
,0

})]
,

∀i. (20)

Note that when we take N = 2Nt, i.e., the transmit signal
vector x is decomposed into 2Nt scalars, Ai reduces to a
column vector ai, and Pi reduces to a scalar pi, then the
iteration of the transmit signal can be carried out via 2Nt

parallel and distributed scalar operations, i.e.,

xt+1
i =

pix
t
i + ρaTi

(
aix

t
i +max

{
−
∑2Nt

i=1 aix
t
i + b+ λt

ρ ,0
})

2 + ρaTi ai + pi
,∀i.

(21)

If we group the real and imaginary parts of the same antenna’s
transmit signal into one block, the transmit signal vector will

be decomposed into Nt blocks. Ai ∈ R2K×2 is a matrix
with orthogonal columns, which implies that the corresponding
AT

i Ai is a 2 × 2 diagonal matrix with identical non-zero
elements. Therefore, if we take Pi as a diagonal matrix too,
then the matrix inverse operation during the update of xi will
be replaced by taking the reciprocals of the two entries in the
main diagonal, with reduced complexity. Hence the xi-updates
can be reformulated as

xt+1
i =[
Pix

t
i + ρAT

i

(
Aix

t
i +max

{
−

N∑
i=1

Aix
t
i + b+

λt

ρ
,0

})]
⊘W,∀i, (22)

where ⊘ denotes the element-wise division, W ≜
diag

(
2I+ ρAT

i Ai +Pi

)
.

To further reduce the complexity by circumventing matrix
inversion, we set the Pi as Pi = τiI − ρAT

i Aixi. Subse-
quently, the parallel inverse-free update of xi turns to

xt+1
i =

1

2 + τi

(
τix

t
i + ρAT

i max

{
−

N∑
i=1

Aix
t
i + b+

λt

ρ
,0

})
,∀i.

(23)

The Lagrangian multiplier is updated via the gradient iter-
ation given by

λt+1 = λt + βρmax

{
−

N∑
i=1

Aix
t+1
i + b,−λt

ρ

}
, (24)

where β > 0 is a damping parameter. Consequently, we arrive
at a PIF-SLP algorithm, which is summarized in Algorithm 1.

C. Computational Complexity Analysis

The computational overhead of the proposed PIF-SLP al-
gorithm is assessed by accounting for the required float-point
operations, i.e., flops. The PIF-SLP summarized in Algorithm
1 updates two variables alternately, i.e., the first step updates N
blocks of the transmit signal {xi} in parallel, and the second
step updates the Lagrangian multiplier λ. To simplify the
analysis, it is assumed that each block of transmit signal has
the same dimension, i.e., 2Nt/N . As a result, the update of the
transmit signal (23) requires O(2TK)+O(2T (2K+1)Nt/N)
flops per block, where T denotes the number of iterations. On
the assumption that given {Aixi} rather than {xi}, the update
of the Lagrangian multiplier (24) requires O(2TK) flops.



xt+1
i = argmin

xi

∥xi∥2 +
1

2

∥∥xi − xt
i

∥∥2
Pi

+
ρ

2

∥∥∥∥∥∥−Aixi +Aix
t
i −

N∑
j=1

Ajx
t
j + b+

λt

ρ
+max{0,

N∑
j=1

Ajx
t
j − b− λt

ρ
}

∥∥∥∥∥∥
2

,∀i,

(18)

Algorithm 1 PIF-SLP for the PM-SLP problem (8)

Input: A, b, ρ , τi, β
Output: x

1: Initialize x0
i (i = 1, · · · , N), and λ0;

2: Set t← 0;
3: repeat
4: Update xt+1

i for i = 1, · · · , N in parallel by:
5: for i = 1, · · · , N do
6: Update xt+1

i by (23);
7: end for
8: Update λt+1 by (24);
9: Set t← t+ 1;

10: until Convergence.

IV. NUMERICAL RESULTS

This section evaluates and compares the performance of
the proposed PIF-SLP algorithm via Monte Carlo simulations.
We assume each user has unit noise variance and an equal
instantaneous SINR threshold, i.e., σ2

k = σ2 = 1, γk = γ,∀k.
QPSK modulation is employed throughout the simulations.
A downlink massive MU-MISO system with 128 transmit
antennas to serve 112 single-antenna users is considered. The
transmit signal vector is partitioned into 64 blocks, namely,
N = 64, with 4 elements in each block. We choose τi =

0.2ρ
(

N
2−β − 1

)
∥Ai∥2. The penalty parameter ρ is set to 0.06;

the damping parameter β is set to 1. For a comprehensive
comparison, we consider the followings: the conventional ZF
and RZF schemes with symbol-level power normalization, the
IPM for PM-SLP implemented by CVX [28], the efficient
gradient projection algorithm (EGPA) for PM-SLP [12], the
suboptimal closed-form (SCF) solution for PM-SLP [15], and
the improved suboptimal closed-form (ISCF) solution for PM-
SLP [16].

Fig. 2a depicts the average transmit power of the compared
schemes with the SINR threshold for the considered system
setting, where the transmit power of ZF and RZF is normalized
by that of the IPM. It is observed that the transmit power of
the proposed PIF-SLP algorithm approaches those of the IPM
from low to high. Since we initialize the transmit signal as a
zero vector. Specifically, the early termination of the proposed
PIF-SLP algorithm at 50 iterations leads to a suboptimal
solution of nearly 0.7 dB transmit power gap. When the
number of iterations reaches 100, the proposed algorithm can
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Fig. 2. Transmit power and uncoded BER performance of different schemes
in different SINR thresholds, QPSK, Nt = 128, K = 112, N = 64.

almost provide optimal transmit power.
Fig. 2b shows the uncoded BER performance of the pro-

posed PIF-SLP algorithm compared to other schemes at var-
ious SINR thresholds for the same system setting. At the
interference-limited medium-to-high SINR threshold region,
the PM-SLP schemes implemented by the proposed PIF-SLP
algorithm, IPM, SCF, ISCF, and EGPA all achieve lower
uncoded BER over the ZF and RZF schemes. The performance
of the proposed algorithm increases stably with the number
of iterations, providing a performance-complexity trade-off.
With sufficient iterations, the uncoded BER performance of
the proposed algorithm can match that of the IPM.



TABLE I
AVERAGE EXECUTION TIME IN SEC. OVER 2000 RANDOM CHANNEL

REALIZATIONS, QPSK, Nt = 128, K = 112, N = 64.

γ = 4 dB γ = 8 dB γ = 12 dB

ZF 0.0034 0.0033 0.0033
RZF 0.0027 0.0028 0.0028
IPM 0.4002 0.3962 0.3920
EGPA 0.2248 0.2312 0.2280
SCF 0.0209 0.0209 0.0207
ISCF 0.0218 0.0217 0.0217
PIF-50 iter 0.0104 0.0105 0.0104
PIF-100 iter 0.0193 0.0194 0.0192

Table I presents the average execution time per channel
realization of the considered schemes in three different SINR
thresholds, where the parameters are the same as those in
Fig. 2. It should be noted that implementing the parallel
approach in physical parallel computing processors is beyond
the range of this paper. Thus the execution time for the
PIF-SLP algorithm is the total time required for MATLAB
simulation, which is an overestimate. We can observe that
the proposed PIF-SLP algorithm is the most efficient SLP
algorithm compared to the IPM and EGPA. The average
execution time of the PIF-SLP is almost proportional to the
number of iterations. When the number of iterations of the
PIF-SLP algorithm increases to 100, the PIF-SLP, SCF, and
ISCF have comparable average execution times.

V. CONCLUSION

In this paper, a parallelizable first-order fast algorithm for
CI-based SLP is proposed for a massive MU-MISO downlink
system based on PJ-ADMM. We reformulate the canoni-
cal PM-SLP optimization problem into separable equality-
constrained optimization, which is further decomposed into
multiple parallel subproblems. The second-order term in each
subproblem is substracted by the PJ-ADMM framework, pro-
viding an inversion-free solution. Numerical results demon-
strate that the proposed algorithm can provide optimal perfor-
mance and show the superiority of the proposed algorithm in
terms of computational efficiency over state-of-the-art works.
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