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Abstract—Modern In-Vehicle Networks (IVNs) are composed
of a large number of devices and services linked via an Ethernet-
based time-sensitive network. Communication in future IVNs will
become more dynamic as services can be updated, added, or
removed during runtime. This requires a flexible and adaptable
IVN, for which Software-Defined Networking (SDN) is a promis-
ing candidate. In this paper, we show how SDN can be used
to support a dynamic, service-oriented network architecture. We
demonstrate our concept using the SOME/IP protocol, which is
the most widely deployed implementation of automotive service-
oriented architectures. In a simulation study, we evaluate the
performance of SOME/IP-adaptive SDN control compared to
standard Ethernet switching and non-optimized SDN. Our results
show an expected overhead introduced by the central SDN
controller, which is, however, reduced by up to 50% compared
to SOME/IP-unaware SDN. For a large number of services,
the setup time is in the order of milliseconds, which matches
standard Ethernet switching. A SOME/IP-aware SDN controller
can optimize the service discovery to improve adaptability,
robustness, security, and Quality-of-Service of the IVN while
remaining transparent to existing SOME/IP implementations.

Index Terms—SDN, In-Vehicle Networks, Service-Oriented
Architectures, SOME/IP, Service Discovery

I. INTRODUCTION

Today’s vehicles accommodate a large number of intercon-
nected Electronic Control Units (ECUs), the software of which
is expected to undergo faster development cycles with frequent
updates and service reconfigurations. The introduction of a
Service-Oriented Architecture (SOA) promises to support this
increasing dynamic [1]. The In-Vehicle Network (IVN) plays
a fundamental role in the performance, safety, and security of
these interconnected services [2]. Ethernet emerges as the next
generation IVN technology to extend capacity and flexibility,
while replacing existing bus systems. Time-Sensitive Network-
ing (TSN) enhances Ethernet with Quality-of-Service (QoS)
features, e.g., deterministic communication and redundancy.

One major challenge of future IVNs is to transform from
statically pre-configured into service-oriented networks that
support dynamic service adaptation. With its centralized con-
trol plane, Software-Defined Networking (SDN) promises a
dynamic and flexible IVN [3]. In previous work, we presented
Time-Sensitive Software-Defined Networking (TSSDN) that
supports QoS and security requirements of in-vehicle applica-
tions [4], [5]. An SDN controller can reconfigure the network
according to service availability, including updates or failures.
TSN resource partitioning [6] allows adding new traffic flows
dynamically without affecting a static configuration defined at

design time. Additionally, failover mechanisms and seamless
service mobility [7] can improve the robustness of the IVN.

Evolving automotive systems is challenging, as industry
practices and backward interoperability need to be met at
reasonable overhead [2]. The Scalable service-Oriented Mid-
dlewarE over IP (SOME/IP) is a widely used protocol for
automotive SOAs standardized by AUTOSAR [8]. SOME/IP
offers Service Discovery (SD) [9] as a complementary service.
SDN-supported SOA in vehicles opens powerful potentials.
Options range from discovery optimizations to QoS, security,
and robustness improvements. To support in-car SOA, the
SDN controller must know all services on the IVN, and thus
support automotive protocols for service discovery.

In this work, we present a network control scheme for
the SOME/IP SD based on the SDN paradigm. We design
an SDN controller application that fully supports SOME/IP
SD. It intercepts discovery messages, learns about services,
directly responds to requests, and sets up paths automatically.
Our approach is completely transparent to existing SOME/IP
implementations. We discuss further potentials of support-
ing SOME/IP communication with SDN (service discovery
optimization, service mobility, QoS improvements, discovery
protection). In simulation, we compare the scalability of our
approach to non-optimized SDN and standard Ethernet.

The remainder of this work is structured as follows: In
Sec. II, we discuss related work. Sec. III introduces the
SOME/IP SD mechanism, the SDN paradigm, our method-
ology to support automotive SOAs with SDN, and further
potentials enabled by their combination. Sec. IV evaluates the
performance of the proposed SDN supported SOME/IP SD.
Finally, Sec. V concludes this work and outlines future work.

II. BACKGROUND AND RELATED WORK

Today, an IVN is a complex distributed system with a
multitude of devices and services communicating via a combi-
nation of bus systems and switched Ethernet. Combined with
Time-Sensitive Networking (TSN), Automotive Ethernet is a
promising candidate for the backbone of next generation IVNs.
Gateways that translate between different networks (e.g., CAN
and Ethernet) and protocols are commonly used to enable
interoperability and backward compatibility [10].

A. Service-Oriented Architectures in Vehicles

SOA is proposed to enable flexible and dynamic application
placement, and frequent updates in automotive networks [1].
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In-vehicle applications can act as service providers to make
certain functions and data available to consuming applications.
While dynamic service discovery can improve flexibility of,
for example, navigation, infotainment, diagnostics, and driver
assistance services, safety-critical services may still require
dedicated, static connections to ensure reliability [11].

Two major candidates are considered as the communication
protocol for SOAs in vehicles [10]: (1) SOME/IP [8] is
explicitly tailored to the automotive environment and enables
service-oriented communication via TCP/UDP-IP. (2) Data
Distribution Service (DDS) [12] from the Object Management
Group is a viable alternative available in the AUTOSAR
platform, but not designed for automotive applications and
not widely used by automotive companies [10]. This work
focuses on SOME/IP due to its widespread deployment in the
automotive domain. Nevertheless, our work translates to other
protocols such as DDS.

In previous work [11], we assessed the design space of
vehicular services and proposed a mechanism to enable QoS
within a vehicular middleware. Since rollout of SOME/IP-
SD in AUTOSAR 4.1, SOA is a standard feature for future
IVNs. Kampmann et al. [13] propose containerized services
to be placed and activated on dynamic allocated hardware
resources during runtime. The dynamic nature of SOAs poses
challenges to a traditionally pre-configured IVN, as it must
adapt to changes in service availability during runtime.

B. Supporting Automotive Network Functions with SDN

Software-Defined Networking (SDN) has the potential to
increase the flexibility and performance of networks [14], in
particular in well-known environments. SDN centralizes the
control plane and separates it from the data plane, allowing
a central controller to perform network functions such as
routing, firewalling and load balancing for the local network.

In cars, SDN can enable a reconfigurable and flexible
network architecture that adapts to changes in the network,
e.g., software updates and downloadable drive assistance sys-
tems [3]. In previous work [4], [5], we presented TSSDN,
an integration of SDN with TSN, and showed how SDN can
significantly enhance IVN security. Ergenç et al. [7], illustrate
service-based resilience for IVNs by configuring backup nodes
for critical services. In case of failures, those can be activated,
which also requires changes in the network configuration.

Intercepting packets of network control protocols is a com-
mon approach to optimize networking objectives via SDN.
Examples include the management of the Address Resolution
Protocol (ARP) [15] or IP multicast routing [16]. Bertaux et
al. [17] present a first design for an SDN application that
dynamically allocates network resources for DDS applications.
Such a mechanism is missing in SOME/IP and could enable
the IVN to adapt to changes during runtime.

In this work, we present a concept for an SDN controller ap-
plication that fully supports the SOME/IP SD protocol. It can
intercept and handle service announcements and subscriptions
to manage network resources but remains fully transparent for
existing SOME/IP implementations and applications.
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SOME/IP-SD SOME/IP SOME/IP SOME/IP-SD

Service Discovery
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publish
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request
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Fig. 1: SOME/IP service discovery and communication.

III. SDN-SUPPORTED SOME/IP SERVICE DISCOVERY

Our concept applies the SDN paradigm to service-oriented
in-vehicle communication using the SOME/IP protocol. First,
we introduce the SOME/IP SD mechanism, next our method-
ology to support automotive SOAs with SDN, and finally cover
SOME/IP message handling in a controller application.

A. The SOME/IP Service Discovery

The AUTOSAR SOME/IP protocol [8] includes a Service
Discovery (SD) protocol [9] with an offline-defined endpoint
(IP multicast group / UDP port) on each device. Fig. 1 shows
a sequence with SOME/IP SD and service communication.

SOME/IP has two message types for service discovery:
find to request a service, and offer to announce a service.
Providers send an offer to the SD multicast group upon
service activation or as a cyclic refresh. A consumer can
initiate a find-request for a service as a SD multicast.
Multiple instances of the same service can coexist in a
vehicle. All providers of the requested service respond with
an unicast offer. A SOME/IP service identifies with service
ID, instance ID, and major/minor version. The instance ID,
major/minor version can be wildcarded in the find-request
if any instance of the specified service ID is applicable.

Discovered services can communicate following a publish-
subscribe or a request-response model. For the latter, a con-
sumer requests a data field or method from a provider via
unicast each time the data is needed and awaits the response.
In the publish-subscribe model, a consumer subscribes once
to a service instance via unicast to be notified repeatedly. The
provider acknowledges the subscription and communication



Controller

Flow Control

Service 
Registry

Find
Cache

Subscription
RegistrySchedulerPathfinder

SOME/IP Service Discovery...

Service Provider

Publisher 
Endpoint

Service
Discovery

Service Consumer

Subscriber
Endpoint

Service 
Discovery

C
o
n
tr

o
l 
P
la

n
e

D
at

a 
P
la

n
e

C
o
n
tr

o
l 
P
la

n
e

D
at

a 
P
la

n
e

Fig. 2: Concept for an SDN-supported automotive SOA.
Components in red are added, others remain unaltered.

endpoints are created. The provider can then send initial events
and thereafter publish updates on-change or periodically.

A Time to Live (TTL) field is used to limit the lifetime of
an offer, find, or subscribe. To withdraw an offered
service or subscription, the message is sent with identical
service ID and instance ID, but with the TTL set to 0.

B. Architecture of an SDN-Supported Automotive SOA

We integrate the SOME/IP service management with SDN,
enabling the SDN controller to gather information about
SOME/IP services and exploit it for network optimization.
Fig. 2 gives an architectural overview of the proposed concept.

The network is divided into control plane and data plane
following the SDN paradigm. On the data plane, switches
connect service providers and consumers and forward packets
between endpoints based on their forwarding tables. The SDN
controller on the control plane manages the network and the
forwarding tables of network devices.

We add a specialized network application to the SDN con-
troller that intercepts all SOME/IP SD messages and extracts
information about the services. It stores this information in
three SD tables: (1) A service registry that contains all known
service instances and their endpoints. (2) A find cache stores
all open find-requests which the controller can only answer
after the service was discovered. (3) A subscription registry
tracks subscriptions and their status (e.g., active or subscription
requested) for the publish-subscribe model.

C. Controlling the SOME/IP Service Discovery with SDN

Table I shows how the controller application handles
SOME/IP SD messages depending on the state of the three SD
tables. The controller responds directly to find messages for
registered services and sends all known instances of a service
ID when the instance ID is a wildcard. If the service instance
is not yet known, the find is cached and forwarded to the
multicast group. On offer messages, the controller updates
the service registry. If the offer is sent as a direct reply to
a cached find it is forwarded to the requester, otherwise to
the multicast group.

TABLE I: Handling SOME/IP service discovery messages on
the control plane depending on the state – known when in
the service registry, requested when in the find cache, and
subscribed when in the subscription registry.

Message State (X) Reaction

find(X)
Known respond with offer
Not known Send find to multicast group

offer(X)

Requested Update service registry, forward to
requester or multicast group

Not requested Update service registry, forward to
multicast group

subscribe(X)
Known Update subscription registry, for-

ward to provider
Not known Send negative acknowledgement

subscribeAck(X)
Subscribed Update subscription registry, install

forwarding, forward to subscriber
Not subscribed No handling

All subscribe messages are forwarded to the provider.
If the service is known, they are added to the subscription
registry. When the controller receives a subscribeAck
and the subscription is in the table, it installs a forwarding
rule. Then it forwards the message to the subscriber. For
subscriptions that are already active (e.g., in case of multicast),
the controller updates existing rules along the path.

Withdrawn offers are updated in the subscription and service
registry and forwarded to the multicast group. Withdrawn
subscriptions are updated in the subscription registry and
forwarded to the service provider. Previously installed rules
must also be removed or updated in forwarding devices.

These mechanisms are fully transparent towards the end-
points and do not require any changes in the SOME/IP SD
protocol implementation nor the applications Introducing a
central network controller, however, impacts service discovery
performance, since all SD messages are forwarded to the
controller, which we evaluate in Section IV.

D. Potentials of SDN-Supported Automotive SOA

Further potentials emerge if the SDN controller is aware of
the SOME/IP SD protocol:

1) Optimized service discovery: The controller can auto-
matically install flows and efficiently add new subscribers to
multicast flows after receiving a subscribeAck message.
Furthermore, load on the data plane could be reduced by
directly forwarding SD messages to the known SOME/IP end-
points, skipping links between forwarding devices. With SDN,
any Ethernet topologies such as rings can be supported for
SOME/IP services, enabling load balancing and redundancy.

2) Seamless service mobility: The controller can seamlessly
reconfigure publishers and subscribers, as they move from
one device to another without disrupting communications. In
addition, it can hand over subscriptions from one publisher
instance to another instance of the same service if the orig-
inal publisher fails. Other reconfiguration mechanisms could
improve the robustness of the IVN, such as the fast handover
in case of a link failure.



3) Quality-of-Service enforcement: The IVN has strict QoS
requirements with particular real-time capabilities. In tra-
ditional networks, it can be challenging to translate QoS
requirements of application layer services onto the underlying
link layer. Already on host devices, preconfigured mapping
from network layer QoS options to link layer QoS options
is required. Communicating such requirements to the network
can be even more challenging. In the proposed approach, the
controller can enforce QoS requirements of the subscriber in
the network. In previous work, we have shown how a central
controller can configure the TSN-scheduling of switches [5].

4) Discovery protection: While IVN security is imperative
for ensuring vehicle safety, in-vehicle communication pro-
tocols and architectures often lack security mechanisms [2].
In the case of SOME/IP, end-to-end encryption can be used
to protect the message payload. However, the discovery of
SOME/IP services is not protected, and malicious nodes
could easily spoof the discovery messages, e.g., to announce
conflicting publisher service instances or add additional sub-
scriptions to increase the network load. The controller can
support security mechanisms for SOME/IP SD to verify the
authenticity of discovery messages and control access policies
for providers and consumers.

IV. PERFORMANCE ANALYSIS

Our study compares the performance of the presented con-
cept compared to non-optimized SDN forwarding and standard
Ethernet switches in simulation. Our key performance metric
is the time to set up all subscriptions in a network, from first
producer until the last subscription is established.

A. Simulation Environment

Our simulation environment is based on the OMNeT++
simulator [18] with the INET framework, and the Open-
FlowOMNeTSuite [19]. For our implementation, we use the
CoRE4INET, SDN4CoRE [20], and SOA4CoRE [11] frame-
works which our research group maintains. They are open
source on github.com/CoRE-RG. SOA4CoRE implements the
SOME/IP and SOME/IP SD protocol, and our proposed con-
troller application for SOME/IP SD is added to SDN4CoRE.

B. Evaluation Scenario

Fig. 3 shows the topology used for the comparison. It
consists of switches, producer nodes, and consumer nodes con-
nected via 1Gbit/s Ethernet links. All switches are connected
to a controller in the SDN variants.

To investigate scalability, we vary the number of producer
(P) and consumer nodes (C) from 1 to 50, and the number of
switches between them from 1 to 5, since we expect that this
number is not exceeded in a real IVN. Each producer has one
publisher service. Each consumer has one subscriber service
per publisher. We simulate all 192 parameter combinations and
measure the time to set up all subscriptions.

The simulation models provide a wide range of configura-
tion parameters. Switches have a hardware forwarding delay
of 8 µs. The SDN controller uses the OpenFlow protocol to
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Fig. 3: Topology for the scalability comparison with 1 to 5
switches (S), 1 to 50 producers (P), and 1 to 50 consumer
nodes (C) with one subscriber service per producer (P).

configure the switches. The OpenFlow messages processing
time in the controller application is 100 µs, based on the worst-
case performance of the best-performing controller implemen-
tation we have evaluated in previous work [21]. We assume
the switch processing time is similar and set it to 100 µs, but
could not find any data in the literature on the performance
of OpenFlow processing on switches. The controller and the
switches can handle multiple OpenFlow packets in parallel.

C. Results

Fig. 4 compares the setup time of the presented ap-
proach (SDN optimized), non-optimized SDN forwarding
(SDN vanilla), and standard Ethernet (w/o SDN) for 1 to 50
producers on 1, 2, and 5 switches on a logarithmic scale.
For simplicity, the graphs only depict results for 1 and 50
consumers per producer, the others show a similar trend.

In all cases, we observe an approximately linear increase
in setup time with the number of producers for all three
approaches. Compared to standard Ethernet switching, the
SDN solutions are about one order of magnitude slower, which
is to be expected due to the delay caused by forwarding
each SOME/IP SD packet to the central SDN controller. This
delay is highly dependent on the OpenFlow processing time.
Optimized controllers, and switches might come closer to the
Ethernet performance. Nevertheless, the additional delay only
affects the setup time of the subscriptions and not the actual
data transfer of the service.

For setting up one subscription over 5 switches, the opti-
mized SDN approach takes 0.6ms, non-optimized SDN 2.2ms
and the non-SDN variant only 0.1ms. This is a good indicator
that the time to migrate a service from one node to another
is less than 1ms. The setup of subscriptions for 50 publishers
with 50 subscribers each (2500 subscriptions), is considered a
cold start as all services announce their availability and their
required subscriptions at the same time. The setup for all
connections takes about 5.5ms without SDN, 16.4ms with
vanilla SDN, and 9.3ms with our optimized SDN approach.

Overall, the presented approach of a SOME/IP-aware SDN
controller improves performance by up to 50% compared to
a non-optimized SDN. Although a migration time of 1ms
is acceptable for most in-vehicle services, it may not be
acceptable for safety-critical services, e.g., collision detection,
which likely require configured routes and redundancy. Most
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services, however, are discovered when the vehicle is started.
The fastest required service availability in current cars is
about 200ms and even lower for, e.g., infotainment services.
Therefore, the setup time for all in-vehicle connections (2500
services in less than 10ms) is acceptable for all kinds of
services, including safety-critical services.

V. CONCLUSION AND OUTLOOK

This paper proposed an SDN-based network control scheme
for SOME/IP SD. We designed an SDN controller application
that fully supports SOME/IP SD, while remaining transparent
to existing SOME/IP implementations. The controller detects
available service instances and automatically sets up paths in
forwarding devices for acknowledged subscriptions.

We evaluated the performance of our approach in a
simulation-based study, comparing its scalability to non-
optimized SDN and standard Ethernet switching. Our approach
improved the SDN performance by up to 50% compared to
the non-optimized SDN solution. The central controller pro-
cessing all SOME/IP SD messages significantly reduces SDN
performance, but the additional delay only affects subscription
setup time, not the actual data transfer. Our approach achieves
a setup time below 10ms for 2500 subscriptions, complying
with the fastest service availability normally required in a
vehicle, which is about 200ms.

We explored various potentials and extensions of a
SOME/IP SD-aware SDN controller. Future work will focus
on further optimizing service discovery, mobility, and recon-
figuration mechanisms for improved robustness, QoS support,
and security enhancements.
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[4] T. Häckel et al., “Software-Defined Networks Supporting Time-Sensitive
In-Vehicular Communication,” in IEEE 89th Vehicular Technology Con-
ference: VTC2019-Spring. Apr. 2019, pp. 1–5.
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