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Abstract—This paper focuses on the fundamental problem of
maximizing the achievable weighted sum rate (WSR) at infor-
mation receivers (IRs) in an intelligent reflecting surface (IRS)
assisted simultaneous wireless information and power transfer
system under a multiple-input multiple-output (SWIPT-MIMO)
setting, subject to a quality-of-service (QoS) constraint at the
energy receivers (ERs). Notably, due to the coupling between the
transmit precoding matrix and the passive beamforming vector
in the QoS constraint, the formulated non-convex optimization
problem is challenging to solve. We first decouple the design
variables in the constraints following a penalty dual decomposi-
tion method, and then apply an alternating gradient projection
algorithm to achieve a stationary solution to the reformulated
optimization problem. The proposed algorithm nearly doubles
the WSR compared to that achieved by a block-coordinate
descent (BCD) based benchmark scheme. At the same time,
the complexity of the proposed scheme grows linearly with the
number of IRS elements while that of the benchmark scheme is
proportional to the cube of the number of IRS elements.

Index Terms—Intelligent reflecting surface, MIMO, SWIPT,
energy harvesting, penalty dual decomposition.

I. INTRODUCTION

The advancement in meta-materials technology has led to

the development of intelligent reflecting surfaces (IRSs) which

is being foreseen as a groundbreaking hardware technology for

beyond-fifth-generation (B5G) and sixth-generation (6G) wire-

less communications systems [1]. Recent research has shown

promising advantages of IRSs to support energy-efficient high-

speed communication while also supporting massive connec-

tivity. In parallel, simultaneous wireless information and power

transfer (SWIPT) is another appealing technology to cater to

the energy requirements of low-powered Internet-of-Things

(IoT) devices [2], [3]. In recent years, a significant research

effort has been made towards investigating the benefits of IRSs

in SWIPT-aided wireless communications systems, especially

to improve the power transfer efficiency and to increase the

operational range of energy receivers (ERs) [4].

In this context, one of the early works on IRS-aided SWIPT

considered the problem of maximizing the weighted received
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sum power at the ERs subject to a signal-to-interference-

plus-noise ratio (SINR) constraint at the information receivers

(IRs) in an IRS-assisted SWIPT multiple-input single-output

(MISO) system [5]. Similarly, the fundamental problem of

weighted sum rate (WSR) maximization (at the IRs) in an

IRS-assisted SWIPT multiple-input multiple-output (MIMO)

system, subject to a minimum weighted sum harvested power

constraint (at the ERs) was considered in [6]. It is important

to note that the beamforming optimization problems in IRS-

assisted systems are challenging to solve in general, due to

the coupling of the design variables in the objective and/or

constraint(s). Although alternating optimization (AO) based

schemes are one of the most popular approaches to tackle

such problems in IRS-assisted communications, a near-optimal

solution is not guaranteed if the design variables are coupled

in the constraints (see [7] and the references therein).

It is well-known that the problem of WSR maximization in a

SWIPT-MIMO system is similar to that of WSR maximization

in a MIMO system subject to one or more interference

constraints (e.g., underlay spectrum sharing MIMO systems).

Therefore, for the WSR maximization problem in the IRS-

assisted SWIPT-MIMO system, the authors in [6] followed

the approach of WSR maximization proposed in [8] and [9].

In particular, to obtain the optimal transmit precoding matrices

(TPMs) and the passive beamforming vector at the IRS that

jointly maximize the WSR, a block-coordinate descent (BCD)

method was used in [6]. It is interesting to note that the

shortcomings (in terms of performance and computational

complexity) of the BCD-based beamforming design approach

for the IRS-assisted MIMO underlay spectrum sharing system

were highlighted in [10], where the authors also proposed

a high-performance and low-complexity solution using a

penalty dual decomposition based alternating gradient pro-

jection (PDDAGP) method. Motivated by this observation,

in this paper we propose the PDDAGP method for optimal

beamforming design in the IRS-aided SWIPT-MIMO system,

which results in a significantly higher WSR than that achieved

by the BCD-based approach, and also incurs a notably lower

complexity compared to the benchmark scheme.

Notations: Bold uppercase and lowercase letters respec-

tively denote matrices and vectors. For a complex-valued

http://arxiv.org/abs/2303.00131v1


2

matrix X, the (ordinary) transpose, conjugate transpose, trace,

determinant, and Frobenius norm are denoted by XT, XH,

tr(X), |X|, and ‖X‖, respectively. The absolute value of a

complex number x is denoted by |x|. The vector space of

all complex-valued matrices of size M × N is denoted by

CM×N . Using vecd(X) we denote a column vector formed

from the elements on the main diagonal of X. For a vector

x, diag(x) denotes a square diagonal matrix whose main

diagonal has the same elements as those of x. The complex-

valued gradient of a function f(·) with respect to (w.r.t.) X∗

is denoted by ∇Xf(·), where X∗ represents the complex

conjugate of X, and Euclidean projection of X onto the

set X is defined by ΠX {x} , argmin
x̂∈X ‖x − x̂‖. The

expectation operation is denoted by E{·}. The identity and

zero matrices are respectively represented by I and 0, and√
−1 is represented by ι.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Similar to [6], we consider an IRS-assisted SWIPT-MIMO

system consisting of one base station (BS), MI IRs, ME ERs,

and one passive IRS. It is assumed that the BS is equipped

with NB antennas, each of the IRs and ERs are respectively

equipped with NI and NE antennas, respectively, and the IRS

consists of NS reflecting elements. The set of indices for IRs

and ERs are respectively denoted by MI , {1, 2, . . . ,MI}
and ME , {1, 2, . . . ,ME}. The channel matrices for BS-

IRS, BS-mth IR, BS-ℓth ER, IRS-mth IR, and IRS-ℓth ER

are respectively denoted by HS ∈ CNS×NB , HmI ∈ CNI×NB ,

HℓE ∈ CNE×NB , GmI ∈ CNI×NS and GℓE ∈ CNE×NS .

The IRS passive beamforming vector is denoted by φ =
[φ1, φ2, . . . , φNS

]T ∈ CNS×1, where φnS
, exp(ιθnS

) and

θnS
∈ [0, 2π), ∀nS ∈ NS ,{1, 2, . . . , NS}.1 We assume the

availability of perfect instantaneous channel state information

(CSI) at the BS for all of the wireless links.2 We denote

the signal vector transmitted from the BS is given by w =
∑

m∈MI
Fmsm, where sm ∈ Cmin{NB,NI}×1 is the signal

vector intended for the mth IR, and Fm ∈ CNB×min{NB×NI}

is the transmit precoding matrix (TPM) corresponding to

sm. We assume that E{smsHm} = I and E{smsHm′} = 0

∀m 6= m′ ∈ MI. The signal vector received at the mth

IR is given by ymI = (HmI + GmIΦHS)w + nmI, where

Φ , diag(φ), and nmI ∈ CNI×1 ∼ CN (0, σ2
mII) is the

additive white Gaussian noise (AWGN) vector at the mth IR.

Similarly, the received signal vector at the ℓth ER is given by

yℓE = (HℓE +GℓEΦHS)w + nℓE, where nℓE ∈ CNE×1 ∼
CN (0, σ2

ℓEI) is the AWGN vector at the ℓth ER. For the

rest of this paper, we consider σ2
mI = σ2

ℓE = σ2, ∀m ∈
MI, ℓ ∈ ME. Also, with a slight abuse of notation, we define

HS ← HS/σ, HmI ← HmI/σ and HℓE ← HℓE/σ; this

normalization step will mitigate potential numerical issues

caused by dealing with extremely small values. We further

1Although different IRS reflection models have been proposed in the
literature, the unit-modulus model is the most frequently used (see e.g., [5]–
[11]).

2Although CSI acquisition is a challenging task in IRS-assisted communi-
cation systems, consideration of imperfect CSI is beyond the scope of this
paper. The results presented in this paper serve as theoretical upper bounds
on the performance of a practical system with imperfect CSI.

define Zm , HmI +GmIΦHS and Ξℓ , HℓE +GℓEΦHS.

Therefore, the instantaneous achievable rate at the mth IR is

given by

Rm(X,φ) = ln
∣

∣I+ZmXmZH

mB−1
m

∣

∣=ln |Am|−ln |Bm|, (1)

where X , {Xm}m∈MI
, Xm , FmFH

m (this is the transmit

covariance matrix), Am , I + ZmΣZH
m, Σ ,

∑

k∈MI
Xk,

Bm , I + ZmΣmZH
m (this is the interference-plus-noise

covariance matrix), and Σm , Σ −Xm. The total harvested

power at the ℓth ER is given by PℓH(X,φ) = η tr
(

ΞℓΣΞH

ℓ

)

,
where 0 < η ≤ 1 is the energy harvesting efficiency.

Therefore, a WSR maximization problem for the IRS-assisted

SWIPT-MIMO system can be formulated as follows:

maximize
X,φ

{

Rsum

(

X,φ
)

,
∑

m∈MI

ωmRm(X,φ)
}

(2a)

subject to PH

(

X,φ
)

≥ 1, (2b)

tr
(

Σ
)

≤ PB, (2c)

|φnS
| = 1 ∀nS ∈ NS. (2d)

In (2), ωm denotes the rate weighting factor for the mth IR,

PH

(

X,φ
)

,
(

1/P̃th

)
∑

ℓ∈ME
αℓPℓH, P̃th , Pth/σ

2 with

Pth being the total minimum weighted power required to be

harvested at the ERs, αℓ is the harvested power weighting

factor at the ℓth ER, and PB denotes the transmit power budget

at the BS. It is easy to observe that (2) is non-convex due to

the coupling of the design variables (i.e., X and φ) in (2a)

and (2b), and the non-convex constraints in (2d).

In order to solve (2), the authors in [6] first reformulated the

problem by using the conventional weighted minimum mean-

square error (WMMSE) method and then used an alternating

optimization (AO) based BCD approach. It will be seen in

Sec. IV that the BCD-based approach of [6] results in a notably

inferior performance. Moreover, as discussed in [6, Sec. III-

D], the complexity of the BCD method grows as O(N3
S) for

large-scale systems where NS ≫ max{NB, NI, NE,MI,ME},
which represents the practical case where a significant benefit

is achieved by the IRS. Also, note that for channels with

relatively low coherence time (such as rapidly varying fast-

fading channels), it may be practically infeasible to run a high-

complexity optimization process as frequently as is needed to

update the optimal beamforming design.

III. PROPOSED SOLUTION

To tackle the coupling between the design variables (i.e., X

and φ), in the constraint (2b), we follow the method of penalty

dual decomposition, originally proposed in [12]. For this

purpose, we first define f
(

X,φ, τ
)

, 1+τ−PH

(

X,φ
)

; note

that for some suitable τ ≥ 0, f
(

X,φ, τ
)

= 0 is equivalent

to (2b). We now construct an augmented Lagrangian objective

function defined as

Rµ,ρ(X,φ, τ) , Rsum

(

X,φ
)

−
{

µf(X,φ, τ) + (0.5/ρ)f2(X,φ, τ)
}

, (3)

where µ is the Lagrange multiplier corresponding to the

constraint f
(

X,φ, τ
)

= 0 and ρ is the penalty parameter.

Therefore, for a given (µ, ρ), an equivalent optimization prob-

lem can be formulated as (c.f. [12])

maximize
X,φ,τ

{

Rµ,ρ(X,φ, τ)
∣

∣τ ≥ 0, (2c), (2d)
}

. (4)
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It is important to note that the design variables are decoupled

in the constraints in (4), and the coupling exists only in the

objective function, i.e., Rµ,ρ(X,φ, τ).
Before proposing a low-complexity and high-performance

algorithm to obtain a stationary solution to (4), we

derive closed-form expressions for ∇XRµ,ρ

(

X,φ, τ
)

and ∇φRµ,ρ

(

X,φ, τ
)

. One can easily note that

∇XRµ,ρ

(

X,φ, τ
)

=
{

∇Xm
Rµ,ρ

(

X,φ, τ
)}

m∈MI

. A

closed-form expression for ∇Xm
Rµ,ρ(X,φ, τ) is given in

the following theorem.

Theorem 1: A closed-form expres-

sion for ∇Xm
Rµ,ρ

(

X,φ, τ
)

is given by

∇Xm
Rµ,ρ

(

X,φ, τ
)

=
∑

k∈MI
ωk∇Xm

Rk

(

X,φ
)

+
{

µ +

(1/ρ)f(X,φ, τ)
}

∇Xm
PH(X,φ), where

∇Xm
Rk

(

X,φ
)

=















ZH
mB

−1/2
m C−1

m B
−1/2
m Zm, if m = k

ZH

k

(

B̄
−1/2
m,k C̄−1

m,kB̄
−1/2
m,k

−B̂−1/2
m,k Ĉ−1

m,kB̂
−1/2
m,k

)

Zk, otherwise,

Cm , I + B
−1/2
m ZmXmZH

mB
−1/2
m , B̄m,k , I + ZkΣmZH

k ,

C̄m,k , I+ B̄
−1/2
m,k ZkXmZH

k B̄
−1/2
m,k , B̂m,k , I+ZkΣm,kZ

H

k ,

Σm,k , Σm −Xk, Ĉm,k , I+ B̂
−1/2
m,k ZkXmZH

k B̂
−1/2
m,k , and

∇Xm
PH(X,φ) = (η/P̃th)

∑

ℓ∈ME
αℓΞ

H

ℓ Ξℓ.

Proof: See Appendix A.

Next, we obtain a closed-form expression for the complex-

valued gradient of Rµ,ρ(X,φ, τ) w.r.t. φ.

Theorem 2: A closed-form expression for ∇φRµ,ρ(X,φ, τ)
is given by ∇φRµ,ρ(X,φ, τ) =

∑

m∈MI
ωm∇φRm

(

X,φ
)

+
{

µ+(1/ρ)f(X,φ, τ)
}

∇φPH

(

X,φ
)

, where∇φRm

(

X,φ
)

=

vecd
{

GH

mIDmHH

S

}

, Dm , A−1
m ZmΣ − B−1

m ZmΣm, and

∇φPH

(

X,φ
)

= (η/P̃th)
∑

ℓ∈ME
αℓ vecd(G

H

ℓEΞℓΣHH

S ).
Proof: See Appendix B.

We now propose the PDDAGP algorithm, shown in Algo-

rithm 1, to attain a high-performance solution to (4). We

define X ,
{{

Xm

}

m∈MI

∣

∣(2c)
}

as the feasible set of

transmit covariance matrices X. Similarly, Θ ,
{

φ
∣

∣(2d)
}

is defined as the feasible set for the design variable φ.

In Algorithm 1, we use AO to iteratively update the variables

X and φ. In the rth iteration, to update X(r) for a given

φ(r), we ascend in the direction of ∇XRµ,ρ

(

X(r),φ(r), τ (r)
)

with step size δX, and then project the resulting point

onto the set X (see lines 4 and 5). After obtaining

X(r+1), we update φ(r) by ascending in the direction of

∇φRµ,ρ

(

X(r+1),φ(r), τ (r)
)

using the step size δφ, and then

project the resultant vector onto Θ to obtain φ(r+1) (lines 6

and 7). Next, following the constraint τ ≥ 0 in (4), we

obtain τ (r+1) as shown in line 8. The inner loop in Algo-

rithm 1 converges when
[

Rµ,ρ

(

X(r+1),φ(r+1), τ (r+1)
)

−
Rµ,ρ

(

X(r),φ(r), τ (r)
)

]

/Rµ,ρ

(

X(r),φ(r), τ (r)
)

< ǫ. Once the

inner loop achieves convergence, we update the Lagrange

multiplier µ and penalty multiplier ρ as given in lines 10

and 11, respectively, and repeat the entire process. The

outer loop converges when
[

Rµ,ρ

(

X(r+1),φ(r+1), τ (r+1)
)

−
Rsum

(

X(r+1),φ(r+1)
)

]

/Rµ,ρ

(

X(r+1),φ(r+1), τ (r+1)
)

< ǫ.

Note that projection onto X follows the standard water-filling

solution, and projection onto Θ is a simple scaling operation

Algorithm 1: The Proposed PDDAGP Algorithm to

Solve (4).

Input: X
(0), φ(0), τ (0), µ, ρ, δX, δφ, 0 < κ < 1

Output: X
⋆, φ⋆

1 repeat
2 r ← 1

3 repeat
/* Update X */

4 Obtain ∇XRµ,ρ

(

X
(r),φ(r), τ (r)

)

using Theorem 1;

5 X
(r+1)

=ΠX

{

X
(r)

+δX∇XRµ,ρ

(

X
(r),φ(r), τ (r)

)}

;

/* Update φ */

6 Obtain ∇φRµ,ρ

(

X
(r+1),φ(r), τ (r)

)

using Theorem 2;

7 φ(r+1)
=ΠΘ

{

φ(r)
+δφ∇φRµ,ρ

(

X
(r+1),φ(r), τ (r)

)}

;
/* Update τ */

8 τ (r+1)
= max{0, PH

(

X
(r+1),φ(r+1)

)

− 1− µρ};
9 until convergence;

10 µ← µ+
1
ρ
f
(

X
(r+1),φ(r+1), τ (r+1)

)

;

11 ρ← κρ;
12 until convergence;

13 X
⋆ ← X

(r+1), φ⋆ ← φ(r+1), τ⋆ ← τ (r+1);
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Fig. 1. Convergence result of the proposed PDDGP algorithm at PB =

30 dBm.

(see [10, eqn. (6)] for details). Moreover, appropriate values of

δX and δφ can be obtained using the backtracking line search

scheme discussed in [10, eqn. (8)]. Following the arguments

in [12], it can be proved that when convergence is achieved,

the stationary solution of (4) becomes a stationary solution

to (2). Moreover, the convergence of the proposed PDDAGP

algorithm can be readily proved following the line of argument

in [10, Sec. III-C], which is omitted here due to the space

limitation.

It is important to note that due to the contending constraints

in (2b) and (2c), the problem in (2) may not be feasible for a

given set of channels. If the outer loop in Algorithm 1 does

not converge within a certain number of iterations, we consider

the problem to be infeasible for that given set of channels. It is

also noteworthy that the BCD-based solution proposed in [6,

Algorithm 5] requires a feasible TPM and φ as initial points,

whereas our proposed PDDAGP algorithm does not require

feasible points for initialization.

Complexity Analysis: Note that the complexity of the

proposed PDDAGP algorithm is dominated by that of the inner

loop in Algorithm 1. Defining the computational complexity

as the number of complex-valued multiplications, it can be

noted that the complexity of computing Zm, ∀m ∈ MI and
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Ξℓ, ∀ℓ ∈ ME are respectively given by O
(

MINBNS

(

1+NI

))

and O
(

MENBNSNE

)

. Similarly, given X(r), φ(r), τ (r),
Zm, ∀m ∈ MI and Ξℓ, ∀ℓ ∈ME, the complexity of obtaining

X(r+1) is given by O
(

MEN
3
E + M3

I N
3
B + 2M2

I N
2
BNI +

2M2
I NBN

2
I +12M2

I N
3
I +2MINBN

2
I −8MIN

3
I

)

. Analogously,

the computational complexity of obtaining φ(r+1) is given

by O
(

MI

{

N3
I + 2NINB

(

NB +NI

)

+NINBNS +NINS

}

+
ME

(

N2
BNS + NENBNS + NSNE

))

. Note that since the

complexity of projection operations will be comparatively

smaller, we have neglected the associated terms. In the end,

the complexity of computing τ (r+1) is O
(

MENBNE

(

NS +
NB + NE

))

. Therefore, the overall per-iteration complex-

ity of Algorithm 1 is given by O
(

MENB

(

NBNENS +
NBNS + N2

E + 2NENS

)

+ MENE

(

N2
E + NS

)

+ M3
I N

3
B +

MININB

(

2MINB + 2MINI + 2MINB + 4NI + 2NS

)

+
12M2

I N
3
I + MI

(

NBNS − 7N3
I + NINS

))

. Since a practical

deployment of an IRS-aided communication system is ex-

pected to involve a very large number of reflecting elements,

it is expected that NS ≫ max
{

NB, NI, NE,MI,ME

}

, and

therefore, the per-iteration complexity of Algorithm 1 is well

approximated by O
(

NS

(

MENENB

(

2+NB

)

+2MININB

))

,

which is linear in NS. This establishes the fact that the

proposed PDDAGP algorithm is much more suitable for large-

scale IRS-assisted SWIPT-MIMO systems in rapidly changing

environments, compared to the BCD-based algorithm in [6]

whose complexity grows with the third power of NS.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results to establish the

performance superiority of the proposed PDDAGP algorithm

over the BCD-based scheme of [6]. Similar to [6], we consider

that the BS is located at (0 m, 0 m), the IRS is located at

(5 m, 2 m), the IRs are uniformly and randomly distributed

inside a circle of radius 4 m centered at (400 m, 0 m), and the

ERs are uniformly and randomly distributed inside a circle of

radius 1 m centered at (xE, 0 m). The path loss and small-

scale fading models for all of the wireless links also follow [6].

Furthermore, we assume Pth = 0.2 mW, MI = 2, ME = 4,

ωm = 1 ∀m ∈ MI, αℓ = 1 ∀ℓ ∈ ME, η = 0.5, NB = 4,

NI = NE = 2, NS = 100, xE = 5 m, κ = 0.1, ǫ = 10−3,

a noise power spectral density of -160 dBm/Hz, and a total

channel bandwidth of 1 MHz, unless stated otherwise. The

initial values are set as τ (0) = 0, µ(0) = 0, ρ(0) = 0, X(0) = 0,

and θ(0) = [1, 1, . . . , 1]T. In Figs. 2–4, the average WSR is

obtained over 100 random locations and independent small-

scale fading realizations. Moreover, the numbers (in dBm) in

the legends of Figs. 3 and 4 correspond to the value of PB.

Fig. 1 shows a representative sample convergence result

for the proposed PDDAGP algorithm, where each iteration

corresponds to lines 3–9 in Algorithm 1. Following the

arguments in [10, Sec. III-C], it can be proved that for a

given (µ, ρ), Algorithm 1 generates a strictly non-decreasing

sequence of Rµ,ρ

(

X,φ, τ
)

. This fact is also evident in the

figure. Once the inner loop in Algorithm 1 converges, we

update the Lagrange multiplier µ and decrease the value of the

penalty parameter ρ. Due to a stricter penalty, Rµ,ρ

(

X,φ, τ
)

drops suddenly (as seen in the figure when ρ changes) and

then for the new (µ, ρ), the sequence Rµ,ρ

(

X,φ, τ
)

increases

again. This whole process is repeated until the constraints

in (2b)–(2d) are satisfied, which in turn nullifies the impact

of the penalty in (3), resulting in the convergence of the

algorithm.

The impact of the number of IRS elements on the average

WSR is shown in Fig. 2. With an increased number of

elements, the IRS creates highly directed beams toward IRs

and ERs, which results in an increase in the WSR. However,

in contrast to the BCD-based approach of [6], the proposed

algorithm enjoys the following benefits: (i) relaxed constraints

in the latter (since the constraint in (2b) is included in the

objective in (4)), and (ii) the design variables X and φ are

decoupled in the constraints in the proposed algorithm. These

benefits result in a larger beamforming gain compared to the

BCD-based approach. For the particular setting in this paper,

the beamforming gain of the proposed PDDAGP-based method

nearly doubles the average WSR compared to that achieved

via the BCD-based approach.

In Fig. 3, we show the effect of increasing the value of

weighted harvested power requirement (Pth) on the average

WSR for the proposed PDDAGP-based algorithm, and com-

pare its performance with that of the BCD-based algorithm

proposed in [6]. As the value of Pth increases, the QoS

constraints at the ERs become more demanding. This calls

for a significant part of the beams from the BS and the IRS to

be steered toward the ERs, resulting in a decrease in the WSR

at the IRs. However, due to the luxury of relaxed constraints
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and decoupled optimization variables, the proposed PDDAGP

algorithm results in superior beamforming designs compared

to the BCD-based algorithm.

Fig. 4 shows the effect of the location of ERs on the WSR

of the IRs. As the value of xE increases (which increases

the distance between the BS and ERs), the average channel

quality of the BS-ER and IRS-ER links degrades, resulting in

a challenging QoS constraint at the ERs. This in turn results

in a decreased WSR at the IRs due to reasons similar to those

discussed in the preceding paragraph. However, the proposed

PDDAGP algorithm significantly outperforms the BCD-based

benchmark solution. This also indicates that for given Pth

and Rsum(X, θ), the proposed algorithm helps to increase the

operating distance of the ERs, i.e., it allows the ERs to be

located further from the BS, compared to that facilitated by

the BCD-based scheme.

V. CONCLUSION

In this paper, we investigated the fundamental problem of

WSR maximization at the IRs in an IRS-assisted SWIPT-

MIMO system, subject to satisfying a total weighted harvested

power constraint at the ERs. For the formulated non-convex

optimization problem, we proposed the PDDAGP algorithm,

which is shown to outperform the BCD-based benchmark solu-

tion. Numerical results confirmed that the proposed algorithm

attains a notably higher WSR, and also increases the operating

range of ERs for a given target WSR and target weighted

harvested power, compared to the BCD-based benchmark

solution. The complexity of the proposed algorithm was shown

to be a linear function of the number of IRS elements, while

that of the benchmark solution scales with the third power of

the number of reflecting elements of the IRS.

APPENDIX A

PROOF OF THEOREM 1

Using (3), it is straightforward to note that

∇Xm
Rµ,ρ

(

X,φ, τ
)

=
∑

k∈MI
ωk∇Xm

Rk

(

X,φ
)

−
{

µ +
1
ρf(X,φ, τ)

}

∇Xm
f(X,φ, τ). For the case when m = k,

using (1), ∇Xm
Rk(X,φ) = ∇Xm

Rm(X,φ) is given by

∇Xm
Rm(X,φ) = ∇Xm

(

ln |Am| − ln |Bm|
)

= ∇Xm
ln |I+

B
−1/2
m ZmXmZH

mB
−1/2
m | = ZH

mB
−1/2
m C−1

m B
−1/2
m Zm, where

the last equality follows from [13, eqns. (6.195) and

(6.200)-(6.207)], and Cm , I + B
−1/2
m ZmXmZH

mB
−1/2
m .

Similarly for the case when m 6= k, we have

∇Xm
Rk(X,φ) = ∇Xm

(

ln |Ak| − ln |Bk|
)

=

∇Xm
ln |I + B̄

−1/2
k,m ZkXmZH

k B̄
−1/2
k,m | − ∇Xm

ln |I +

B̂
−1/2
k,m ZkXmZH

k B̂
−1/2
k,m | = ZH

k B̄
−1/2
k,m C̄−1

k,mB̄
−1/2
k,m Zk −

ZH

k B̂
−1/2
k,m Ĉ−1

k,mB̂
−1/2
k,m Zk, where B̄k,m , I +

∑

ı∈MI\{m} ZkXıZ
H

k , C̄k,m , I + B̄
−1/2
k,m ZkXmZH

k B̄
−1/2
k,m ,

B̂k,m , I +
∑

∈MI\{k,m} ZkXZ
H

k , Ĉk,m ,

I + B̂
−1/2
k,m ZkXmZH

k B̂
−1/2
k,m . Following a similar line

of argument, ∇Xm
f(X,φ, τ) = −∇Xm

PH(X,φ) =
−(η/P̃th)

∑

ℓ∈ME
αℓΞ

H

ℓ Ξℓ. With the help of the derived

closed-form expression for ∇Xm
Rµ,ρ

(

X,φ, τ
)

and

∇Xm
f(X,φ, τ), we obtain the closed-form expression

for ∇Xm
Rµ,ρ

(

X,φ, τ
)

as given in Theorem 1. This

concludes the proof.

APPENDIX B

PROOF OF THEOREM 2

Using (3), it can be noted that

∇φRµ,ρ(X,φ, τ) =
∑

m∈MI
ωm∇φRm

(

X,φ
)

+
{

µ + 1
ρf(X,φ, τ)

}

∇φf
(

X,φ, τ
)

. Next, to obtain

∇φRm

(

X,φ
)

, we first use ∇φ

(

Rm

(

X,φ
))

=
∇φ

(

ln |Am|
)

− ∇φ

(

ln |Bm|
)

. Next, we have

∇φ ln |Am| = tr
{

A−1
m

∑

k∈MI
ZmXk∇φ

(

ZH
m

)}

=
∑

k∈MI
tr
{

GH

mIA
−1
m ZmXkH

H

S∇φ

(

ΦH
)}

. Similarly, we

can obtain ∇φ ln |Bm| = tr
{

GH

mIB
−1
m ZmXH

H

S∇φ

(

ΦH
)}

.

Using the definition of the complex-valued gradient, [13,

eqn. (6.153)], together with the preceding expressions

yields ∇φRm

(

X,φ
)

= vecd
{

GH

mIDmHH

S

}

, where Dm ,

A−1
m ZmΣ− B−1

m ZmΣm. Analogously, it can be shown that

∇φf(X,φ, τ) = −(η/P̃th)
∑

ℓ∈ME
αℓ vecd(G

H

ℓEΞℓΣHH

S ).
With the help of these arguments, we obtain the closed-form

expression for ∇φRµ,ρ(X,φ, τ) as given in Theorem 2. This

completes the proof.
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